File: phasevocoder.C

package info (click to toggle)
mixviews 1.20-4
  • links: PTS
  • area: main
  • in suites: slink
  • size: 2,920 kB
  • ctags: 5,958
  • sloc: cpp: 32,873; ansic: 2,110; makefile: 411; sh: 17
file content (939 lines) | stat: -rw-r--r-- 27,542 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
// phasevocoder.C

/******************************************************************************
 *
 *  MiXViews - an X window system based sound & data editor/processor
 *
 *  Copyright (c) 1993, 1994 Regents of the University of California
 *
 *  Author:     Douglas Scott
 *  Date:       December 13, 1994
 *
 *  Permission to use, copy and modify this software and its documentation
 *  for research and/or educational purposes and without fee is hereby granted,
 *  provided that the above copyright notice appear in all copies and that
 *  both that copyright notice and this permission notice appear in
 *  supporting documentation. The author reserves the right to distribute this
 *  software and its documentation.  The University of California and the author
 *  make no representations about the suitability of this software for any 
 *  purpose, and in no event shall University of California be liable for any
 *  damage, loss of data, or profits resulting from its use.
 *  It is provided "as is" without express or implied warranty.
 *
 *****************************************************************************/

#ifdef __GNUG__
#pragma implementation
#endif

#include "application.h"
#include "framedata.h"
#include "envelope.h"
#include "localdefs.h"
#include "phasevocoder.h"
#include "pipeaction.h"

extern "C" {
	int fft_(float*, float*, int*, int*, int*, int*);
	int reals_(float*, float*, int*, int*);
	int kaiser_(int*, float*, int*, int*, float*);
}

PhaseVocoder::Info::Info(double sampRate, float scale, Mode mode,
                         int N, int F, int M, int D,
                         float T, float P, boolean useKaiser)
	: fftSize(N), fundFreq(F),
	  inputFrameSize(M), inputFrameOffset(D),
	  outputFrameSize(0), outputFrameOffset(0),
	  pchScaleFactor(P), timeScaleFactor(T), warp(0),
	  firstBand(0), lastBand(0), K(useKaiser),
	  inputScalingFactor(scale), samplingRate(sampRate),
	  runMode(mode) {}

PhaseVocoder::Info::Info(double samprate, float scale,
                         int N, int F, int D, int L, int I,
                         float T, int i, int j, float warpFactor,
						 boolean useKaiser)
	: fftSize(N), fundFreq(F),
	  inputFrameSize(0), inputFrameOffset(D), 
	  outputFrameSize(L), outputFrameOffset(I),
	  pchScaleFactor(1.0), timeScaleFactor(T),
	  warp(warpFactor), firstBand(i), lastBand(j), K(useKaiser),
	  inputScalingFactor(scale), samplingRate(samprate),
	  runMode(PhaseVocoder::Synthesis) {}

float PhaseVocoder::Pi = 4. * atan(1.);
float PhaseVocoder::HalfPi = 2. * atan(1.);
float PhaseVocoder::TwoPi = 8. * atan(1.);
float PhaseVocoder::beta = 6.8;				// for Kaiser window

// ctor for analysis only

PhaseVocoder::PhaseVocoder(Info& info) : I(info), initialized(false) {
	zeroPointers();
	setDefaults();
	setUpLog();
	switch(I.runMode) {
		case Spectrum:
			E = 1;
			break;
		case Magnitudes:
			X = 1;
			break;
		default:
			break;
	}
	if(checkAndSetValues())
		initialize();
}

void
PhaseVocoder::setDefaults() {
	E = X = 0;
	analWinLen = synWinLen = 0;
	startingOffset = 0;
	verbose = true;
	ftot = 0.;					// scale factor for calculating statistics
	inputFrameEven = 0;			// flag for even inputFrameSize
	outputFrameEven = 0;		// flag for even outputFrameSize
	C = 0;
	bandsLimited = 0;
}

PhaseVocoder::~PhaseVocoder() {
//	printToLog();
	Resource::unref(timeScaleEnvelope);
	delete [] output,
	delete [] anal,
	delete [] syn,
	delete [] analWindowBuf,
	delete [] synWindowBuf,
	delete [] maxAmp,
	delete [] avgAmp,
	delete [] avgFrq,
	delete [] env,
	delete [] oldInPhase,
	delete [] oldOutPhase;
}

