1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
|
//
// mkfilter-derived code
// ---------------------
//
// Copyright (c) 2002-2004 Jim Peters <http://uazu.net/>. This
// file is released under the GNU Lesser General Public License
// (LGPL) version 2.1 as published by the Free Software
// Foundation. See the file COPYING_LIB for details, or visit
// <http://www.fsf.org/licenses/licenses.html>.
//
// This is all code derived from 'mkfilter' by Tony Fisher of the
// University of York. I've rewritten it all in C, and given it
// a thorough overhaul, so there is actually none of his code
// here any more, but it is all still very strongly based on the
// algorithms and techniques that he used in 'mkfilter'.
//
// For those who didn't hear, Tony Fisher died in February 2000
// at the age of 43. See his web-site for information and a
// tribute:
//
// http://www-users.cs.york.ac.uk/~fisher/
// http://www-users.cs.york.ac.uk/~fisher/tribute.html
//
// The original C++ sources and the rest of the mkfilter tool-set
// are still available from his site:
//
// http://www-users.cs.york.ac.uk/~fisher/mkfilter/
//
//
// I've made a number of improvements and changes whilst
// rewriting the code in C. For example, I halved the
// calculations required in designing the filters by storing only
// one complex pole/zero out of each conjugate pair. This also
// made it much easier to output the filter as a list of
// sub-filters without lots of searching around to match up
// conjugate pairs later on. Outputting as a list of subfilters
// permits greater accuracy in calculation of the response, and
// also in the execution of the final filter. Also, some FIR
// coefficients can be marked as 'constant', allowing optimised
// routines to be generated for whole classes of filters, with
// just the variable coefficients filled in at run-time.
//
// On the down-side, complex numbers are not portably available
// in C before C99, so complex calculations here are done on
// double[] arrays with inline functions, which ends up looking
// more like assembly language than C. Never mind.
//
//
// LEGAL STUFF
// -----------
//
// Tony Fisher released his software on his University of York
// pages for free use and free download. The software itself has
// no licence terms attached, nor copyright messages, just the
// author's name, E-mail address and date. Nor are there any
// licence terms indicated on the website. I understand that
// under the Berne convention copyright does not have to be
// claimed explicitly, so these are in fact copyright files by
// legal default. However, the intention was obviously that
// these files should be used by others.
//
// None of this really helps, though, if we're going to try to be
// 100% legally correct, so I wrote to Anthony Moulds who is the
// contact name on Tony Fisher's pages now. I explained what I
// planned to do with the code, and he answered as follows:
//
// (Note that I was planning to use it 'as-is' at that time,
// rather than rewrite it as I have done now)
//
// > To: "Jim Peters" <jim@uazu.net>
// > From: "Anthony Moulds" <anthony@cs.york.ac.uk>
// > Subject: RE: mkfilter source
// > Date: Tue, 29 Oct 2002 15:30:19 -0000
// >
// > Hi Jim,
// >
// > Thanks for your email.
// >
// > The University will be happy to let you use Dr Fisher's mkfilter
// > code since your intention is not to profit financially from his work.
// >
// > It would be nice if in some way you could acknowledge his contribution.
// >
// > Best wishes and good luck with your work,
// >
// > Anthony Moulds
// > Senior Experimental Officer,
// > Computer Science Department, University of York,
// > York, England, UK. Tel: 44(0)1904 434758 Fax: 44(0)19042767
// > ============================================================
// >
// >
// > > -----Original Message-----
// > > From: Jim Peters [mailto:jim@uazu.net]
// > > Sent: Monday, October 28, 2002 12:36 PM
// > > To: anthony@cs.york.ac.uk
// > > Subject: mkfilter source
// > >
// > >
// > > I'm very sorry to hear (rather late, I know) that Tony Fisher died --
// > > I've always gone straight to the filter page, rather than through his
// > > home page. I hope his work remains available for the future.
// > >
// > > Anyway, the reason I'm writing is to clarify the status of the
// > > mkfilter source code. Because copyright is not claimed on the web
// > > page nor in the source distribution, I guess that Tony's intention was
// > > that this code should be in the public domain. However, I would like
// > > to check this now to avoid complications later.
