1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
\name{parametric3d}
\alias{parametric3d}
\title{Draw a 3D Parametric Plot}
\description{
Plot a two-parameter surface in three dimensions.
}
\usage{
parametric3d(fx, fy, fz, u, v, umin, umax, vmin, vmax, n = 100,
color = "white", color2 = NA, alpha = 1,
fill = TRUE, col.mesh = if (fill) NA else color,
smooth = 0, material = "default",
add = FALSE, draw = TRUE, engine = "rgl", ...)
}
\arguments{
\item{fx,fy,fz}{vectorized functions of u and v to compute the
\code{x}, \code{y}, and \code{z} coordinates.}
\item{u}{numeric vector of u values.}
\item{v}{numeric vector of v values.}
\item{umin}{numeric; the minimum value of u. Ignored if \code{u} is
supplied.}
\item{umax}{numeric; the maximum value of u. Ignored if \code{u} is
supplied.}
\item{vmin}{numeric; the minimum value of v. Ignored if \code{v} is
supplied.}
\item{vmax}{numeric; the maximum value of v. Ignored if \code{v} is
supplied.}
\item{n}{the number of equally spaced \code{u} and \code{v} values to
use. Ignored if \code{u} and \code{v} are supplied.}
\item{color}{color to use for the surface. Can also be a function of
three arguments. This is called with three arguments, the
coordinates of the midpoints of the triangles making up the surface.
The function should return a vector of colors to use for the
triangles.}
\item{color2}{opposite face color.}
\item{alpha}{alpha channel level, a number between 0 and 1..}
\item{fill}{logical; if \code{TRUE}, drawing should use filled
surfaces; otherwise a wire frame should be drawn.}
\item{col.mesh}{color to use for the wire frame.}
\item{smooth}{integer or logical specifying Phong shading level for
"standard" and "grid" engines or whether or not to use shading for
the "rgl" engine.}
\item{material}{material specification; currently only used by
"standard" and "grid" engines. Currently possible values are the
character strings "dull", "shiny", "metal", and "default".}
\item{add}{logical; if \code{TRUE}, add to current graph.}
\item{draw}{logical; if \code{TRUE}, draw the results; otherwise,
return triangle mesh structure.}
\item{engine}{character; currently "rgl", "standard", "grid" or "none";
for "none" the computed triangles are returned.}
\item{...}{additional rendering arguments, e.g. material and texture
properties for the "rgl" engine. See documentation for
\code{\link[misc3d]{drawScene}} and \code{\link[misc3d]{drawScene.rgl}}}
}
\value{
For the "rgl" engine the returned value is \code{NULL}. For the
"standard" and "grid" engines the returned value is the viewing
transformation as returned by \code{persp}. For the engine "none", or
when \code{draw} is not true, the returned value is a structure
representing the triangles making up the surface.
}
\details{
Analogous to Mathematica's \code{Param3D}. Evaluates the
functions \code{fx}, \code{fy}, and \code{fz} specifying the
coordinates of the surface at a grid of values for the
parameters \code{u} and \code{v}.
}
\note{
The "rgl" engine now uses the standard rgl coordinates instead of
negating \code{y} and swapping \code{y} and \code{z}. If you need to
reproduce the previous behavior you can use
\code{options(old.misc3d.orientation=TRUE)}.
Transparency only works properly in the "rgl" engine. For standard or
grid graphics on pdf or quartz devices using alpha levels less than 1
does work but the triangle borders show as a less transparent mesh.
}
\references{
Daniel Adler, Oleg Nenadic and Walter Zucchini (2003)
RGL: A R-library for 3D visualization with OpenGL
}
\seealso{
\code{\link[rgl]{surface3d}},
\code{\link[rgl]{material3d}},\code{\link[scatterplot3d]{scatterplot3d}}.
}
\examples{
#Example 1: Ratio-of-Uniform sampling region of bivariate normal
parametric3d(fx = function(u, v) u * exp(-0.5 * (u^2 + v^2 -
2 * 0.75 * u * v)/sqrt(1-.75^2))^(1/3),
fy = function(u, v) v * exp(-0.5 * (u^2 + v^2 -
2 * 0.75 * u * v)/sqrt(1-.75^2))^(1/3),
fz = function(u, v) exp(-0.5 * (u^2 + v^2 - 2 * 0.75 * u *
v)/sqrt(1-.75^2))^(1/3),
umin = -20, umax = 20, vmin = -20, vmax = 20,
n = 100)
parametric3d(fx = function(u, v) u * exp(-0.5 * (u^2 + v^2 -
2 * 0.75 * u * v)/sqrt(1-.75^2))^(1/3),
fy = function(u, v) v * exp(-0.5 * (u^2 + v^2 -
2 * 0.75 * u * v)/sqrt(1-.75^2))^(1/3),
fz = function(u, v) exp(-0.5 * (u^2 + v^2 - 2 * 0.75 * u *
v)/sqrt(1-.75^2))^(1/3),
u = qcauchy((1:100)/101), v = qcauchy((1:100)/101))
parametric3d(fx = function(u, v) u * exp(-0.5 * (u^2 + v^2 -
2 * 0.75 * u * v)/sqrt(1-.75^2))^(1/3),
fy = function(u, v) v * exp(-0.5 * (u^2 + v^2 -
2 * 0.75 * u * v)/sqrt(1-.75^2))^(1/3),
fz = function(u, v) exp(-0.5 * (u^2 + v^2 - 2 * 0.75 * u *
v)/sqrt(1-.75^2))^(1/3),
u = qcauchy((1:100)/101), v = qcauchy((1:100)/101),
engine = "standard", scale = FALSE, screen = list(x=-90, y=20))
#Example 2: Ratio-of-Uniform sampling region of Bivariate t
parametric3d(fx = function(u,v) u*(dt(u,2) * dt(v,2))^(1/3),
fy = function(u,v) v*(dt(u,2) * dt(v,2))^(1/3),
fz = function(u,v) (dt(u,2) * dt(v,2))^(1/3),
umin = -20, umax = 20, vmin = -20, vmax = 20,
n = 100, color = "green")
parametric3d(fx = function(u,v) u*(dt(u,2) * dt(v,2))^(1/3),
fy = function(u,v) v*(dt(u,2) * dt(v,2))^(1/3),
fz = function(u,v) (dt(u,2) * dt(v,2))^(1/3),
u = qcauchy((1:100)/101), v = qcauchy((1:100)/101),
color = "green")
parametric3d(fx = function(u,v) u*(dt(u,2) * dt(v,2))^(1/3),
fy = function(u,v) v*(dt(u,2) * dt(v,2))^(1/3),
fz = function(u,v) (dt(u,2) * dt(v,2))^(1/3),
u = qcauchy((1:100)/101), v = qcauchy((1:100)/101),
color = "green", engine = "standard", scale = FALSE)
#Example 3: Surface of revolution
parametric3d(fx = function(u,v) u,
fy = function(u,v) sin(v)*(u^3+2*u^2-2*u+2)/5,
fz = function(u,v) cos(v)*(u^3+2*u^2-2*u+2)/5,
umin = -2.3, umax = 1.3, vmin = 0, vmax = 2*pi)
parametric3d(fx = function(u,v) u,
fy = function(u,v) sin(v)*(u^3+2*u^2-2*u+2)/5,
fz = function(u,v) cos(v)*(u^3+2*u^2-2*u+2)/5,
umin = -2.3, umax = 1.3, vmin = 0, vmax = 2*pi,
engine = "standard", scale = FALSE,
color = "red", color2 = "blue", material = "shiny")
}
\keyword{hplot}
|