// zero these to avoid deleting uninitialized pointers if in error condition

void
PhaseVocoder::zeroPointers() {
	timeScaleEnvelope = nil;
	output = nil;
	anal = nil;
	syn = nil;
	analWindowBuf = nil;
	synWindowBuf = nil;
	maxAmp = nil;
	avgAmp = nil;
	avgFrq = nil;
	env = nil;
	oldInPhase = nil;
	oldOutPhase = nil;
}

boolean
PhaseVocoder::isGood() { return initialized; }

void
PhaseVocoder::setUpLog() {
	if (verbose)
		fp = stderr;				// write out to stderr for now
//		fp = fopen("pvoc.log","w");
}

void
PhaseVocoder::printToLog() {
	if (verbose && isGood() && analyzing()) {	// dont do this if never configured!
		if (ftot != 0.)
			ftot = 1. / ftot;

		fprintf(fp,"\n   i         band       max amp     ");
		fprintf(fp,"avg amp    avg frq\n\n");
		int F2 = I.fundFreq / 2;
		for (int i = 0; i <= fftPoints; i++) fprintf(fp,
			"%4d   %5d - %5d   %8.5f    %8.5f   %8.1f\n",
			(i<<1)+1, i*I.fundFreq-F2, i*I.fundFreq+F2, *(maxAmp+i),
			*(avgAmp+i)*ftot, *(avgFrq+i)*ftot);
		fprintf(fp,"\n");
	}
}

	/*
	user friendliness: Try to catch bad parameter specifications and correct
	them if possible. The basic idea is that we step through the
	signal applying an inputFrameSize point window and taking an fftSize
	point FFT at a spacing of inputFrameOffset samples. The synthesis consists
	of taking an invFftSize point inverse FFT, applying an outputFrameSize
	point window, and overlap-adding at a spacing of outputFrameOffset samples.
	And in the middle, we linearly rescale the phase by the time-scale
	expansion factor timeScaleFactor = outputFrameOffset / inputFrameOffset.
	The default is outputFrameSize = inputFrameSize = fftSize and
	outputFrameOffset = inputFrameOffset, which gives an analysis-
	synthesis identity. NOTE: the actual timeScaleFactor will not necessarily
	equal the specified T - if this is important, then specify inputFrameOffset
	and outputFrameOffset directly. NOTE: pitch transposition is performed by
	changing the size of the inverse FFT relative to the forward
	FFT - this is a cheap trick which works best on octave
	transpositions. NOTE: the spectral envelope estimation and
	warping is relatively crude.
	*/

boolean
PhaseVocoder::checkAndSetValues() {
	char errmsg[128];
	errmsg[0] = '\0';
	if ((I.fftSize != 0) && (I.fundFreq != 0))
		sprintf(errmsg,"Don't specify both fftSize and fundFreq.");

	if ((I.fftSize == 0) && (I.fundFreq == 0))
		I.fftSize = 256;
	else if (I.fundFreq != 0)
		I.fftSize = int(I.samplingRate / I.fundFreq);

	if ((I.fftSize%2) != 0)
		I.fftSize += 1;		/* even values usually run faster */
	fftPoints = I.fftSize / 2;
	if (fftPoints > 16384) {
		sprintf(errmsg,"FFT size (%d) too large.", fftPoints);
		goto error;
	}

	I.fundFreq = int(I.samplingRate / I.fftSize);

	if (I.inputFrameSize == 0)
		I.inputFrameSize = I.fftSize;
	if ((I.inputFrameSize%2) == 0)
		inputFrameEven = 1;

	if (I.outputFrameSize == 0)
		I.outputFrameSize = I.inputFrameSize;
	if ((I.outputFrameSize%2) == 0)
		outputFrameEven = 1;

	if (I.inputFrameSize < 7) {
		sprintf(errmsg,"Input frame size (%d) is too small.", I.inputFrameSize);
		goto error;
	}

	obuflen = 4 * I.outputFrameSize;

	if (I.lastBand == 0) I.lastBand = fftPoints;
	if (I.lastBand > fftPoints) I.lastBand = fftPoints;
	if (I.firstBand < 0) I.firstBand = 0;
	bandsLimited = (I.firstBand != 0 || I.lastBand != fftPoints);

