1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
|
## These functions work with collections of n triangles. A collection of
## triangles is a list with components v1, v2, v3 representing the
## coordinates of the three vertices; each of these components is an n by
## 3 matrix.
makeTriangles <- function(v1, v2, v3,
color = "red", color2 = NA, alpha = 1,
fill = TRUE, col.mesh = if (fill) NA else color,
smooth = 0, material = "default") {
if (missing(v2) || missing(v3)) {
if (missing(v2) && missing(v3))
v <- unzipTriangleMatrix(v1)
else if (missing(v3))
v <- ve2t(list(vb = v1, ib = v2))
else stop("unknown form of triangle specification")
v1 <- v$v1
v2 <- v$v2
v3 <- v$v3
}
tris <- structure(list(v1 = v1, v2 = v2, v3 = v3,
color = color, color2 = color2, fill = fill,
material = material, col.mesh = col.mesh,
alpha = alpha, smooth = smooth),
class = "Triangles3D")
colorTriangles(tris)
}
is.Triangles3D <- function(x) identical(class(x), "Triangles3D")
updateTriangles <- function(triangles, color, color2, alpha, fill, col.mesh,
material, smooth) {
if (! missing(color)) triangles$color <- color
if (! missing(color2)) triangles$color2 <- color2
if (! missing(fill)) triangles$fill <- fill
if (! missing(col.mesh)) triangles$col.mesh <- col.mesh
if (! missing(material)) triangles$material <- material
if (! missing(alpha)) triangles$alpha <- alpha
if (! missing(smooth)) triangles$smooth <- smooth
colorTriangles(triangles)
}
#**** This assumes comparable scaling of dimensions
#**** 5 is the largest exponent for S that will work; smaller is OK
t2ve <- function (triangles)
{
vb <- rbind(triangles$v1, triangles$v2, triangles$v3)
vbmin <- min(vb)
vbmax <- max(vb)
S <- 10^5
score <- function(v, d) floor(as.vector(v %*% d))
scale <- function(v) (1 - 1 / S) * (v - vbmin) / (vbmax - vbmin)
d <- c(S, S^2, S^3)
scores <- score(scale(vb), d)
vb <- vb[! duplicated(scores),]
scores <- score(scale(vb), d)
ib <- rbind(match(score(scale(triangles$v1), d), scores),
match(score(scale(triangles$v2), d), scores),
match(score(scale(triangles$v3), d), scores))
list(vb = t(vb), ib = ib)
}
ve2t <- function(ve) {
list (v1 = t(ve$vb[,ve$ib[1,]]),
v2 = t(ve$vb[,ve$ib[2,]]),
v3 = t(ve$vb[,ve$ib[3,]]))
}
unzipTriangleMatrix <- function(tris) {
if (ncol(tris) != 3)
stop("triangle matrix must have three columns.")
if (nrow(tris) %% 3 != 0)
stop("number of rows in triangle matrix must be divisible by 3")
n <- nrow(tris) / 3
list(v1 = tris[3 * (1 : n) - 2,],
v2 = tris[3 * (1 : n) - 1,],
v3 = tris[3 * (1 : n),])
}
zipTriangles <- function(tris) {
n <- nrow(tris$v1)
if (nrow(tris$v2) != n || nrow(tris$v3) != n)
stop("vertex arrays must have the same number of rows")
v <- matrix(0, nrow = 3 * n, ncol = 3)
v[3 * (1 : n) - 2,] <- tris$v1
v[3 * (1 : n) - 1,] <- tris$v2
v[3 * (1 : n),] <- tris$v3
v
}
colorTriangles <- function(triangles) {
if (is.function(triangles$color) || is.function(triangles$color2)) {
v <- (triangles$v1 + triangles$v2 + triangles$v3) / 3
if (is.function(triangles$color))
triangles$color <- triangles$color(v[,1], v[,2], v[,3])
if (is.function(triangles$color2))
triangles$color2 <- triangles$color2(v[,1], v[,2], v[,3])
if (is.function(triangles$col.mesh))
triangles$col.mesh <- triangles$col.mesh(v[,1], v[,2], v[,3])
}
triangles
}
colorScene <- function(scene) {
if (is.Triangles3D(scene))
colorTriangles(scene)
else lapply(scene, colorTriangles)
}
## **** better to make new triangles including only requested components?
canonicalizeAndMergeScene <- function(scene, ...) {
which <- list(...)