// > >
// > > I am using his code, modified, to provide a library of filter-design
// > > routines for a GPL'd filter design app, which is not yet released.
// > > The library could also be used standalone, permitting apps to design
// > > filters at run-time rather than using hard-coded compile-time filters.
// > > My interest in filters is as a part of my work on the OpenEEG project
//
// So this looks pretty clear to me. I am not planning to profit
// from the work, so everything is fine with the University. I
// guess others might profit from the work, indirectly, as with
// any free software release, but so long as I don't, we're fine.
//
// I hope this is watertight enough for Debian/etc. Otherwise
// I'll have to go back to Anthony Moulds for clarification.
//
// Even though there is no code cut-and-pasted from 'mkfilter'
// here, it is all very obviously based on that code, so it
// probably counts as a derived work -- although as ever "I Am
// Not A Lawyer".
//
#ifndef FIDMK_H
#define FIDMK_H
#ifndef T_MSVC
#ifdef HUGE_VAL
#define INF HUGE_VAL
#else
#define INF (1.0/0.0)
#endif
#endif
#ifdef T_MSVC
#define INF HUGE_VAL
#endif
#define TWOPI (2*M_PI)
//
// Complex square root: aa= aa^0.5
//
STATIC_INLINE double
my_sqrt(double aa) {
return aa <= 0.0 ? 0.0 : sqrt(aa);
}
// 'csqrt' clashes with builtin in GCC 4, so call it 'c_sqrt'
STATIC_INLINE void
c_sqrt(double *aa) {
double mag= hypot(aa[0], aa[1]);
double rr= my_sqrt((mag + aa[0]) * 0.5);
double ii= my_sqrt((mag - aa[0]) * 0.5);
if (aa[1] < 0.0) ii= -ii;
aa[0]= rr;
aa[1]= ii;
}
//
// Complex imaginary exponent: aa= e^i.theta
//
STATIC_INLINE void
cexpj(double *aa, double theta) {
aa[0]= cos(theta);
aa[1]= sin(theta);
}
//
// Complex exponent: aa= e^aa
//
// 'cexp' clashes with builtin in GCC 4, so call it 'c_exp'
STATIC_INLINE void
c_exp(double *aa) {
double mag= exp(aa[0]);
aa[0]= mag * cos(aa[1]);
aa[1]= mag * sin(aa[1]);
}
//
// Context for generating filters.
//
// Note that the poles and zeros are stored in a strange way.
// Rather than storing both a pole (or zero) and its complex
// conjugate, I'm storing just one of the pair. Also, for real
// poles, I'm not storing the imaginary part (which is zero).
// This results in a list of numbers exactly half the length you
// might otherwise expect. However, since some of these numbers
// are in pairs, and some are single, we need a separate flag
// array to indicate which is which. poltyp[] serves this
// purpose. An entry is 1 if the corresponding offset is a real
// pole, or 2 if it is the first of a pair of values making up a
// complex pole. The second value of the pair has an entry of 0
// attached. (Similarly for zeros in zertyp[])
//
#define MAXPZ 64
struct mk_filter_context {
int n_pol; // Number of poles
double pol[MAXPZ]; // Pole values (see above)
char poltyp[MAXPZ]; // Pole value types: 1 real, 2 first of complex pair, 0 second
int n_zer; // Same for zeros ...