	if ((I.pchScaleFactor != 1.) && (I.timeScaleFactor != 1.)) 
		sprintf(errmsg, "Don't specify both time and pitch scaling -- using pitch scaling.");

	if ((I.pchScaleFactor != 1.) && variableTimeScaling()) {
		sprintf(errmsg, "Sorry, no pitch scaling with time-varying time scaling.");
		goto error;
	}

	if (I.pchScaleFactor != 1.)
		I.timeScaleFactor = I.pchScaleFactor;	/* pitch change is time change plus resamp */

	if (I.timeScaleFactor <= 0.){
		sprintf(errmsg,"Invalid time scale factor (%f).", I.timeScaleFactor);
		goto error;
	}

	if (I.inputFrameOffset == 0)
		if (I.timeScaleFactor > 1.)
			I.inputFrameOffset = int(I.inputFrameSize / (8.0 * I.timeScaleFactor));
		else
			I.inputFrameOffset = int(I.inputFrameSize / 8.0);

	if (I.inputFrameOffset == 0){
		sprintf(errmsg,"Time scale factor greater than inputFrameSize/8.");
		I.inputFrameOffset = 1;
	}

	// if doing resynthesis, remultiply outputFrameOffset by time factor
	// to return to "unity" value
	
	if (I.outputFrameOffset == 0)
		I.outputFrameOffset = synthesizing() ? 
			 int(I.inputFrameOffset / I.timeScaleFactor)
			 : int(I.timeScaleFactor * I.inputFrameOffset);

	if (I.outputFrameOffset == 0){
		sprintf(errmsg, "time factor * offset (or pitch factor * offset) < 1.   Increase input frame size.");
		goto error;
	}

	if (variableTimeScaling()) {
		// original timeScaleFactor was maximum - used to set outputFrameOffset
		I.timeScaleFactor = timeScaleEnvelope->get(0);	
		I.inputFrameOffset = int(I.outputFrameOffset / I.timeScaleFactor);
		if (I.inputFrameOffset < 1) {
			char msg[128];
			sprintf(msg, "Cannot expand by time scale factor %f.",
				I.timeScaleFactor);
			Application::alert(msg, "Setting to factor to maximum value.");
			I.inputFrameOffset = 1;
		}
		if (I.warp != 0.)
			I.warp = I.timeScaleFactor;	// warp varies with timeScaleFactor
	}

	if(variableTimeScaling() || !synthesizing())
		I.timeScaleFactor = (float(I.outputFrameOffset) / I.inputFrameOffset);

	if (I.pchScaleFactor != 1.)
		I.pchScaleFactor = I.timeScaleFactor;

	// synth transform will be invFftSize points
	invFftSize = int(I.fftSize / I.pchScaleFactor);

	if ((invFftSize % 2) != 0)
		invFftSize += 1;

	invFftPoints = invFftSize / 2;

	/* ideally, fftSize/invFftSize = I.outputFrameOffset/I.inputFrameOffset
		= pitch change
	*/
	
	I.pchScaleFactor = (float(I.fftSize) / invFftSize);

	if (I.warp == -1.)
		I.warp = I.pchScaleFactor;
	if ((E == 1) && (I.warp == 0.))
		I.warp = 1.;

	if ((I.pchScaleFactor != 1.) && (I.pchScaleFactor != I.timeScaleFactor))
		 sprintf(errmsg,"pchScaleFactor (%f) not equal to timeScaleFactor (%f).",I.pchScaleFactor,I.timeScaleFactor);

	scaledOutputOffset = int(I.outputFrameOffset / I.pchScaleFactor);

	if (verbose) {
		fprintf(fp,"\nfftSize: %d  I.inputFrameSize: %d  outputFrameSize: %d",I.fftSize,I.inputFrameSize,I.outputFrameSize); 
		fprintf(fp,"  inputFrameOffset: %d  outputFrameOffset: %d  fundFreq: %d",I.inputFrameOffset,I.outputFrameOffset,I.fundFreq);
		fprintf(fp,"  sampleRate: %d  pchScaleFactor: %5.2f  timeScaleFactor: %5.2f\n",int(I.samplingRate),I.pchScaleFactor,I.timeScaleFactor);
		if (bandsLimited)
			fprintf(fp,"C: %d    i: %d    j: %d\n",C,I.firstBand,I.lastBand);
		if (I.K)
			fprintf(fp,"---Kaiser Window---\n");
	}
	if(strlen(errmsg))
		Application::alert("Warning:", errmsg);
	return true;
error:
	Application::alert(errmsg);
	return false;
}

void
PhaseVocoder::initialize() {		
	createAnalysisWindow();
	createSynthesisWindow();
	createBuffers();
	reset();
	initialized = true;
}