if (is.Triangles3D(scene)) {
n.tri <- nrow(scene$v1)
for (n in which)
if (length(scene[[n]]) != n.tri)
scene[[n]] <- rep(scene[[n]], length = n.tri)
scene
}
else {
scene <- lapply(scene, canonicalizeAndMergeScene, ...)
x <- scene[[1]]
x$v1 <- do.call(rbind, lapply(scene, function(x) x$v1))
x$v2 <- do.call(rbind, lapply(scene, function(x) x$v2))
x$v3 <- do.call(rbind, lapply(scene, function(x) x$v3))
for (n in which)
x[[n]] <- do.call(c, lapply(scene, function(x) x[[n]]))
x
}
}
expandTriangleGrid <- function(x, y) {
nx <- length(x) - 1
ny <- length(y) - 1
A <- c(0, 0)
B <- c(1, 0)
C <- c(1, 1)
D <- c(0, 1)
g <- expand.grid(x = 1 : nx, y = 1 : ny)
even <- (g$x + g$y) %% 2 == 0
gx11 <- ifelse(even, g$x + A[1], g$x + A[1])
gy11 <- ifelse(even, g$y + A[2], g$y + A[2])
gx12 <- ifelse(even, g$x + A[1], g$x + B[1])
gy12 <- ifelse(even, g$y + A[2], g$y + B[2])
i1 <- rbind(cbind(gx11, gy11), cbind(gx12, gy12))
gx21 <- ifelse(even, g$x + B[1], g$x + B[1])
gy21 <- ifelse(even, g$y + B[2], g$y + B[2])
gx22 <- ifelse(even, g$x + C[1], g$x + C[1])
gy22 <- ifelse(even, g$y + C[2], g$y + C[2])
i2 <- rbind(cbind(gx21, gy21), cbind(gx22, gy22))
gx31 <- ifelse(even, g$x + C[1], g$x + D[1])
gy31 <- ifelse(even, g$y + C[2], g$y + D[2])
gx32 <- ifelse(even, g$x + D[1], g$x + D[1])
gy32 <- ifelse(even, g$y + D[2], g$y + D[2])
i3 <- rbind(cbind(gx31, gy31), cbind(gx32, gy32))
v1 <- cbind(x[i1[,1]], y[i1[,2]])
v2 <- cbind(x[i2[,1]], y[i2[,2]])
v3 <- cbind(x[i3[,1]], y[i3[,2]])
list(v1 = v1, v2 = v2, v3 = v3)
}
## adapted from lattice ltransform3dto3d
trans3dto3d <- function (x, R.mat) {
if (length(x) == 0)
return(x)
val <- R.mat %*% rbind(t(x), 1)
val[1, ] <- val[1, ]/val[4, ]
val[2, ] <- val[2, ]/val[4, ]
val[3, ] <- val[3, ]/val[4, ]
t(val[1:3, , drop = FALSE])
}
transformTriangles <- function(triangles, R) {
tr <- function(v) trans3dto3d(v, R)
triangles$v1 <- tr(triangles$v1)
triangles$v2 <- tr(triangles$v2)
triangles$v3 <- tr(triangles$v3)
triangles
}
transformScene <- function(scene, rot.mat) {
if (is.Triangles3D(scene))
transformTriangles(scene, rot.mat)
else lapply(scene, transformTriangles, rot.mat)
}
translateTriangles <- function(triangles, x = 0, y = 0, z = 0) {
M <- diag(4)
M[1:3,4] <- c(x, y, z)
transformTriangles(triangles, M)
}
scaleTriangles <- function(triangles, x = 1, y = x, z = x) {
M <- diag(c(x, y, z, 1))
transformTriangles(triangles, M)
