1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
\name{parametric3d}
\alias{parametric3d}
\title{Draw a 3D Parametric Plot}
\description{
Plot a two-parameter surface in three dimensions.
}
\usage{
parametric3d(fx, fy, fz, u, v, umin, umax, vmin, vmax, n = 100,
color = "white", color2 = NA, alpha = 1,
fill = TRUE, col.mesh = if (fill) NA else color,
smooth = 0, material = "default",
add = FALSE, draw = TRUE, engine = "rgl", ...)
}
\arguments{
\item{fx,fy,fz}{vectorized functions of u and v to compute the
\code{x}, \code{y}, and \code{z} coordinates.}
\item{u}{numeric vector of u values.}
\item{v}{numeric vector of v values.}
\item{umin}{numeric; the minimum value of u. Ignored in \code{u} is
supplied.}
\item{umax}{numeric; the maximum value of u. Ignored in \code{u} is
supplied.}
\item{vmin}{numeric; the minimum value of v. Ignored in \code{v} is
supplied.}
\item{vmax}{numeric; the maximum value of v. Ignored in \code{v} is
supplied.}
\item{n}{the number of equally spaced \code{u} and \code{v} values to
use. Ignored in \code{u} and \code{v} are supplied.}
\item{color}{color to use for the surface. Can also be a function of
three arguments. This is called with three arguments, the
coordinates of the midpoints of the triangles making up the surface.
The function should return a vector of colors to use for the
triangles.}
\item{color2}{opposite face color; only used for "standard" and "grid"
engines.}
\item{alpha}{alpha channel level, a number between 0 and 1..}
\item{fill}{logical; if \code{TRUE}, drawing should use filled
surfaces; otherwise a wire frame should be drawn.}
\item{col.mesh}{color to use for the wire frame.}
\item{smooth}{integer specifying Phong shading level; currently only
used by "standard" and "grid" engines.}
\item{material}{material specification; currently only used by
"standard" and "grid" engines. Currently possible values are the
character strings "dull", "shiny", "metal", and "default".}
\item{add}{logical; if \code{TRUE}, add to current graph.}
\item{draw}{logical; if \code{TRUE}, draw the results; otherwise,
return contour triangles.}
\item{engine}{character; currently "rgl", "standard", "grid" or "none";
for "none" the computed triangles are returned.}
\item{...}{additional rendering arguments, e.g. material and texture
properties for the "rgl" engine. See documentation for
\code{\link[misc3d]{drawScene}} and \code{\link[misc3d]{drawScene.rgl}}}
}
\value{
For the "rgl" engine the returned value is \code{NULL}. For the
"standard" and "grid" engines the returned value is the viewing
transformation as returned by \code{persp}. For the engine "none", or
when \code{draw} is not true, the returned value is a structure
representing the triangles making up the surface.
}
\details{
Analogous to Mathematica's \code{Param3D}. Evaluates the
functions \code{fx}, \code{fy}, and \code{fz} specifying the
coordinates of the surface at an equally spaced grid of values for the
parameters \code{u} and \code{v}.
}
\note{
The "rgl" engine now uses the standard rgl coordinates instead of
negating \code{y} and swapping \code{y} and \code{z}. If you need to
reproduce the previous behavior you can use
\code{options(old.misc3d.orientation=TRUE)}.
Transparency only works properly in the "rgl" engine. For standard or
grid graphics on pdf or quartz devices using alpha levels less than 1
does work but the triangle borders show as a less transparent mesh.
}
\references{
Daniel Adler, Oleg Nenadic and Walter Zucchini (2003)
RGL: A R-library for 3D visualization with OpenGL
}
\seealso{
\code{\link[rgl]{rgl.surface}},
\code{\link[rgl]{rgl.material}},\code{\link[scatterplot3d]{scatterplot3d}}.
}
\examples{
#Example 1: Ratio-of-Uniform sampling region of bivariate normal
parametric3d(fx = function(u, v) u * exp(-0.5 * (u^2 + v^2 -
2 * 0.75 * u * v)/sqrt(1-.75^2))^(1/3),
fy = function(u, v) v * exp(-0.5 * (u^2 + v^2 -
2 * 0.75 * u * v)/sqrt(1-.75^2))^(1/3),
fz = function(u, v) exp(-0.5 * (u^2 + v^2 - 2 * 0.75 * u *
v)/sqrt(1-.75^2))^(1/3),
umin = -20, umax = 20, vmin = -20, vmax = 20,
n = 100)
parametric3d(fx = function(u, v) u * exp(-0.5 * (u^2 + v^2 -
2 * 0.75 * u * v)/sqrt(1-.75^2))^(1/3),
fy = function(u, v) v * exp(-0.5 * (u^2 + v^2 -
2 * 0.75 * u * v)/sqrt(1-.75^2))^(1/3),
fz = function(u, v) exp(-0.5 * (u^2 + v^2 - 2 * 0.75 * u *
v)/sqrt(1-.75^2))^(1/3),
u = qcauchy((1:100)/101), v = qcauchy((1:100)/101))
parametric3d(fx = function(u, v) u * exp(-0.5 * (u^2 + v^2 -
2 * 0.75 * u * v)/sqrt(1-.75^2))^(1/3),
fy = function(u, v) v * exp(-0.5 * (u^2 + v^2 -
2 * 0.75 * u * v)/sqrt(1-.75^2))^(1/3),
fz = function(u, v) exp(-0.5 * (u^2 + v^2 - 2 * 0.75 * u *
v)/sqrt(1-.75^2))^(1/3),
u = qcauchy((1:100)/101), v = qcauchy((1:100)/101),
engine = "standard", scale = FALSE, screen = list(x=-90, y=20))
#Example 2: Ratio-of-Uniform sampling region of Bivariate t
parametric3d(fx = function(u,v) u*(dt(u,2) * dt(v,2))^(1/3),
fy = function(u,v) v*(dt(u,2) * dt(v,2))^(1/3),
fz = function(u,v) (dt(u,2) * dt(v,2))^(1/3),
umin = -20, umax = 20, vmin = -20, vmax = 20,
n = 100, color = "green")
parametric3d(fx = function(u,v) u*(dt(u,2) * dt(v,2))^(1/3),
fy = function(u,v) v*(dt(u,2) * dt(v,2))^(1/3),
fz = function(u,v) (dt(u,2) * dt(v,2))^(1/3),
u = qcauchy((1:100)/101), v = qcauchy((1:100)/101),
color = "green")
parametric3d(fx = function(u,v) u*(dt(u,2) * dt(v,2))^(1/3),
fy = function(u,v) v*(dt(u,2) * dt(v,2))^(1/3),
fz = function(u,v) (dt(u,2) * dt(v,2))^(1/3),
u = qcauchy((1:100)/101), v = qcauchy((1:100)/101),
color = "green", engine = "standard", scale = FALSE)
#Example 3: Surface of revolution
parametric3d(fx = function(u,v) u,
fy = function(u,v) sin(v)*(u^3+2*u^2-2*u+2)/5,
fz = function(u,v) cos(v)*(u^3+2*u^2-2*u+2)/5,
umin = -2.3, umax = 1.3, vmin = 0, vmax = 2*pi)
parametric3d(fx = function(u,v) u,
fy = function(u,v) sin(v)*(u^3+2*u^2-2*u+2)/5,
fz = function(u,v) cos(v)*(u^3+2*u^2-2*u+2)/5,
umin = -2.3, umax = 1.3, vmin = 0, vmax = 2*pi,
engine = "standard", scale = FALSE,
color = "red", color2 = "blue", material = "shiny")
}
}
\keyword{hplot}
|