// 	initialization: input time starts negative so that the rightmost
// 	edge of the analysis filter just catches the first non-zero
// 	input samples; output time is always timeScaleFactor times input time.

void
PhaseVocoder::reset() {
	outCount = 0;
	float inputFrameRate = I.samplingRate / I.inputFrameOffset;
	float outputFrameRate = I.samplingRate / I.outputFrameOffset;
	RoverTwoPi = inputFrameRate / TwoPi;
	TwoPioverR = TwoPi / outputFrameRate;
	// input time (in samples, starts negative)
	// inSamp is -1 * integer number of offsets per half-window
	inSamp = -(analWinLen/I.inputFrameOffset) * I.inputFrameOffset;
	// output time (in samps, also starts negative)
	outSamp = int(I.timeScaleFactor/I.pchScaleFactor * inSamp);
	sampsIn = analWinLen + inSamp + 1;		// number of new inputs to read
	startingOffset = sampsIn;				// cached here
	sampsOut = 0;
}

// 	set up analysis window: The window is assumed to be symmetric
// 	with inputFrameSize total points.  After the initial memory allocation,
// 	analWindow always points to the midpoint of the window
// 	(or one half sample to the right, if inputFrameSize is even);
// 	analWinLen is half the true window length (rounded down). Any low pass
// 	window will work; a Hamming window is generally fine,
// 	but a Kaiser is also available.  If the window duration is
// 	MXINT32er than the transform (inputFrameSize > fftSize), then the
// 	window is multiplied by a sin(x)/x function to meet the condition:
// 	analWindow[Ni] = 0 for i != 0.  In either case, the
// 	window is renormalized so that the phase vocoder amplitude
// 	estimates are properly scaled.

void
PhaseVocoder::createAnalysisWindow() {
	analWindowBuf = new float[I.inputFrameSize+inputFrameEven];
	bzero(analWindowBuf, (I.inputFrameSize+inputFrameEven) * sizeof(float));
	analWindow = analWindowBuf + (analWinLen = I.inputFrameSize/2);
	int one = 1;
	int i = 0;
	if (I.K)
		kaiser_(&I.inputFrameSize,analWindow,&analWinLen,&one,&beta);
	else
		hamming(analWindow,analWinLen,inputFrameEven);

	for (i = 1; i <= analWinLen; i++)
		*(analWindow - i) = *(analWindow + i - inputFrameEven);

	if (I.inputFrameSize > I.fftSize) {
		if (inputFrameEven)
			*analWindow *= I.fftSize * sin(HalfPi/I.fftSize) / HalfPi;
		for (i = 1; i <= analWinLen; i++) 
			*(analWindow + i) *=
				I.fftSize * sin(Pi*(i+.5*inputFrameEven)/I.fftSize) /
					(Pi*(i+.5*inputFrameEven));
		for (i = 1; i <= analWinLen; i++)
			*(analWindow - i) = *(analWindow + i - inputFrameEven);
	}

	/* normalize window for unity gain across unmodified
		analysis-synthesis procedure */

	sum = 0.;
	for (i = -analWinLen; i < analWinLen; i++)
		sum += *(analWindow + i);

	sum = 2. / sum;				// factor of 2 comes in later in trig identity

	if(analyzing())
		sum *= I.inputScalingFactor;	// input scaled by 1/(2^16) if short integer
	
	for (i = -analWinLen; i < analWinLen; i++)
		*(analWindow + i) *= sum;
}

// set up synthesis window:  For the minimal mean-square-error
// formulation (valid for fftSize >= inputFrameSize), the synthesis window
// is identical to the analysis window (except for a
// scale factor), and both are even in length.  If
// fftSize < inputFrameSize, then an interpolating synthesis window is used.