}
## triangleNormals computes the normal vectors to a collection of
## triangles as the vector crossprocuct of the direction from v1 to v2
## and the direction from v2 to v3. The result is an n by 3 matrix of
## unit representing the n unit normal vectors.
triangleNormals <- function(triangles) {
x <- triangles$v2 - triangles$v1
y <- triangles$v3 - triangles$v2
z <- cbind(x[,2]*y[,3] - x[,3]*y[,2],
x[,3]*y[,1] - x[,1]*y[,3],
x[,1]*y[,2] - x[,2]*y[,1])
z / sqrt(rowSums(z^2))
}
# adapted from lattice ltransform3dMatrix
trans3dMat <- function (screen, P = diag(4)) {
givens4 <- function(i, j, gamma) {
T <- diag(4)
cgamma <- cos(gamma)
sgamma <- sin(gamma)
T[c(i,j),c(i,j)] <- matrix(c(cgamma, sgamma, -sgamma, cgamma), 2, 2)
T
}
screen.names <- names(screen)
for (i in seq(along = screen.names)) {
if (screen.names[i] == "x")
P <- givens4(2, 3, screen[[i]] * pi/180) %*% P
else if (screen.names[i] == "y")
P <- givens4(1, 3, -screen[[i]] * pi/180) %*% P #**** whi negative?
else if (screen.names[i] == "z")
P <- givens4(1, 2, screen[[i]] * pi/180) %*% P
}
P
}
makeViewTransform <- function(ranges, scale, aspect, screen, R.mat) {
m <- c(mean(ranges$xlim), mean(ranges$ylim), mean(ranges$zlim))
s <- 0.5 * c(diff(ranges$xlim), diff(ranges$ylim), diff(ranges$zlim))
if (! scale) s <- rep(max(s), 3)
else s <- s / c(1, aspect)
A <- diag(1 / c(s, 1))
A[1:3, 4] <- -m / s
trans3dMat(screen, R.mat %*% A)
}
trianglesRanges <- function(triangles, xlim, ylim, zlim) {
v1 <- triangles$v1
v2 <- triangles$v2
v3 <- triangles$v3
if (is.null(xlim)) xlim <- range(v1[,1], v2[,1], v3[,1], na.rm = TRUE)
if (is.null(ylim)) ylim <- range(v1[,2], v2[,2], v3[,2], na.rm = TRUE)
if (is.null(zlim)) zlim <- range(v1[,3], v2[,3], v3[,3], na.rm = TRUE)
list(xlim = xlim, ylim = ylim, zlim = zlim)
}
sceneRanges <- function(scene, xlim, ylim, zlim) {
if (is.Triangles3D(scene))
trianglesRanges(scene, xlim, ylim, zlim)
else {
ranges <- lapply(scene, trianglesRanges, xlim, ylim, zlim)
list(xlim = range(sapply(ranges,function(x) x$xlim)),
ylim = range(sapply(ranges,function(x) x$ylim)),
zlim = range(sapply(ranges,function(x) x$zlim)))
}
}
addTrianglesPerspective <- function(triangles, distance) {
pt <- function(v) {
v[, 1] <- v[, 1] / (1 / distance - v[, 3])
v[, 2] <- v[, 2] / (1 / distance - v[, 3])
v
}
triangles$v1 <- pt(triangles$v1)
triangles$v2 <- pt(triangles$v2)
triangles$v3 <- pt(triangles$v3)
triangles
}
addPerspective <- function(scene, distance) {
if (is.Triangles3D(scene))
addTrianglesPerspective(scene, distance)
else lapply(scene, addTrianglesPerspective, distance)
}
screenRange <- function(v1, v2, v3)
range(v1[,1:2], v2[,1:2], v3[,1:2], na.rm = TRUE)
vertexTriangles <- function(ve) {
n.vert <- ncol(ve$vb)
ib <- ve$ib
vt <- function(i) which(ib[1,] == i | ib[2,] == i | ib[3,] == i)
lapply(1 : n.vert, vt)
}
# faster version
vertexTriangles <- function(ve) {
