1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
## Lighting functions are functions of the form
##
## lighting(normals, view, light, color, color2, material)
##
## with
##
## normals a matrix of unit normal vectors as computed by triangleNormals
## view vector pointing to the viewer
## light vector pointing to the light source
## color color or vector of n colors for the sides of the triangles
## in the direction of to the normal vectors
## color2 color or vector of n colors for the sides of the triangles
## in the opposite direction of to the normal vectors. NA means
## same as 'color'
## alpha the alpha level to use
## material material parameters controlling the lighting calculation.
##
## lighting functions return a vector of n rgb colors corresponding
## to the sides of the trinagles facing the viewer and the lighting
## algorithm.
## phongLighting implements a simple version of the Phong lighting
## model (not shading--that would involve interpolation within the
## triangles). It incorporates ambient and diffuse light, which are
## the same color as the object, and specular light, which is a convex
## combination of the object color and the (white) light color. This
## is based roughly on the description in Foley and Van Dam.
phongLighting <- function(normals, view, light, color, color2, alpha,
material = "default") {
if (length(light) == 4) {
LI <- light[4]
light <- light[1:3]
}
else LI <- 1
if (is.character(material))
material <- getMaterial(material)
ambient <- material$ambient
diffuse <- material$diffuse
specular <- material$specular
exponent <- material$exponent
sr <- material$sr
V <- view / sqrt(sum(view^2))
L <- light / sqrt(sum(light^2))
H <- (L + V) / sqrt(sum((L + V)^2))
sgn <- as.vector(normals %*% V) > 0
N <- ifelse(sgn,1, -1) * normals
Is <- as.vector(specular * abs(N %*% H) ^ exponent)
Id <- as.vector(diffuse * pmax(N %*% L,0))
rgbcol <- t(col2rgb(ifelse(sgn, color, color2)) / 255)
Lrgbcol <- pmin(LI * ((ambient + Id + sr * Is) * rgbcol + (1 - sr) * Is),
1)
Lrgbcol[is.na(Lrgbcol)] <- 0
rgb(Lrgbcol[,1], Lrgbcol[,2], Lrgbcol[,3], alpha)
}
## A simple data base is used to register properties of named
## materials. Some initial entries are based on valuaes for similarly
## named materials in Matlab.
materials.database <- new.env(hash = TRUE)
registerMaterial <- function(name, ambient = 0.3, diffuse = 0.7,
specular = 0.1, exponent = 10, sr = 0) {
value <- list(ambient = ambient, diffuse = diffuse,
specular = specular, exponent = exponent, sr = sr)
assign(name, value, materials.database)
}
getMaterial <- function(name) {
if (exists(name, materials.database, inherits = FALSE))
get(name, materials.database)
else get("default", materials.database, inherits = FALSE)
}
registerMaterial("shiny", ambient = 0.3, diffuse = 0.6, specular = 0.9,
exponent = 20, sr = 0)
registerMaterial("dull", ambient = 0.3, diffuse = 0.8, specular = 0.0,
exponent = 10, sr = 0)
registerMaterial("metal", ambient = 0.3, diffuse = 0.3, specular = 1.0,
exponent = 25, sr = 0.5)
registerMaterial("default", ambient = 0.3, diffuse = 0.7, specular = 0.1,
exponent = 10, sr = 0)
# Alternate version of metal, about 50% brighter?
registerMaterial("metal", ambient = 0.45, diffuse = 0.45, specular = 1.5,
exponent = 25, sr = 0.5)
# 50% would be 0.45 0.45 1.50?
# Alternate version of shiny, about 20% brighter?
registerMaterial("shiny", ambient = 0.36, diffuse = 0.72, specular = 1.08,
exponent = 20, sr = 0)