void
PhaseVocoder::createSynthesisWindow() {
	synWindowBuf = new float[I.outputFrameSize+outputFrameEven];
	bzero(synWindowBuf, (I.outputFrameSize+outputFrameEven) * sizeof(float));
	synWindow = synWindowBuf + (synWinLen = I.outputFrameSize/2);
	int one = 1;
	int i = 0;
	
	if (I.inputFrameSize <= I.fftSize) {
		if (I.K)
			kaiser_(&I.inputFrameSize,synWindow,&synWinLen,&one,&beta);
		else
			hamming(synWindow,synWinLen,outputFrameEven);

		for (i = 1; i <= synWinLen; i++)
			*(synWindow - i) = *(synWindow + i - outputFrameEven);

		for (i = -synWinLen; i < synWinLen; i++)
			*(synWindow + i) *= sum;

	// normalize window for unity gain across unmodified
	//	analysis-synthesis procedure

		sum = 0.;
		for (i = -synWinLen; i <= synWinLen; i+=I.outputFrameOffset)
			sum += *(synWindow + i) * *(synWindow + i);
	}
	else {
		hamming(synWindow,synWinLen,outputFrameEven);
		for (i = 1; i <= synWinLen; i++)
			*(synWindow - i) = *(synWindow + i - outputFrameEven);

		if (outputFrameEven)
			*synWindow *= scaledOutputOffset * sin(HalfPi/scaledOutputOffset) /
				HalfPi;
		for (i = 1; i <= synWinLen; i++) 
			*(synWindow + i) *= scaledOutputOffset *
				sin(Pi*(i+.5*outputFrameEven) / scaledOutputOffset) /
					(Pi*(i+.5*outputFrameEven));
		for (i = 1; i <= synWinLen; i++)
			*(synWindow - i) = *(synWindow + i - outputFrameEven);
	}

	sum = 1. / sum;

	if(synthesizing())
		sum *= I.inputScalingFactor;	// output mult. by (2^16) if short integer

	for (i = -synWinLen; i < synWinLen; i++)
		*(synWindow + i) *= sum;
}

void
PhaseVocoder::hamming(float *win, int winLen, int even) {
	int i;
	float ftmp = Pi/winLen;

	if (even) {
		for (i=0; i<winLen; i++)
			*(win+i) = .54 + .46 * cos(ftmp*(i+.5));
		*(win+winLen) = 0.;
	}
	else {
		*(win) = 1.;
		for (i=1; i<=winLen; i++)
			*(win+i) = .54 + .46 * cos(ftmp*i);
	}
}

void
PhaseVocoder::createBuffers() {

	/* set up output buffer:  nextOut always points to the next word
		to be shifted out.  The shift is simulated by writing the
		value to the standard output and then setting that word
		of the buffer to zero.  When nextOut reaches the end of
		the buffer, it jumps back to the beginning.  */

	nextOut = output = new float[obuflen];
	bzero((char*) output, sizeof(float) * obuflen);

	/* set up analysis buffer for (fftSize/2 + 1) channels: The input is real,
		so the other channels are redundant. oldInPhase is used
		in the conversion to remember the previous phase when
		calculating phase difference between successive samples. */

	anal = new float[analysisChannels()];

	// allocate and zero these
	
	int fb = freqBands();
	oldInPhase = new float[fb];
	bzero((char*) oldInPhase, sizeof(float) * fb);
	maxAmp = new float[fb];
	bzero((char*) maxAmp, sizeof(float) * fb);
	avgAmp = new float[fb];
	bzero((char*) avgAmp, sizeof(float) * fb);
	avgFrq = new float[fb];
	bzero((char*) avgFrq, sizeof(float) * fb);
	env = new float[fb];
	bzero((char*) env, sizeof(float) * fb);

	/* set up synthesis buffer for (fftSize/2 + 1) channels: (This is included
		only for clarity.)  oldOutPhase is used in the re-
		conversion to accumulate angle differences (actually angle
		difference per second). */

	syn = new float[invFftSize+2];

	oldOutPhase = new float[invFftPoints + 1];
	bzero((char*) oldOutPhase, sizeof(float) * (invFftPoints + 1));
}

void
PhaseVocoder::updateAmps() {
	ftot++;

	for (int i = 0; i <= fftPoints; i++){
		if (*(anal+(i<<1)) > *(maxAmp+i))
			*(maxAmp+i) = *(anal+(i<<1));
		*(avgAmp + i) += *(anal + (i<<1));
		*(avgFrq + i) += *(anal + (i<<1) + 1);
	}
}

int
PhaseVocoder::runAnalysis(double* in, Data* frame) {
	applyInputWindow(in);
	analyze();
	convertToReal();
	detectAndWarpEnvelope();
	