n.vert <- ncol(ve$vb)
val <- vector("list", n.vert)
ib <- ve$ib
for (i in 1 : ncol(ib)) {
val[[ib[1,i]]] <- c(val[[ib[1,i]]], i)
val[[ib[2,i]]] <- c(val[[ib[2,i]]], i)
val[[ib[3,i]]] <- c(val[[ib[3,i]]], i)
}
val
}
vertexNormals <- function(vt, N) {
vn <- function(tris) {
z <- apply(N[tris,,drop = FALSE], 2, mean, na.rm = TRUE);
z <- z / sqrt(sum(z^2))
if (any(is.na(z))) c(1,0,0) else z
}
t(sapply(vt, vn))
}
# faster version
vertexNormals <- function(vt, N) {
val <- matrix(0, nrow = length(vt), ncol = 3)
for (i in seq(along = vt)) {
Ni <- N[vt[[i]],,drop = FALSE]
Ni1 <- Ni[,1]
Ni2 <- Ni[,2]
Ni3 <- Ni[,3]
z1 <- if (any(is.na(Ni1))) mean(Ni1, na.rm = TRUE)
else sum(Ni1) / length(Ni1)
z2 <- if (any(is.na(Ni2))) mean(Ni2, na.rm = TRUE)
else sum(Ni2) / length(Ni2)
z3 <- if (any(is.na(Ni3))) mean(Ni3, na.rm = TRUE)
else sum(Ni3) / length(Ni3)
z <- c(z1, z2, z3)
z <- z / sqrt(sum(z^2))
val[i,] <- if (any(is.na(z))) c(1,0,0) else z
}
val
}
interpolateVertexNormals <- function(VN, ib) {
z <- (VN[ib[1,],] + VN[ib[2,],] + VN[ib[3,],]) / 3
z / sqrt(rowSums(z^2))
}
## triangleVertexNormals computes the normals at the vertices by
## averaging the normals of the incident triangles. This is used by
## the rgl engine. The result form is chosen so zipTriangles can be
## used on it.
triangleVertexNormals <- function(v) {
N <- triangleNormals(v)
ve <- t2ve(v)
vt <- vertexTriangles(ve)
VN <- misc3d:::vertexNormals(vt, N)
list(v1 = VN[ve$ib[1,],], v2 = VN[ve$ib[2,],], v3 = VN[ve$ib[3,],])
}
vertexColors <- function(vt, col) {
C <- t(col2rgb(col))
val <- matrix(0, nrow = length(vt), ncol = 3)
for (i in seq(along = vt)) {
vti <- vt[[i]]
nti <- length(vti)
Ci <- C[vti,,drop = FALSE]
Ci1 <- Ci[,1]
Ci2 <- Ci[,2]
Ci3 <- Ci[,3]
val[i,] <- c(sum(Ci1), sum(Ci2), sum(Ci3)) / nti
}
val
}
interpolateVertexColors <- function(VC, ib) {
TC <- (VC[ib[1,],] + VC[ib[2,],] + VC[ib[3,],]) / 3
rgb(TC[,1], TC[,2], TC[,3], maxColorValue = 255)
}
triangleEdges <- function(vb, ib) {
edges <- cbind(ib[c(1,2),], ib[c(2,3),], ib[c(3,1),])
swap <- edges[1,] > edges[2,]
edges[,swap] <- edges[2:1,swap]
edges[,! duplicated(edges, MARGIN = 2)]
}
# faster version
triangleEdges <- function(vb, ib) {
n.vert <- ncol(vb)
edges <- cbind(ib[c(1,2),], ib[c(2,3),], ib[c(3,1),])
swap <- edges[1,] > edges[2,]
edges[,swap] <- edges[2:1,swap]
score <- as.vector(c(1 + n.vert, 1) %*% edges)
edges[,! duplicated(score)]
}
triangleMidTriangles <- function(vb, ib, VN) {
n.vert <- ncol(vb)
edges <- triangleEdges(vb, ib)
vb <- (vb[,edges[1,]] + vb[,edges[2,]]) / 2
d <- c(1 + n.vert, 1)
scores <- as.vector(d %*% edges)
mpi <- function(a, b) {
s <- d[1] * pmin(a, b) + d[2] * pmax(a, b)
match(s, scores)
}
mpi1 <- mpi(ib[1,], ib[2,])
mpi2 <- mpi(ib[2,], ib[3,])
mpi3 <- mpi(ib[3,], ib[1,])
ib <- rbind(mpi1, mpi2, mpi3)
z <- VN[edges[1,],] + VN[edges[2,],]
z <- z / sqrt(rowSums(z^2))
list(vb = vb, ib = ib, VN = z)