## perspLighting is an implementation of the lighting algorithm
## described in the help page for persp(). The 'shade' parameter of
## persp is here named 'exponent'. It _looks_ like the shade parameter
## used in persp may be closer to twice the value supplied to persp;
## that is, perspLighting with shade = x seems to be comparable to
## persp() with shade = x / 2. Needed to rename shade to exponent.
## Division by 8 may make this exponent vaguely comparable to the
## Phong one.
perspLighting <- function(normals, view, light, color, color2, alpha,
material = "default") {
if (length(light) == 4) {
LI <- light[4]
light <- light[1:3]
}
else LI <- 1
if (is.character(material))
material <- getMaterial(material)
exponent <- material$exponent
V <- view / sqrt(sum(view^2))
L <- light / sqrt(sum(light^2))
sgn <- as.vector(normals %*% V) > 0
N <- ifelse(sgn,1, -1) * normals
I <- ((1 + as.vector(pmax(N %*% L, 0))) / 2) ^ (exponent / 8)
Lrgbcol <- I * LI * t(col2rgb(ifelse(sgn, color, color2)) / 255)
rgb(Lrgbcol[,1], Lrgbcol[,2], Lrgbcol[,3], alpha)
}
triangleNormalsPhong <- function(triangles) {
N <- triangleNormals(triangles)
ve <- t2ve(triangles)
vt <- vertexTriangles(ve)
VN <- vertexNormals(vt, N)
interpolateVertexNormals(VN, ve$ib)
}
triangleNormalsPhongEX <- function(triangles, reps = 1) {
N <- triangleNormals(triangles)
ve <- t2ve(triangles)
vt <- vertexTriangles(ve)
VN <- vertexNormals(vt, N)
vb <- ve$vb
ib <- ve$ib
n.tri <- nrow(N)
while (reps > 0) {
reps <- reps - 1
n.ver <- nrow(VN)
mt <- triangleMidTriangles(vb, ib, VN)
vb <- cbind(vb, mt$vb)
VN <- rbind(VN, mt$VN)
mtib <- mt$ib + n.ver
ib <- matrix(rbind(ib[1,], mtib[1,],mtib[3,],
mtib[1,], ib[2,],mtib[2,],
mtib[2,], ib[3,], mtib[3,],
mtib),
nrow = 3)
for (i in seq(along = triangles))
if (length(triangles[[i]]) == n.tri)
triangles[[i]] <- rep(triangles[[i]], each = 4)
n.tri <- 4 * n.tri
}
triangles$N <- interpolateVertexNormals(VN, ib)
triangles$v1 <- t(vb[,ib[1,]])
triangles$v2 <- t(vb[,ib[2,]])
triangles$v3 <- t(vb[,ib[3,]])
triangles
}
# version that handles color interpolation
# **** could lift out and triangleEdges calls
triangleNormalsPhongEX <- function(triangles, reps = 1) {
N <- triangleNormals(triangles)
ve <- t2ve(triangles)
vt <- vertexTriangles(ve)
VN <- vertexNormals(vt, N)
vb <- ve$vb
ib <- ve$ib
n.tri <- nrow(N)
color <- rep(triangles$color, length = n.tri)
color2 <- rep(triangles$color2, length = n.tri)
col.mesh <- rep(triangles$col.mesh, length = n.tri)
color2 <- ifelse(is.na(color2), color, color2)
col.mesh <- ifelse(is.na(col.mesh), color, col.mesh)
VC <- vertexColors(vt, color)
VC2 <- vertexColors(vt, color2)
VCm <- vertexColors(vt, col.mesh)
while (reps > 0) {
reps <- reps - 1
n.ver <- nrow(VN)
edges <- triangleEdges(vb, ib)
VC <- rbind(VC, (VC[edges[1,],] + VC[edges[2,],]) / 2)
VC2 <- rbind(VC2, (VC2[edges[1,],] + VC2[edges[2,],]) / 2)
VCm <- rbind(VCm, (VCm[edges[1,],] + VCm[edges[2,],]) / 2)
mt <- triangleMidTriangles(vb, ib, VN)
vb <- cbind(vb, mt$vb)
VN <- rbind(VN, mt$VN)
mtib <- mt$ib + n.ver
ib <- matrix(rbind(ib[1,], mtib[1,],mtib[3,],
mtib[1,], ib[2,],mtib[2,],
mtib[2,], ib[3,], mtib[3,],
mtib),
nrow = 3)
for (i in seq(along = triangles))
if (length(triangles[[i]]) == n.tri)
triangles[[i]] <- rep(triangles[[i]], each = 4)
n.tri <- 4 * n.tri
}
triangles$color <- interpolateVertexColors(VC, ib)
triangles$color2 <- interpolateVertexColors(VC2, ib)
triangles$color.mesh <- interpolateVertexColors(VCm, ib)
triangles$N <- interpolateVertexNormals(VN, ib)
triangles$v1 <- t(vb[,ib[1,]])
triangles$v2 <- t(vb[,ib[2,]])
triangles$v3 <- t(vb[,ib[3,]])
triangles
}
lightTriangles <- function(triangles, lighting, light) {
view <- c(0, 0, 1)
normals <- triangleNormals(triangles)
smooth <- if (is.null(triangles$smooth)) 0 else triangles$smooth
if (smooth == 0)
normals <- triangleNormals(triangles)
else if (smooth == 1)
normals <- triangleNormalsPhong(triangles)
else {
triangles <- triangleNormalsPhongEX(triangles, reps = smooth - 1)
normals <- triangles$N
}
n.tri <- nrow(normals)
color <- rep(triangles$color, length = n.tri)
color2 <- rep(triangles$color2, length = n.tri)
color2 <- ifelse(is.na(color2), color, color2)
alpha <- rep(triangles$alpha, length = n.tri)
mat <- triangles$material
triangles$col.light <- lighting(normals, view, light, color, color2,
alpha, mat)
triangles
}
lightScene <- function(scene, lighting, light) {
if (is.Triangles3D(scene))
lightTriangles(scene, lighting, light)
else lapply(scene, lightTriangles, lighting, light)
}
|