//	if (verbose) updateAmps();
	outputAnalysis(frame);
	getTimeScaleFactor();
	calculateOffsetsAndIncrement();
	return true;
}

/*
	analysis: The analysis subroutine computes the complex output at
	time n of (fftSize/2 + 1) of the phase vocoder channels.  It operates
	on input samples (n - analWinLen) thru (n + analWinLen) and
	expects to find these in input[0 - 2*analWinLen)]. 
	This subroutine expects analWindow to point to the center of a
	symmetric window of length (2 * analWinLen +1).  It is the
	responsibility of the main program to ensure that these values
	are correct!  The results are returned in anal as succesive
	pairs of real and imaginary values for the lowest (fftSize/2 + 1)
	channels.   The subroutines fft and reals together implement
	one efficient FFT call for a real input sequence.
*/

void
PhaseVocoder::applyInputWindow(double* input) {
	int i = 0;
	
	for (i = 0; i < analysisChannels(); i++)	// initialize
		*(anal + i) = 0.;

	int k = inSamp - analWinLen - 1;			// time shift
	while (k < 0)								// get rotated pointer
		k += I.fftSize;
	k = k % I.fftSize;

	for (i = -analWinLen; i <= analWinLen; i++) {
		if (++k >= I.fftSize)
			k = 0;
		*(anal + k) += *(analWindow + i) * *input++;
	}
}

// extern void rfft(float*, int, int);

void
PhaseVocoder::analyze() {
 	register float* banal = anal + 1;
 	int one = 1;
 	int negTwo = -2;
 	fft_(anal,banal,&one,&fftPoints,&one,&negTwo);
 	reals_(anal,banal,&fftPoints,&negTwo);
//	rfft(anal, fftPoints, true);
}

void
PhaseVocoder::convertToReal() {

	/*
	conversion: The real and imaginary values in anal are converted to
	magnitude and angle-difference-per-second (assuming an 
	intermediate sampling rate of inputFrameRate) and are returned in anal.
	*/

	register float* realptr = anal;
	register float* imagptr = anal + 1;
	register float* phaseptr = oldInPhase;

	for (int i = 0; i <= fftPoints;
			i++, realptr += 2, imagptr += 2, phaseptr++) {
		float real = *realptr;
		float imag = *imagptr;
		float angleDif = 0;
		*realptr = hypot(real,imag);
		
		if (*realptr == 0.)
			angleDif = 0.;
		else {
			float phase = 0;
			angleDif = (phase = atan2(imag,real)) - *phaseptr;
			*phaseptr = phase;
		}
	
		// unwrap phase differences

		while(angleDif > Pi)
			angleDif -= TwoPi;
		while(angleDif < -Pi)
			angleDif += TwoPi;

		// convert each phase difference to Hz

		*imagptr = angleDif * RoverTwoPi + (i * float(I.fundFreq));
	}
}

void
PhaseVocoder::outputAnalysis(Data* frame) {
	if(E)
		frame->setFrame(env, fftPoints);			// spectral envelope
	else if(X)
		for (int i=0; i <= fftPoints; i++)			// magnitudes only
			frame->set(*(anal + (i<<1)), 0, i);
	else
		frame->setFrame(anal, analysisChannels());	// pvoc analysis data
}

void
PhaseVocoder::detectAndWarpEnvelope() {

	/* 
	spectral envelope detection: this is a very crude peak picking algorithm
	which is used to detect and pre-warp the spectral envelope so that
	pitch transposition can be performed without altering timbre.
	The basic idea is to disallow large negative slopes between
	successive values of magnitude vs. frequency.
	*/

	if (I.warp != 0.){

		float lastmag = *anal;
		float mag = *(anal + 2);
		float nextmag = 0;
		float eps = -64. / I.fftSize;
		float pkOld = lastmag;
		*env = pkOld;
		int pkcnt = 1;
		float slope = 0;
		int i = 0;

		for (i = 1; i <= fftPoints; i++) {			// step thru spectrum

			if (i<fftPoints)
				nextmag = *(anal + (i<<1) + 2);
			else nextmag = 0.;

			if (pkOld != 0.)
				slope = (float(mag - pkOld)/(pkOld * pkcnt));
			else
				slope = -10.;