double zer[MAXPZ];
char zertyp[MAXPZ];
};
//
// Pre-warp a frequency
//
STATIC_INLINE double
prewarp(double val) {
return tan(val * M_PI) / M_PI;
}
//
// Bessel poles; final one is a real value for odd numbers of
// poles
//
static double bessel_1[]= {
-1.00000000000e+00
};
static double bessel_2[]= {
-1.10160133059e+00, 6.36009824757e-01,
};
static double bessel_3[]= {
-1.04740916101e+00, 9.99264436281e-01,
-1.32267579991e+00,
};
static double bessel_4[]= {
-9.95208764350e-01, 1.25710573945e+00,
-1.37006783055e+00, 4.10249717494e-01,
};
static double bessel_5[]= {
-9.57676548563e-01, 1.47112432073e+00,
-1.38087732586e+00, 7.17909587627e-01,
-1.50231627145e+00,
};
static double bessel_6[]= {
-9.30656522947e-01, 1.66186326894e+00,
-1.38185809760e+00, 9.71471890712e-01,
-1.57149040362e+00, 3.20896374221e-01,
};
static double bessel_7[]= {
-9.09867780623e-01, 1.83645135304e+00,
-1.37890321680e+00, 1.19156677780e+00,
-1.61203876622e+00, 5.89244506931e-01,
-1.68436817927e+00,
};
static double bessel_8[]= {
-8.92869718847e-01, 1.99832584364e+00,
-1.37384121764e+00, 1.38835657588e+00,
-1.63693941813e+00, 8.22795625139e-01,
-1.75740840040e+00, 2.72867575103e-01,
};
static double bessel_9[]= {
-8.78399276161e-01, 2.14980052431e+00,
-1.36758830979e+00, 1.56773371224e+00,
-1.65239648458e+00, 1.03138956698e+00,
-1.80717053496e+00, 5.12383730575e-01,
-1.85660050123e+00,
};
static double bessel_10[]= {
-8.65756901707e-01, 2.29260483098e+00,
-1.36069227838e+00, 1.73350574267e+00,
-1.66181024140e+00, 1.22110021857e+00,
-1.84219624443e+00, 7.27257597722e-01,
-1.92761969145e+00, 2.41623471082e-01,
};
static double *bessel_poles[10]= {
bessel_1, bessel_2, bessel_3, bessel_4, bessel_5,
bessel_6, bessel_7, bessel_8, bessel_9, bessel_10
};
//
// Generate Bessel poles for the given order.
//
static void
bessel(struct mk_filter_context* ctx, int order) {
int a;
if (order > 10) error("Maximum Bessel order is 10");
ctx->n_pol= order;
memcpy(ctx->pol, bessel_poles[order-1], ctx->n_pol * sizeof(double));
for (a= 0; a<order-1; ) {
ctx->poltyp[a++]= 2;
ctx->poltyp[a++]= 0;
}
if (a < order)
ctx->poltyp[a++]= 1;
}
//
// Generate Butterworth poles for the given order. These are
// regularly-spaced points on the unit circle to the left of the
// real==0 line.
//
static void
butterworth(struct mk_filter_context* ctx, int order) {
int a;
if (order > MAXPZ)
error("Maximum butterworth/chebyshev order is %d", MAXPZ);
ctx->n_pol= order;
for (a= 0; a<order-1; a += 2) {
ctx->poltyp[a]= 2;
ctx->poltyp[a+1]= 0;
cexpj(ctx->pol+a, M_PI - (order-a-1) * 0.5 * M_PI / order);
}
if (a < order) {
ctx->poltyp[a]= 1;
ctx->pol[a]= -1.0;
}
}
//
// Generate Chebyshev poles for the given order and ripple.
