1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
|
/*
* Copyright (C) 2021 Mark Hills <mark@xwax.org>
*
* This file is part of "xwax".
*
* "xwax" is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License, version 3 as
* published by the Free Software Foundation.
*
* "xwax" is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses/>.
*
*/
#include <assert.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef _MSC_VER
#include <unistd.h>
#endif
#include "debug.h"
#include "timecoder.h"
#define ZERO_THRESHOLD (128 << 16)
#define ZERO_RC 0.001 /* time constant for zero/rumble filter */
#define REF_PEAKS_AVG 48 /* in wave cycles */
/* The number of correct bits which come in before the timecode is
* declared valid. Set this too low, and risk the record skipping
* around (often to blank areas of track) during scratching */
#define VALID_BITS 24
#define MONITOR_DECAY_EVERY 512 /* in samples */
#define SQ(x) ((x)*(x))
#define ARRAY_SIZE(x) (sizeof(x) / sizeof(*x))
/* Timecode definitions */
#define SWITCH_PHASE 0x1 /* tone phase difference of 270 (not 90) degrees */
#define SWITCH_PRIMARY 0x2 /* use left channel (not right) as primary */
#define SWITCH_POLARITY 0x4 /* read bit values in negative (not positive) */
static struct timecode_def timecodes[] = {
{
.name = "serato_2a",
.desc = "Serato 2nd Ed., side A",
.resolution = 1000,
.bits = 20,
.seed = 0x59017,
.taps = 0x361e4,
.length = 712000,
.safe = 625000,
},
{
.name = "serato_2b",
.desc = "Serato 2nd Ed., side B",
.resolution = 1000,
.bits = 20,
.seed = 0x8f3c6,
.taps = 0x4f0d8, /* reverse of side A */
.length = 922000,
.safe = 908000,
},
{
.name = "serato_cd",
.desc = "Serato CD",
.resolution = 1000,
.bits = 20,
.seed = 0xd8b40,
.taps = 0x34d54,
.length = 950000,
.safe = 890000,
},
{
.name = "traktor_a",
.desc = "Traktor Scratch, side A",
.resolution = 2000,
.flags = SWITCH_PRIMARY | SWITCH_POLARITY | SWITCH_PHASE,
.bits = 23,
.seed = 0x134503,
.taps = 0x041040,
.length = 1500000,
.safe = 605000,
},
{
.name = "traktor_b",
.desc = "Traktor Scratch, side B",
.resolution = 2000,
.flags = SWITCH_PRIMARY | SWITCH_POLARITY | SWITCH_PHASE,
.bits = 23,
.seed = 0x32066c,
.taps = 0x041040, /* same as side A */
.length = 2110000,
.safe = 907000,
},
{
.name = "mixvibes_v2",
.desc = "MixVibes V2",
.resolution = 1300,
.flags = SWITCH_PHASE,
.bits = 20,
.seed = 0x22c90,
.taps = 0x00008,
.length = 950000,
.safe = 655000,
},
{
.name = "mixvibes_7inch",
.desc = "MixVibes 7\"",
.resolution = 1300,
.flags = SWITCH_PHASE,
.bits = 20,
.seed = 0x22c90,
.taps = 0x00008,
.length = 312000,
.safe = 238000,
},
{
.name = "pioneer_a",
.desc = "Pioneer RekordBox DVS Control Vinyl, side A",
.resolution = 1000,
.flags = SWITCH_POLARITY,
.bits = 20,
.seed = 0x78370,
.taps = 0x7933a,
.length = 635000,
.safe = 614000,
},
{
.name = "pioneer_b",
.desc = "Pioneer RekordBox DVS Control Vinyl, side B",
.resolution = 1000,
.flags = SWITCH_POLARITY,
.bits = 20,
.seed = 0xf7012,
.taps = 0x2ef1c,
.length = 918500,
.safe = 913000,
},
};
/*
* Calculate LFSR bit
*/
static inline bits_t lfsr(bits_t code, bits_t taps)
{
bits_t taken;
int xrs;
taken = code & taps;
xrs = 0;
while (taken != 0x0) {
xrs += taken & 0x1;
taken >>= 1;
}
return xrs & 0x1;
}
/*
* Linear Feedback Shift Register in the forward direction. New values
* are generated at the least-significant bit.
