File: miRNA.simulator.py

package info (click to toggle)
mirtop 0.4.30-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,828 kB
  • sloc: python: 6,649; sh: 47; makefile: 22
file content (174 lines) | stat: -rw-r--r-- 5,584 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from __future__ import print_function

from optparse import OptionParser
import os
import random
import numpy

from mirtop.mirna import fasta
from mirtop.mirna import mapper
from mirtop.mirna import realign
from mirtop.gff import body, header
import mirtop.libs.logger as mylog
logger = mylog.getLogger(__name__)


def write_collapse_fastq(reads, out_fn):
    idx = 0
    with open(out_fn, 'a') as outh:
        for r in reads:
            idx += 1
            print(">name%s_x%s" % (idx, r[1]), file=outh)
            print(r[0], file=outh)


def write_fastq(reads, out_fn):
    idx = 0
    with open(out_fn, 'a') as outh:
        for r in reads:
            idx += 1
            print("@name_read:%s" % idx, file=outh)
            print(r, file=outh)
            print("+", file=outh)
            print("I" * len(r), file=outh)


def create_read(read, count, adapter="TGGAATTCTCGGGTGCCAAGGAACTC", size=36):
    reads = list()
    for i in range(0, count):
        rest = size - len(read)
        part = adapter[:rest]
        reads.append(read + part)
    return reads


def variation(info, seq):
    randS = random.randint(info[0] - 2, info[0] + 2) + 1
    randE = random.randint(info[1] - 1, info[1] + 2) + 1
    if randS < 1:
        randS = 1
    if randE > len(seq):
        randE = info[1] - 1
    randSeq = seq[randS:randE]
    t5Lab = ""
    t5Lab = seq[randS:info[0]] if randS < info[0] else t5Lab
    t5Lab = seq[info[0]:randS].lower() if randS > info[0] else t5Lab
    t3Lab = ""
    t3Lab = seq[randE:info[1] + 1].lower() if randE < info[1] + 1 else t3Lab
    t3Lab = seq[info[1] + 1:randE] if randE > info[1] + 1 else t3Lab
    # mutation
    isMut = random.randint(0, 10)
    mutLab = []
    if isMut == 3:
        ntMut = random.randint(0, 3)
        posMut = random.randint(0, len(randSeq) - 1)
        if not randSeq[posMut] == nt[ntMut]:
            temp = list(randSeq)
            mutLab = [[posMut, nt[ntMut], randSeq[posMut]]]
            temp[posMut] = nt[ntMut]
            randSeq = "".join(temp)

    # addition
    isAdd = random.randint(0, 3)
    addTag = ""
    if isAdd == 2:
        posAdd = random.randint(1, 3)
        for numadd in range(posAdd):
            ntAdd = random.randint(0, 1)
            print([randSeq, seq[randS + len(randSeq)]])
            if nt[ntAdd] == seq[randS + len(randSeq)]:
                ntAdd = 1 if ntAdd == 0 else 0
            randSeq += nt[ntAdd]
            addTag += nt[ntAdd]
            print([randSeq, randE, info[1]])
    return [randSeq, randS, t5Lab, t3Lab, mutLab, addTag]


def create_iso(name, mir, seq, numsim, exp):
    reads = dict()
    full_read = list()
    clean_read = list()
    seen = set()
    for mirna in mir[name]:
        info = mir[name][mirna]
        for rand in range(int(numsim)):
            e = 1
            if exp:
                trial = random.randint(1, 100)
                p = random.randint(1, 50) / 50.0
                e = numpy.random.negative_binomial(trial, p, 1)[0]
            iso = realign.isomir()
            randSeq, iso.start, iso.t5, iso.t3, iso.subs, iso.add = variation(info, seq)
            if randSeq in seen:
                continue
            seen.add(randSeq)
            iso.end = iso.start + len(randSeq)
            aln = realign.align(randSeq, seq[iso.start:iso.end])
            iso.cigar = realign.make_cigar(aln[0], aln[1])
            iso.mirna = mirna
            query_name = "%s.%s.%s" % (mirna, iso.format_id("."), randSeq)
            reads[query_name] = realign.hits()
            reads[query_name].set_sequence(randSeq)
            reads[query_name].counts = e
            reads[query_name].set_precursor(name, iso)
            full_read.extend(create_read(randSeq, e))
            clean_read.append([randSeq, e])
            # print([randSeq, mutLab, addTag, t5Lab, t3Lab, mirSeq])
            # data[randSeq] = [exp, iso] # create real object used in code to generate GFF
    write_fastq(full_read, full_fq)
    write_collapse_fastq(clean_read, clean_fq)
    gff = body.create(reads, "miRBase21", "sim1")
    return gff


def _write(lines, header, fn):
    out_handle = open(fn, 'w')
    print(header, file=out_handle)
    for m in lines:
        for s in sorted(lines[m].keys()):
            for hit in lines[m][s]:
                print(hit[4], file=out_handle)
    out_handle.close()


usagetxt = "usage: %prog  --fa precurso.fa --gtf miRNA.gtf -n 10"


parser = OptionParser(usage=usagetxt, version="%prog 1.0")
parser.add_option("--fa",
                  help="", metavar="FILE")
parser.add_option("--gtf",
                  help="", metavar="FILE")
parser.add_option("-n", "--num", dest="numsim",
                  help="")
parser.add_option("-e", "--exp", dest="exp", action="store_true",
                  help="give expression", default=False)
parser.add_option("-p", "--prefix", help="output name")
parser.add_option("--seed", help="set up seed for reproducibility.", default=None)


(options, args) = parser.parse_args()

if options.seed:
    random.seed(options.seed)

full_fq = "%s_full.fq" % options.prefix
clean_fq = "%s_clean.fq" % options.prefix
out_gff = "%s.gff" % options.prefix
if os.path.exists(full_fq):
    os.remove(full_fq)
if os.path.exists(clean_fq):
    os.remove(clean_fq)

pre = fasta.read_precursor(options.fa, "")
mir = mapper.read_gtf_to_precursor(options.gtf)

nt = ['A', 'T', 'G', 'C']
gffs = dict()
h = header.create(["sampleX"], "miRBase1", "")
for precursor in pre:
    seq = pre[precursor]
    gffs.update(create_iso(precursor, mir, seq, options.numsim, options.exp))


_write(gffs, h, out_gff)