//
static void
chebyshev(struct mk_filter_context* ctx, int order, double ripple) {
double eps, y;
double sh, ch;
int a;
butterworth(ctx, order);
if (ripple >= 0.0) error("Chebyshev ripple in dB should be -ve");
eps= sqrt(-1.0 + pow(10.0, -0.1 * ripple));
y= asinh(1.0 / eps) / order;
if (y <= 0.0) error("Internal error; chebyshev y-value <= 0.0: %g", y);
sh= sinh(y);
ch= cosh(y);
for (a= 0; a<ctx->n_pol; ) {
if (ctx->poltyp[a] == 1)
ctx->pol[a++] *= sh;
else {
ctx->pol[a++] *= sh;
ctx->pol[a++] *= ch;
}
}
}
//
// Adjust raw poles to LP filter
//
static void
lowpass(struct mk_filter_context* ctx, double freq) {
int a;
// Adjust poles
freq *= TWOPI;
for (a= 0; a<ctx->n_pol; a++)
ctx->pol[a] *= freq;
// Add zeros
ctx->n_zer= ctx->n_pol;
for (a= 0; a<ctx->n_zer; a++) {
ctx->zer[a]= -INF;
ctx->zertyp[a]= 1;
}
}
//
// Adjust raw poles to HP filter
//
static void
highpass(struct mk_filter_context* ctx, double freq) {
int a;
// Adjust poles
freq *= TWOPI;
for (a= 0; a<ctx->n_pol; ) {
if (ctx->poltyp[a] == 1) {
ctx->pol[a]= freq / ctx->pol[a];
a++;
} else {
crecip(ctx->pol + a);
ctx->pol[a++] *= freq;
ctx->pol[a++] *= freq;
}
}
// Add zeros
ctx->n_zer= ctx->n_pol;
for (a= 0; a<ctx->n_zer; a++) {
ctx->zer[a]= 0.0;
ctx->zertyp[a]= 1;
}
}
//
// Adjust raw poles to BP filter. The number of poles is
// doubled.
//
static void
bandpass(struct mk_filter_context* ctx, double freq1, double freq2) {
double w0= TWOPI * sqrt(freq1*freq2);
double bw= 0.5 * TWOPI * (freq2-freq1);
int a, b;
if (ctx->n_pol * 2 > MAXPZ)
error("Maximum order for bandpass filters is %d", MAXPZ/2);
// Run through the list backwards, expanding as we go
for (a= ctx->n_pol, b= ctx->n_pol*2; a>0; ) {
// hba= pole * bw;
// temp= c_sqrt(1.0 - square(w0 / hba));
// pole1= hba * (1.0 + temp);
// pole2= hba * (1.0 - temp);
if (ctx->poltyp[a-1] == 1) {
double hba;
a--; b -= 2;
ctx->poltyp[b]= 2; ctx->poltyp[b+1]= 0;
hba= ctx->pol[a] * bw;
cassz(ctx->pol+b, 1.0 - (w0 / hba) * (w0 / hba), 0.0);
c_sqrt(ctx->pol+b);
caddz(ctx->pol+b, 1.0, 0.0);
cmulr(ctx->pol+b, hba);
} else { // Assume poltyp[] data is valid
double hba[2];
a -= 2; b -= 4;
ctx->poltyp[b]= 2; ctx->poltyp[b+1]= 0;
ctx->poltyp[b+2]= 2; ctx->poltyp[b+3]= 0;
cass(hba, ctx->pol+a);
cmulr(hba, bw);
cass(ctx->pol+b, hba);
crecip(ctx->pol+b);
cmulr(ctx->pol+b, w0);
csqu(ctx->pol+b);
cneg(ctx->pol+b);
caddz(ctx->pol+b, 1.0, 0.0);
c_sqrt(ctx->pol+b);
cmul(ctx->pol+b, hba);
cass(ctx->pol+b+2, ctx->pol+b);
cneg(ctx->pol+b+2);
cadd(ctx->pol+b, hba);
cadd(ctx->pol+b+2, hba);
}
}
ctx->n_pol *= 2;
// Add zeros
ctx->n_zer= ctx->n_pol;
for (a= 0; a<ctx->n_zer; a++) {
ctx->zertyp[a]= 1;
ctx->zer[a]= (a<ctx->n_zer/2) ? 0.0 : -INF;
}
}
//
// Adjust raw poles to BS filter. The number of poles is
// doubled.