*/
static inline bits_t fwd(bits_t current, struct timecode_def *def)
{
bits_t l;
/* New bits are added at the MSB; shift right by one */
l = lfsr(current, def->taps | 0x1);
return (current >> 1) | (l << (def->bits - 1));
}
/*
* Linear Feedback Shift Register in the reverse direction
*/
static inline bits_t rev(bits_t current, struct timecode_def *def)
{
bits_t l, mask;
/* New bits are added at the LSB; shift left one and mask */
mask = (1 << def->bits) - 1;
l = lfsr(current, (def->taps >> 1) | (0x1 << (def->bits - 1)));
return ((current << 1) & mask) | l;
}
/*
* Where necessary, build the lookup table required for this timecode
*
* Return: -1 if not enough memory could be allocated, otherwise 0
*/
static int build_lookup(struct timecode_def *def)
{
unsigned int n;
bits_t current;
if (def->lookup)
return 0;
fprintf(stderr, "Building LUT for %d bit %dHz timecode (%s)\n",
def->bits, def->resolution, def->desc);
if (lut_init(&def->lut, def->length) == -1)
return -1;
current = def->seed;
for (n = 0; n < def->length; n++) {
bits_t next;
/* timecode must not wrap */
assert(lut_lookup(&def->lut, current) == (unsigned)-1);
lut_push(&def->lut, current);
/* check symmetry of the lfsr functions */
next = fwd(current, def);
assert(rev(next, def) == current);
current = next;
}
def->lookup = true;
return 0;
}
/*
* Find a timecode definition by name
*
* Return: pointer to timecode definition, or NULL if not available
*/
struct timecode_def* timecoder_find_definition(const char *name)
{
unsigned int n;
for (n = 0; n < ARRAY_SIZE(timecodes); n++) {
struct timecode_def *def = &timecodes[n];
if (strcmp(def->name, name) != 0)
continue;
if (build_lookup(def) == -1)
return NULL; /* error */
return def;
}
return NULL; /* not found */
}
/*
* Free the timecoder lookup tables when they are no longer needed
*/
void timecoder_free_lookup(void) {
unsigned int n;
for (n = 0; n < ARRAY_SIZE(timecodes); n++) {
struct timecode_def *def = &timecodes[n];
if (def->lookup)
lut_clear(&def->lut);
}
}
/*
* Initialise filter values for one channel
*/
static void init_channel(struct timecoder_channel *ch)
{
ch->positive = false;
ch->zero = 0;
}
/*
* Initialise a timecode decoder at the given reference speed
*
* Return: -1 if the timecoder could not be initialised, otherwise 0
*/
void timecoder_init(struct timecoder *tc, struct timecode_def *def,
double speed, unsigned int sample_rate, bool phono)
{
assert(def != NULL);
/* A definition contains a lookup table which can be shared
* across multiple timecoders */
assert(def->lookup);
tc->def = def;
tc->speed = speed;
tc->dt = 1.0 / sample_rate;
tc->zero_alpha = tc->dt / (ZERO_RC + tc->dt);
tc->threshold = ZERO_THRESHOLD;
if (phono)
tc->threshold >>= 5; /* approx -36dB */
tc->forwards = 1;
init_channel(&tc->primary);
init_channel(&tc->secondary);
pitch_init(&tc->pitch, tc->dt);
tc->ref_level = INT_MAX;
tc->bitstream = 0;
tc->timecode = 0;
tc->valid_counter = 0;
tc->timecode_ticker = 0;
tc->mon = NULL;
}
/*
* Clear resources associated with a timecode decoder
*/
void timecoder_clear(struct timecoder *tc)
{
assert(tc->mon == NULL);
}
/*
* Initialise a raster display of the incoming audio
*
* The monitor (otherwise known as 'scope' in the interface) is an x-y
* display of the post-calibrated incoming audio.
*
* Return: -1 if not enough memory could be allocated, otherwise 0
*/
int timecoder_monitor_init(struct timecoder *tc, int size)
{
assert(tc->mon == NULL);
tc->mon_size = size;
tc->mon = (unsigned char*)(malloc(SQ(tc->mon_size)));
if (tc->mon == NULL) {
perror("malloc");
return -1;
}
memset(tc->mon, 0, SQ(tc->mon_size));
tc->mon_counter = 0;
return 0;
}
/*
* Clear the monitor on the given timecoder
*/
void timecoder_monitor_clear(struct timecoder *tc)
{
assert(tc->mon != NULL);
free(tc->mon);
tc->mon = NULL;
}
/*
* Update channel information with axis-crossings
*/
static void detect_zero_crossing(struct timecoder_channel *ch,
signed int v, double alpha,
signed int threshold)
{
ch->crossing_ticker++;
ch->swapped = false;
if (v > ch->zero + threshold && !ch->positive) {
ch->swapped = true;
ch->positive = true;
ch->crossing_ticker = 0;
} else if (v < ch->zero - threshold && ch->positive) {
ch->swapped = true;
ch->positive = false;
ch->crossing_ticker = 0;
}
ch->zero += alpha * (v - ch->zero);
}
/*
* Plot the given sample value in the x-y monitor
*/
static inline void update_monitor(struct timecoder *tc, signed int x, signed int y)
{
int px, py, size, ref;
if (!tc->mon)
return;
size = tc->mon_size;
ref = tc->ref_level;
/* Decay the pixels already in the montior */
if (++tc->mon_counter % MONITOR_DECAY_EVERY == 0) {