													// look for peaks

			if ((mag>=lastmag)&&(mag>nextmag)&&(slope>eps)) {
				*(env + i) = mag;
				pkcnt--;
				for (int j = 1; j <= pkcnt; j++)
					//*(env + i - pkcnt + j - 1) = pkOld * (1. + slope * j);
					env[i - pkcnt + j - 1] = pkOld * (1. + slope * j);
				pkOld = mag;
				pkcnt = 1;
			}	
			else pkcnt++;							// not a peak

			lastmag = mag;
			mag = nextmag;
		}

		if (pkcnt > 1) {							// get final peak
			mag = *(anal + I.fftSize);
			slope = (float(mag - pkOld) / pkcnt);
			*(env + fftPoints) = mag;
			pkcnt--;
			for (int j = 1; j <= pkcnt; j++)
				//*(env + fftPoints - pkcnt + j - 1) = pkOld + slope * j;
				env[fftPoints - pkcnt + j - 1] = pkOld + slope * j;
		}

		for (i = 0; i <= fftPoints; i++) {			// warp spectral env.
			int j = int(i * I.warp);
			if ((j <= fftPoints) && (*(env + i) != 0.))
				*(anal + (i<<1)) *= *(env + j) / *(env + i);
			else
				*(anal + (i<<1)) = 0.;
		}
	}
}

int
PhaseVocoder::runSynthesis(Data* frame, InPipeAction* pipe) {
	BUG("PhaseVocoder::runSynthesis");
	loadAnalysis(frame);
	limitBands();
	detectAndWarpEnvelope();	// try this here!!
	convertFromReal();
	synthesize();
	applyOutputWindow();
	int status = shiftOut(pipe);
	getTimeScaleFactor();
	calculateOffsetsAndIncrement();
	return status;
}

void
PhaseVocoder::loadAnalysis(Data* frame) {
	BUG("PhaseVocoder::loadAnalysis");
	frame->getFrame(anal, analysisChannels());
}

void
PhaseVocoder::limitBands() {
	/* resynthesize only selected channels */
	if (bandsLimited){
		int i;
		for (i = 0; i < I.firstBand; i++)
			*(anal+(i<<1)) = 0.;
		for (i = I.lastBand+1; i <= fftPoints; i++)
			*(anal+(i<<1)) = 0.;
		if (C == 1)
			for (i = I.firstBand; i <= I.lastBand; i++)
				if (i%2 == 0)
					*(anal+(i<<1)) = 0.;
		if (C == 2)
			for (i = I.firstBand; i <= I.lastBand; i++)
				if (i%2 != 0)
					*(anal+(i<<1)) = 0.;
	}
}

void
PhaseVocoder::convertFromReal() {
	/*
	reconversion: The magnitude and angle-difference-per-second in syn
	(assuming an intermediate sampling rate of outputFrameRate) are
	converted to real and imaginary values and are returned in syn.
	This automatically incorporates the proper phase scaling for
	time modifications.
	*/

	int i = 0;
	
	if (invFftSize <= I.fftSize){
		for (i = 0; i < invFftSize+2; i++)
			*(syn+i) = *(anal+i);
	}
	else {
		for (i = 0; i <= I.fftSize+1; i++)
			*(syn+i) = *(anal+i);
		for (i = analysisChannels(); i < invFftSize+2; i++)
			*(syn+i) = 0.;
	}

	register float* i0 = syn;
	register float* i1 = syn + 1;

	for (i = 0; i <= invFftPoints; i++, i0 += 2, i1 += 2) {
		float mag = *i0;
		*(oldOutPhase + i) += *i1 - ( i * float(I.fundFreq));
		float phase = *(oldOutPhase + i) * TwoPioverR;
		*i0 = mag * cos(phase);
		*i1 = mag * sin(phase);
	}

	// scale values by pitch factor if present
	
	if (I.pchScaleFactor != 1.) {
		float Pinv = 1.0 / I.pchScaleFactor;
		for (i = 0; i < invFftSize+2; i++)
			*(syn+i) *= Pinv;
	}