//
static void
bandstop(struct mk_filter_context* ctx, double freq1, double freq2) {
double w0= TWOPI * sqrt(freq1*freq2);
double bw= 0.5 * TWOPI * (freq2-freq1);
int a, b;
if (ctx->n_pol * 2 > MAXPZ)
error("Maximum order for bandstop filters is %d", MAXPZ/2);
// Run through the list backwards, expanding as we go
for (a= ctx->n_pol, b= ctx->n_pol*2; a>0; ) {
// hba= bw / pole;
// temp= c_sqrt(1.0 - square(w0 / hba));
// pole1= hba * (1.0 + temp);
// pole2= hba * (1.0 - temp);
if (ctx->poltyp[a-1] == 1) {
double hba;
a--; b -= 2;
ctx->poltyp[b]= 2; ctx->poltyp[b+1]= 0;
hba= bw / ctx->pol[a];
cassz(ctx->pol+b, 1.0 - (w0 / hba) * (w0 / hba), 0.0);
c_sqrt(ctx->pol+b);
caddz(ctx->pol+b, 1.0, 0.0);
cmulr(ctx->pol+b, hba);
} else { // Assume poltyp[] data is valid
double hba[2];
a -= 2; b -= 4;
ctx->poltyp[b]= 2; ctx->poltyp[b+1]= 0;
ctx->poltyp[b+2]= 2; ctx->poltyp[b+3]= 0;
cass(hba, ctx->pol+a);
crecip(hba);
cmulr(hba, bw);
cass(ctx->pol+b, hba);
crecip(ctx->pol+b);
cmulr(ctx->pol+b, w0);
csqu(ctx->pol+b);
cneg(ctx->pol+b);
caddz(ctx->pol+b, 1.0, 0.0);
c_sqrt(ctx->pol+b);
cmul(ctx->pol+b, hba);
cass(ctx->pol+b+2, ctx->pol+b);
cneg(ctx->pol+b+2);
cadd(ctx->pol+b, hba);
cadd(ctx->pol+b+2, hba);
}
}
ctx->n_pol *= 2;
// Add zeros
ctx->n_zer= ctx->n_pol;
for (a= 0; a<ctx->n_zer; a+=2) {
ctx->zertyp[a]= 2; ctx->zertyp[a+1]= 0;
ctx->zer[a]= 0.0; ctx->zer[a+1]= w0;
}
}
//
// Convert list of poles+zeros from S to Z using bilinear
// transform
//
static void
s2z_bilinear(struct mk_filter_context* ctx) {
int a;
for (a= 0; a<ctx->n_pol; ) {
// Calculate (2 + val) / (2 - val)
if (ctx->poltyp[a] == 1) {
if (ctx->pol[a] == -INF)
ctx->pol[a]= -1.0;
else
ctx->pol[a]= (2 + ctx->pol[a]) / (2 - ctx->pol[a]);
a++;
} else {
double val[2];
cass(val, ctx->pol+a);
cneg(val);
caddz(val, 2, 0);
caddz(ctx->pol+a, 2, 0);
cdiv(ctx->pol+a, val);
a += 2;
}
}
for (a= 0; a<ctx->n_zer; ) {
// Calculate (2 + val) / (2 - val)
if (ctx->zertyp[a] == 1) {
if (ctx->zer[a] == -INF)
ctx->zer[a]= -1.0;
else
ctx->zer[a]= (2 + ctx->zer[a]) / (2 - ctx->zer[a]);
a++;
} else {
double val[2];
cass(val, ctx->zer+a);
cneg(val);
caddz(val, 2, 0);
caddz(ctx->zer+a, 2, 0);
cdiv(ctx->zer+a, val);
a += 2;
}
}
}
//
// Convert S to Z using matched-Z transform
//
static void
s2z_matchedZ(struct mk_filter_context* ctx) {
int a;
for (a= 0; a<ctx->n_pol; ) {
// Calculate cexp(val)
if (ctx->poltyp[a] == 1) {
if (ctx->pol[a] == -INF)
ctx->pol[a]= 0.0;
else
ctx->pol[a]= exp(ctx->pol[a]);
a++;
} else {
c_exp(ctx->pol+a);
a += 2;
}
}
for (a= 0; a<ctx->n_zer; ) {
// Calculate cexp(val)
if (ctx->zertyp[a] == 1) {
if (ctx->zer[a] == -INF)
ctx->zer[a]= 0.0;
else
ctx->zer[a]= exp(ctx->zer[a]);
a++;
} else {
c_exp(ctx->zer+a);
a += 2;
}
}
}
//
// Generate a FidFilter for the current set of poles and zeros.