}
## surfaceTriangles creates a set of triangles for a grid specified by x,
## y and function falues computed with f if f is a function or taken
## from f if f is a matrix.
surfaceTriangles <- function(x, y, f,
color = "red", color2 = NA, alpha = 1,
fill = TRUE, col.mesh = if (fill) NA else color,
smooth = 0, material = "default") {
if (is.function(f))
ff <- function(ix, iy) f(x[ix], y[iy])
else
ff <- function(ix, iy) f[ix + length(x) * (iy - 1)]
i <- expandTriangleGrid(1 : length(x), 1 : length(y))
i1 <- i$v1
i2 <- i$v2
i3 <- i$v3
v1 <- cbind(x[i1[,1]], y[i1[,2]], ff(i1[,1], i1[,2]))
v2 <- cbind(x[i2[,1]], y[i2[,2]], ff(i2[,1], i2[,2]))
v3 <- cbind(x[i3[,1]], y[i3[,2]], ff(i3[,1], i3[,2]))
na1 <- is.na(v1[,1]) | is.na(v1[,2]) | is.na(v1[,3])
na2 <- is.na(v2[,1]) | is.na(v2[,2]) | is.na(v2[,3])
na3 <- is.na(v3[,1]) | is.na(v3[,2]) | is.na(v3[,3])
nna <- ! (na1 | na2 | na3)
makeTriangles(v1[nna,], v2[nna,], v3[nna,],
color = color, color2 = color2, fill = fill, smooth = smooth,
material = material, col.mesh = col.mesh, alpha = alpha)
}
## pointsTetrahedra computes a collection of tetrahedra centered at
## the specified point locations. This is useful, for example, for
## displaying raw data along with a density contour in a scene
## rendered with standard or grid graphics. Random orientation might
## be useful to avoid strange results at certain lighting angles.
pointsTetrahedra <- function(x, y, z, size = 0.01, color = "black", ...) {
n <- length(x)
if (length(y) != n || length(z) != n)
stop("coordinate vectors must be the same length.")
## Create a basic tetrahedron centered at the origin
a <- sqrt(3) / 2
b <- 1 / (2 * sqrt(3))
h <- sqrt(2 / 3)
mx <- 1 / 2
my <- (a + b) / 4
mz <- h / 4
A <- c( -mx, -my, -mz)
B <- c( 1 - mx, -my, -mz)
C <- c(1 / 2 - mx, a - my, -mz)
D <- c(1 / 2 - mx, b - my, h - mz)
v1 <- rbind(B, A, B, C)
v2 <- rbind(A, B, C, A)
v3 <- rbind(C, D, D, D)
## Scale the tetrahedron
if (length(size) < 3) size <- rep(size, len = 3)
if (n == 1) s <- diag(size)
else s <- diag(size * c(diff(range(x)), diff(range(y)), diff(range(z))))
sv1 <- v1 %*% s
sv2 <- v2 %*% s
sv3 <- v3 %*% s
## Compute the tetrahedra for the points, taking advantage of recycling
x4 <- rep(x, each = 4)
y4 <- rep(y, each = 4)
z4 <- rep(z, each = 4)
V1 <- cbind(x4 + sv1[,1], y4 + sv1[,2], z4 + sv1[,3])
V2 <- cbind(x4 + sv2[,1], y4 + sv2[,2], z4 + sv2[,3])
V3 <- cbind(x4 + sv3[,1], y4 + sv3[,2], z4 + sv3[,3])
makeTriangles(V1, V2, V3, color = color, ...)