}

/*
	synthesis: The synthesis subroutine uses the Weighted Overlap-Add
	technique to reconstruct the time-domain signal.  The (fftSize/2 + 1)
	phase vocoder channel outputs at time n are inverse Fourier
	transformed, windowed, and added into the output array.  The
	subroutine thinks of output as a shift register in which 
	locations are referenced modulo obuflen.  Therefore, the main
	program must take care to zero each location which it "shifts"
	out (to standard output). The subroutines reals and fft
	together perform an efficient inverse FFT.
*/

void
PhaseVocoder::synthesize() {
	register float* bsyn = syn + 1;
	int one = 1;
	int two = 2;
	reals_(syn,bsyn,&invFftPoints,&two);
	fft_(syn,bsyn,&one,&invFftPoints,&one,&two);
}

void
PhaseVocoder::applyOutputWindow() {
	BUG("PhaseVocoder::applyOutputWindow");
	// set up pointers to current locations in syn and output
	
	int j = outSamp - synWinLen - 1;
	while (j < 0)
		j += obuflen;
	j = j % obuflen;

	int k = outSamp - synWinLen - 1;
	while (k < 0)
		k += invFftSize;
	k = k % invFftSize;

	// overlap-add windowed synth buffer into output array, wrapping pointers
	// as required
	
	for (int i = -synWinLen; i <= synWinLen; i++) {
		if (++j >= obuflen)
			j -= obuflen;
		if (++k >= invFftSize)
			k -= invFftSize;
		*(output + j) += *(syn + k) * *(synWindow + i);
	}
}

int
PhaseVocoder::shiftOut(InPipeAction* pipe) {
	BUG("PhaseVocoder::shiftOut");
	// shift out next sampsOut values
	pipe->ref();
	int keepGoing = true;
	for (int i = 0; i < sampsOut && keepGoing; i++) {
		keepGoing = pipe->add(*nextOut);
		*(nextOut++) = 0.;
		if (nextOut >= (output + obuflen))
			nextOut -= obuflen;
		outCount++;
	}
	Resource::unref(pipe);
	return keepGoing;
}

void
PhaseVocoder::getTimeScaleFactor() {

	// time-varying time-scaling: get linearly interpolated time values
	// from envelope object

	if (variableTimeScaling() && inSamp > 0) { // if window midpt. is positive
		I.timeScaleFactor = timeScaleEnvelope->next();
		if (I.timeScaleFactor < (8.0 * I.outputFrameOffset / I.inputFrameSize)) {
			char msg[64];
			sprintf(msg, "Cannot contract by time scaling %f.",
				I.timeScaleFactor);
			Application::inform(msg, true);		// display for 1 second
			I.timeScaleFactor = (8.0 * I.outputFrameOffset / (I.inputFrameSize + 1));
		}
		I.inputFrameOffset = int(I.outputFrameOffset / I.timeScaleFactor);
		if (I.inputFrameOffset < 1) {
			char msg[64];
			sprintf(msg,"Cannot expand by time scaling %f.", I.timeScaleFactor);
			Application::inform(msg, true);		// display for 1 second
			I.inputFrameOffset = 1;
		}
		I.timeScaleFactor = (float(I.outputFrameOffset) / I.inputFrameOffset);
		float inputFrameRate = (I.samplingRate / I.inputFrameOffset);
		RoverTwoPi = inputFrameRate / TwoPi;
		if (I.warp != 0.)
			I.warp = I.timeScaleFactor;
	}
}

void
PhaseVocoder::calculateOffsetsAndIncrement() {

/*	I.inputFrameOffset = some_function(inSamp);	for variable time-scaling */
/*	float inputFrameRate = (I.samplingRate / I.inputFrameOffset); for variable time-scaling */
/*	RoverTwoPi =  inputFrameRate / TwoPi;	for variable time-scaling */

	inSamp += I.inputFrameOffset;				/* increment time */
	outSamp += scaledOutputOffset;

	sampsIn = I.inputFrameOffset;	// always, after first time

	float Ii = 0.0;
	if (outSamp > (synWinLen + I.outputFrameOffset))
		Ii = I.outputFrameOffset;
	else if (outSamp > synWinLen)
		Ii = outSamp - synWinLen;
	else {
		Ii = 0;
		for (int i=outSamp+synWinLen; i<obuflen; i++)
			if (i > 0)
				*(output+i) = 0.;
	}
	sampsOut = int(Ii / I.pchScaleFactor);
}

int
PhaseVocoder::calculateAnalysisLength(int inputLen) {
	return max(1,
		1 + (inputLen + I.inputFrameSize-startingOffset) / I.inputFrameOffset
	);
}