// The given gain is inserted at the start of the FidFilter as a
// one-coefficient FIR filter. This is positioned to be easily
// adjusted later to correct the filter gain.
//
// 'cbm' should be a bitmap indicating which FIR coefficients are
// constants for this filter type. Normal values are ~0 for all
// constant, or 0 for none constant, or some other bitmask for a
// mixture. Filters generated with lowpass(), highpass() and
// bandpass() above should pass ~0, but bandstop() requires 0x5.
//
// This routine requires that any lone real poles/zeros are at
// the end of the list. All other poles/zeros are handled in
// pairs (whether pairs of real poles/zeros, or conjugate pairs).
//
static FidFilter*
z2fidfilter(struct mk_filter_context* ctx, double gain, int cbm) {
int n_head, n_val;
int a;
FidFilter *rv;
FidFilter *ff;
n_head= 1 + ctx->n_pol + ctx->n_zer; // Worst case: gain + 2-element IIR/FIR
n_val= 1 + 2 * (ctx->n_pol+ctx->n_zer); // for each pole/zero
rv= ff= FFALLOC(n_head, n_val);
ff->typ= 'F';
ff->len= 1;
ff->val[0]= gain;
ff= FFNEXT(ff);
// Output as much as possible as 2x2 IIR/FIR filters
for (a= 0; a <= ctx->n_pol-2 && a <= ctx->n_zer-2; a += 2) {
// Look for a pair of values for an IIR
if (ctx->poltyp[a] == 1 && ctx->poltyp[a+1] == 1) {
// Two real values
ff->typ= 'I';
ff->len= 3;
ff->val[0]= 1;
ff->val[1]= -(ctx->pol[a] + ctx->pol[a+1]);
ff->val[2]= ctx->pol[a] * ctx->pol[a+1];
ff= FFNEXT(ff);
} else if (ctx->poltyp[a] == 2) {
// A complex value and its conjugate pair
ff->typ= 'I';
ff->len= 3;
ff->val[0]= 1;
ff->val[1]= -2 * ctx->pol[a];
ff->val[2]= ctx->pol[a] * ctx->pol[a] + ctx->pol[a+1] * ctx->pol[a+1];
ff= FFNEXT(ff);
} else error("Internal error -- bad poltyp[] values for z2fidfilter()");
// Look for a pair of values for an FIR
if (ctx->zertyp[a] == 1 && ctx->zertyp[a+1] == 1) {
// Two real values
// Skip if constant and 0/0
if (!cbm || ctx->zer[a] != 0.0 || ctx->zer[a+1] != 0.0) {
ff->typ= 'F';
ff->cbm= cbm;
ff->len= 3;
ff->val[0]= 1;
ff->val[1]= -(ctx->zer[a] + ctx->zer[a+1]);
ff->val[2]= ctx->zer[a] * ctx->zer[a+1];
ff= FFNEXT(ff);
}
} else if (ctx->zertyp[a] == 2) {
// A complex value and its conjugate pair
// Skip if constant and 0/0
if (!cbm || ctx->zer[a] != 0.0 || ctx->zer[a+1] != 0.0) {
ff->typ= 'F';
ff->cbm= cbm;
ff->len= 3;
ff->val[0]= 1;
ff->val[1]= -2 * ctx->zer[a];
ff->val[2]= ctx->zer[a] * ctx->zer[a] + ctx->zer[a+1] * ctx->zer[a+1];
ff= FFNEXT(ff);
}
} else error("Internal error -- bad zertyp[] values");
}
// Clear up any remaining bits and pieces. Should only be a 1x1
// IIR/FIR.