}
bresenhamLine <- function(x1, y1, z1, x2, y2, z2, delta){
if (length(delta) < 3) delta <- rep(delta, len = 3)
vertex <- rep(0,3)
vertex[1] <- x1
vertex[2] <- y1
vertex[3] <- z1
dx <- x2 - x1
dy <- y2 - y1
dz <- z2 - z1
x_inc <- ifelse(dx < 0, -delta, delta)
l <- abs(dx)/delta[1]
y_inc <- ifelse(dy < 0, -delta, delta)
m <- abs(dy)/delta[2]
z_inc <- ifelse(dz < 0, -delta, delta)
n <- abs(dz)/delta[3]
dx2 <- 2*l
dy2 <- 2*m
dz2 <- 2*n
if ((l >= m) && (l >= n)){
err_1 <- dy2 - l
err_2 <- dz2 - l
Mat <- matrix(0, ncol=3, nrow=l+1)
ii <- 1
for (i in 1:l){
Mat[ii,] <- c(vertex[1],vertex[2],vertex[3])
if (err_1 > 0){
vertex[2] <- vertex[2] + y_inc
err_1 <- err_1 - dx2
}
if (err_2 > 0){
vertex[3] <- vertex[3]+ z_inc
err_2 <- err_2 - dx2
}
err_1 <- err_1 + dy2
err_2 <- err_2 + dz2
vertex[1] <- vertex[1] + x_inc
ii <- ii + 1
}
}
else if ((m >= l) && (m >= n)){
err_1 <- dx2 - m
err_2 <- dz2 - m
Mat <- matrix(0, ncol=3, nrow=m+1)
ii <- 1
for (i in 1:m){
Mat[ii,] <- c(vertex[1],vertex[2],vertex[3])
if (err_1 > 0){
vertex[1] <- vertex[1] + x_inc
err_1 <- err_1 - dy2
}
if (err_2 > 0){
vertex[3] <- vertex[3] + z_inc
err_2 <- err_2 - dy2
}
err_1 <- err_1 + dx2
err_2 <- err_2 + dz2
vertex[2] <- vertex[2] + y_inc
ii <- ii + 1
}
}
else{
err_1 <- dy2 - n
err_2 <- dx2 - n
Mat <- matrix(0, ncol=3, nrow=n+1)
ii <- 1
for (i in 1:n){
Mat[ii,] <- c(vertex[1],vertex[2],vertex[3])
if (err_1 > 0){
vertex[2] <- vertex[2] + y_inc
err_1 <- err_1 - dz2
}
if (err_2 > 0){
vertex[1] <- vertex[1] + x_inc
err_2 <- err_2 - dz2
}
err_1 <- err_1 + dy2
err_2 <- err_2 + dx2
vertex[3] <- vertex[3] + z_inc
ii <- ii + 1
}
}
Mat[ii,] <- c(vertex[1],vertex[2],vertex[3])
Mat
}
linesTetrahedra <- function(x, y, z, delta=1, lwd = 0.01, color = "black", ...){
n <- length(x)
if (length(y) != n || length(z) != n)
stop("coordinates must be of the same length.")
if (is.vector(x)){
if (!is.vector(y) || !is.vector(z))
stop("coordinates have to be all vectors or matrices!")
if (length(x) != 2)
stop("need to specify the coordinates of starting and ending points.")
else{
x <- matrix(x, nrow=1)
y <- matrix(y, nrow=1)
z <- matrix(z, nrow=1)
}
}
if (is.matrix(x)){
if (!is.matrix(y) || !is.matrix(z))
stop("coordinates have to be all vectors or matrices!")
if (ncol(x) != 2)
stop("need to specify the coordinates of starting and ending points.")
