1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
from __future__ import print_function
from optparse import OptionParser
import os
import random
import numpy
from mirtop.mirna import fasta
from mirtop.mirna import mapper
from mirtop.mirna import realign
from mirtop.gff import body, header
import mirtop.libs.logger as mylog
logger = mylog.getLogger(__name__)
def write_collapse_fastq(reads, out_fn):
idx = 0
with open(out_fn, 'a') as outh:
for r in reads:
idx += 1
print(">name%s_x%s" % (idx, r[1]), file=outh)
print(r[0], file=outh)
def write_fastq(reads, out_fn):
idx = 0
with open(out_fn, 'a') as outh:
for r in reads:
idx += 1
print("@name_read:%s" % idx, file=outh)
print(r, file=outh)
print("+", file=outh)
print("I" * len(r), file=outh)
def create_read(read, count, adapter="TGGAATTCTCGGGTGCCAAGGAACTC", size=36):
reads = list()
for i in range(0, count):
rest = size - len(read)
part = adapter[:rest]
reads.append(read + part)
return reads
def variation(info, seq):
randS = random.randint(info[0] - 2, info[0] + 2) + 1
randE = random.randint(info[1] - 1, info[1] + 2) + 1
if randS < 1:
randS = 1
if randE > len(seq):
randE = info[1] - 1
randSeq = seq[randS:randE]
t5Lab = ""
t5Lab = seq[randS:info[0]] if randS < info[0] else t5Lab
t5Lab = seq[info[0]:randS].lower() if randS > info[0] else t5Lab
t3Lab = ""
t3Lab = seq[randE:info[1] + 1].lower() if randE < info[1] + 1 else t3Lab
t3Lab = seq[info[1] + 1:randE] if randE > info[1] + 1 else t3Lab
# mutation
isMut = random.randint(0, 10)
mutLab = []
if isMut == 3:
ntMut = random.randint(0, 3)
posMut = random.randint(0, len(randSeq) - 1)
if not randSeq[posMut] == nt[ntMut]:
temp = list(randSeq)
mutLab = [[posMut, nt[ntMut], randSeq[posMut]]]
temp[posMut] = nt[ntMut]
randSeq = "".join(temp)
# addition
isAdd = random.randint(0, 3)
addTag = ""
if isAdd == 2:
posAdd = random.randint(1, 3)
for numadd in range(posAdd):
ntAdd = random.randint(0, 1)
print([randSeq, seq[randS + len(randSeq)]])
if nt[ntAdd] == seq[randS + len(randSeq)]:
ntAdd = 1 if ntAdd == 0 else 0
randSeq += nt[ntAdd]
addTag += nt[ntAdd]
print([randSeq, randE, info[1]])
return [randSeq, randS, t5Lab, t3Lab, mutLab, addTag]
def create_iso(name, mir, seq, numsim, exp):
reads = dict()
full_read = list()
clean_read = list()
seen = set()
for mirna in mir[name]:
info = mir[name][mirna]
for rand in range(int(numsim)):
e = 1
if exp:
trial = random.randint(1, 100)
p = random.randint(1, 50) / 50.0
e = numpy.random.negative_binomial(trial, p, 1)[0]
iso = realign.isomir()
randSeq, iso.start, iso.t5, iso.t3, iso.subs, iso.add = variation(info, seq)
if randSeq in seen:
continue
seen.add(randSeq)
iso.end = iso.start + len(randSeq)
aln = realign.align(randSeq, seq[iso.start:iso.end])
iso.cigar = realign.make_cigar(aln[0], aln[1])
iso.mirna = mirna
query_name = "%s.%s.%s" % (mirna, iso.format_id("."), randSeq)
reads[query_name] = realign.hits()
reads[query_name].set_sequence(randSeq)
reads[query_name].counts = e
reads[query_name].set_precursor(name, iso)
full_read.extend(create_read(randSeq, e))
clean_read.append([randSeq, e])
# print([randSeq, mutLab, addTag, t5Lab, t3Lab, mirSeq])
# data[randSeq] = [exp, iso] # create real object used in code to generate GFF
write_fastq(full_read, full_fq)
write_collapse_fastq(clean_read, clean_fq)
gff = body.create(reads, "miRBase21", "sim1")
return gff
def _write(lines, header, fn):
out_handle = open(fn, 'w')
print(header, file=out_handle)
for m in lines:
for s in sorted(lines[m].keys()):
for hit in lines[m][s]:
print(hit[4], file=out_handle)
out_handle.close()
usagetxt = "usage: %prog --fa precurso.fa --gtf miRNA.gtf -n 10"
parser = OptionParser(usage=usagetxt, version="%prog 1.0")
parser.add_option("--fa",
help="", metavar="FILE")
parser.add_option("--gtf",
help="", metavar="FILE")
parser.add_option("-n", "--num", dest="numsim",
help="")
parser.add_option("-e", "--exp", dest="exp", action="store_true",
help="give expression", default=False)
parser.add_option("-p", "--prefix", help="output name")
parser.add_option("--seed", help="set up seed for reproducibility.", default=None)
(options, args) = parser.parse_args()
if options.seed:
random.seed(options.seed)
full_fq = "%s_full.fq" % options.prefix
clean_fq = "%s_clean.fq" % options.prefix
out_gff = "%s.gff" % options.prefix
if os.path.exists(full_fq):
os.remove(full_fq)
if os.path.exists(clean_fq):
os.remove(clean_fq)
pre = fasta.read_precursor(options.fa, "")
mir = mapper.read_gtf_to_precursor(options.gtf)
nt = ['A', 'T', 'G', 'C']
gffs = dict()
h = header.create(["sampleX"], "miRBase1", "")
for precursor in pre:
seq = pre[precursor]
gffs.update(create_iso(precursor, mir, seq, options.numsim, options.exp))
_write(gffs, h, out_gff)
|