if (ctx->n_pol-a == 0 && ctx->n_zer-a == 0)
;
else if (ctx->n_pol-a == 1 && ctx->n_zer-a == 1) {
if (ctx->poltyp[a] != 1 || ctx->zertyp[a] != 1)
error("Internal error; bad poltyp or zertyp for final pole/zero");
ff->typ= 'I';
ff->len= 2;
ff->val[0]= 1;
ff->val[1]= -ctx->pol[a];
ff= FFNEXT(ff);
// Skip FIR if it is constant and zero
if (!cbm || ctx->zer[a] != 0.0) {
ff->typ= 'F';
ff->cbm= cbm;
ff->len= 2;
ff->val[0]= 1;
ff->val[1]= -ctx->zer[a];
ff= FFNEXT(ff);
}
} else
error("Internal error: unexpected poles/zeros at end of list");
// End of list
ff->typ= 0;
ff->len= 0;
ff= FFNEXT(ff);
rv= (FidFilter*)realloc(rv, ((char*)ff)-((char*)rv));
if (!rv) error("Out of memory");
return rv;
}
//
// Setup poles/zeros for a band-pass resonator. 'qfact' gives
// the Q-factor; 0 is a special value indicating +infinity,
// giving an oscillator.
//
static void
bandpass_res(struct mk_filter_context* ctx, double freq, double qfact) {
double mag;
double th0, th1, th2;
double theta= freq * TWOPI;
double val[2];
double tmp1[2], tmp2[2], tmp3[2], tmp4[2];
int cnt;
ctx->n_pol= 2;
ctx->poltyp[0]= 2; ctx->poltyp[1]= 0;
ctx->n_zer= 2;
ctx->zertyp[0]= 1; ctx->zertyp[1]= 1;
ctx->zer[0]= 1; ctx->zer[1]= -1;
if (qfact == 0.0) {
cexpj(ctx->pol, theta);
return;
}
// Do a full binary search, rather than seeding it as Tony Fisher does
cexpj(val, theta);
mag= exp(-theta / (2.0 * qfact));
th0= 0; th2= M_PI;
for (cnt= 60; cnt > 0; cnt--) {
th1= 0.5 * (th0 + th2);
cexpj(ctx->pol, th1);
cmulr(ctx->pol, mag);
// Evaluate response of filter for Z= val
memcpy(tmp1, val, 2*sizeof(double));
memcpy(tmp2, val, 2*sizeof(double));
memcpy(tmp3, val, 2*sizeof(double));
memcpy(tmp4, val, 2*sizeof(double));
csubz(tmp1, 1, 0);
csubz(tmp2, -1, 0);
cmul(tmp1, tmp2);
csub(tmp3, ctx->pol); cconj(ctx->pol);
csub(tmp4, ctx->pol); cconj(ctx->pol);
cmul(tmp3, tmp4);
cdiv(tmp1, tmp3);
if (fabs(tmp1[1] / tmp1[0]) < 1e-10) break;
//printf("%-24.16g%-24.16g -> %-24.16g%-24.16g\n", th0, th2, tmp1[0], tmp1[1]);
if (tmp1[1] > 0.0) th2= th1;
else th0= th1;
}
if (cnt <= 0) fprintf(stderr, "Resonator binary search failed to converge");
}
//
// Setup poles/zeros for a bandstop resonator
//
static void
bandstop_res(struct mk_filter_context* ctx, double freq, double qfact) {
bandpass_res(ctx, freq, qfact);
ctx->zertyp[0]= 2; ctx->zertyp[1]= 0;
cexpj(ctx->zer, TWOPI * freq);
}
//
// Setup poles/zeros for an allpass resonator
//
static void
allpass_res(struct mk_filter_context* ctx, double freq, double qfact) {
bandpass_res(ctx, freq, qfact);
ctx->zertyp[0]= 2; ctx->zertyp[1]= 0;
memcpy(ctx->zer, ctx->pol, 2*sizeof(double));
cmulr(ctx->zer, 1.0 / (ctx->zer[0]*ctx->zer[0] + ctx->zer[1]*ctx->zer[1]));
}
//
// Setup poles/zeros for a proportional-integral filter
//
static void
prop_integral(struct mk_filter_context* ctx, double freq) {
ctx->n_pol= 1;
ctx->poltyp[0]= 1;
ctx->pol[0]= 0.0;
ctx->n_zer= 1;
ctx->zertyp[0]= 1;
ctx->zer[0]= -TWOPI * freq;
}
// END //
#endif
|