}
nl <- nrow(x)
xyz <- do.call(rbind, lapply(1:nl, function(i)
bresenhamLine(x[i,1], y[i,1], z[i,1],
x[i,2], y[i,2], z[i,2],
delta)))
pointsTetrahedra(xyz[,1], xyz[,2], xyz[,3],
size = lwd, color = color, ...)
}
## Compute for each triangle the indices of triangles that share an
## edge with it. This could be done more efficiently.
triangleNeighbors <- function(tris) {
ve <- misc3d:::t2ve(tris)
vt <- misc3d:::vertexTriangles(ve)
ib <- ve$ib
n.tri <- ncol(ib)
tn <- vector("list", n.tri)
for (i in 1 : n.tri) {
v1 <- unique(vt[[ib[1, i]]])
v2 <- unique(vt[[ib[2, i]]])
v3 <- unique(vt[[ib[3, i]]])
i12 <- intersect(v1, v2)
i23 <- intersect(v2, v3)
i31 <- intersect(v3, v1)
u <- union(union(i12, i23), i31)
tn[[i]] <- u[u != i]
}
tn
}
## 'unique' in unique(vt[[ib[1, i]]]) seems to be unnecessary
## unless a triangle has essentially two vertices or one vertex
triangleNeighbors <- function(tris) {
ve <- misc3d:::t2ve(tris)
vt <- misc3d:::vertexTriangles(ve)
ib <- ve$ib
n.tri <- ncol(ib)
tn <- vector("list", n.tri)
for (i in 1 : n.tri) {
v1 <- vt[[ib[1, i]]]
v2 <- vt[[ib[2, i]]]
v3 <- vt[[ib[3, i]]]
i12 <- intersect(v1, v2)
i23 <- intersect(v2, v3)
i31 <- intersect(v3, v1)
u <- union(union(i12, i23), i31)
tn[[i]] <- u[u != i]
}
tn
}
## Dijkstra's version of Rem's algorithm for computing equivalence
## classes based on a number of vertices 1:nvert and a set of N edges
## provided as an N x 2 matrix.
GetPatches <- function(nvert, edges) {
f <- 1:nvert
if (!(is.vector(edges)) && dim(edges)[1] != 0){
nedge <- nrow(edges)
for (e in 1:nedge) {
p0 <- edges[e, 1]
q0 <- edges[e, 2]
p1 <- f[p0]
q1 <- f[q0]
while (p1 != q1) {
if (q1 < p1) {
f[p0] <- q1
p0 <- p1
p1 <- f[p1]
}
else {
f[q0] <- p1
q0 <- q1
q1 <- f[q1]
}
}
}
}
if(is.vector(edges)){
if(edges[1] < edges[2])
f[edges[2]] <- edges[1]
else f[edges[1]] <- edges[2]
}
for (v in 1:nvert)
f[v] <- f[f[v]]
split(1:nvert,f)
}
## compute the edges to indicate which triangles share an edge -- this
## needs more error checking
triangleNeighborEdges <- function(tn) {
edges <- function(i) {
v <- tn[[i]]
if (length(v) > 0) cbind(i,v)
else numeric(0)
}
do.call(rbind, lapply(1:length(tn), edges))
}
## separate triangles into disconnected chunks
separateTriangles <- function(contour3dObj){
tn <- triangleNeighbors(contour3dObj)
edges <- triangleNeighborEdges(tn)
edges <- edges[edges[,1] < edges[,2],]
p <- GetPatches(length(tn), edges)
newContour3dObj <- vector("list", length(p))
for(i in 1:length(newContour3dObj)){
newContour3dObj[[i]] <- contour3dObj
newContour3dObj[[i]]$v1 <- contour3dObj$v1[p[[i]],]
newContour3dObj[[i]]$v2 <- contour3dObj$v2[p[[i]],]
newContour3dObj[[i]]$v3 <- contour3dObj$v3[p[[i]],]
}
newContour3dObj
}
|