int p;
for (p = 0; p < SQ(size); p++) {
if (tc->mon[p])
tc->mon[p] = tc->mon[p] * 7 / 8;
}
}
assert(ref > 0);
/* ref_level is half the precision of signal level */
px = size / 2 + (long long)x * size / ref / 8;
py = size / 2 + (long long)y * size / ref / 8;
if (px < 0 || px >= size || py < 0 || py >= size)
return;
tc->mon[py * size + px] = 0xff; /* white */
}
/*
* Extract the bitstream from the sample value
*/
static void process_bitstream(struct timecoder *tc, signed int m)
{
bits_t b;
b = m > tc->ref_level;
/* Add it to the bitstream, and work out what we were expecting
* (timecode). */
/* tc->bitstream is always in the order it is physically placed on
* the vinyl, regardless of the direction. */
if (tc->forwards) {
tc->timecode = fwd(tc->timecode, tc->def);
tc->bitstream = (tc->bitstream >> 1)
+ (b << (tc->def->bits - 1));
} else {
bits_t mask;
mask = ((1 << tc->def->bits) - 1);
tc->timecode = rev(tc->timecode, tc->def);
tc->bitstream = ((tc->bitstream << 1) & mask) + b;
}
if (tc->timecode == tc->bitstream)
tc->valid_counter++;
else {
tc->timecode = tc->bitstream;
tc->valid_counter = 0;
}
/* Take note of the last time we read a valid timecode */
tc->timecode_ticker = 0;
/* Adjust the reference level based on this new peak */
tc->ref_level -= tc->ref_level / REF_PEAKS_AVG;
tc->ref_level += m / REF_PEAKS_AVG;
debug("%+6d zero, %+6d (ref %+6d)\t= %d%c (%5d)",
tc->primary.zero,
m, tc->ref_level,
b, tc->valid_counter == 0 ? 'x' : ' ',
tc->valid_counter);
}
/*
* Process a single sample from the incoming audio
*
* The two input signals (primary and secondary) are in the full range
* of a signed int; ie. 32-bit signed.
*/
static void process_sample(struct timecoder *tc,
signed int primary, signed int secondary)
{
detect_zero_crossing(&tc->primary, primary, tc->zero_alpha, tc->threshold);
detect_zero_crossing(&tc->secondary, secondary, tc->zero_alpha, tc->threshold);
/* If an axis has been crossed, use the direction of the crossing
* to work out the direction of the vinyl */
if (tc->primary.swapped || tc->secondary.swapped) {
bool forwards;
if (tc->primary.swapped) {
forwards = (tc->primary.positive != tc->secondary.positive);
} else {
forwards = (tc->primary.positive == tc->secondary.positive);
}
if (tc->def->flags & SWITCH_PHASE)
forwards = !forwards;
if (forwards != tc->forwards) { /* direction has changed */
tc->forwards = forwards;
tc->valid_counter = 0;
}
}
/* If any axis has been crossed, register movement using the pitch
* counters */
if (!tc->primary.swapped && !tc->secondary.swapped)
pitch_dt_observation(&tc->pitch, 0.0);
else {
double dx;
dx = 1.0 / tc->def->resolution / 4;
if (!tc->forwards)
dx = -dx;
pitch_dt_observation(&tc->pitch, dx);
}
/* If we have crossed the primary channel in the right polarity,
* it's time to read off a timecode 0 or 1 value */
if (tc->secondary.swapped &&
tc->primary.positive == ((tc->def->flags & SWITCH_POLARITY) == 0))
{
signed int m;
/* scale to avoid clipping */
m = abs(primary / 2 - tc->primary.zero / 2);
process_bitstream(tc, m);
}
tc->timecode_ticker++;
}
/*
* Cycle to the next timecode definition which has a valid lookup
*
* Return: pointer to timecode definition
*/
static struct timecode_def* next_definition(struct timecode_def *def)
{
assert(def != NULL);
do {
def++;
if (def >= timecodes + ARRAY_SIZE(timecodes))
def = timecodes;
} while (!def->lookup);
return def;
}
/*
* Change the timecode definition to the next available
*/
void timecoder_cycle_definition(struct timecoder *tc)
{
tc->def = next_definition(tc->def);
tc->valid_counter = 0;
tc->timecode_ticker = 0;
}
/*
* Submit and decode a block of PCM audio data to the timecode decoder
*
* PCM data is in the full range of signed short; ie. 16-bit signed.
*/
void timecoder_submit(struct timecoder *tc, signed short *pcm, size_t npcm)
{
while (npcm--) {
signed int left, right, primary, secondary;
left = pcm[0] << 16;
right = pcm[1] << 16;
if (tc->def->flags & SWITCH_PRIMARY) {
primary = left;
secondary = right;
} else {
primary = right;
secondary = left;
}
process_sample(tc, primary, secondary);
update_monitor(tc, left, right);
pcm += TIMECODER_CHANNELS;
}
}
/*
* Get the last-known position of the timecode
*
* If now data is available or if too few bits have been error
* checked, then this counts as invalid. The last known position is
* given along with the time elapsed since the position stamp was
* read.
*
* Return: the known position of the timecode, or -1 if not known
* Post: if when != NULL, *when is the elapsed time in seconds
*/
signed int timecoder_get_position(struct timecoder *tc, double *when)
{
signed int r;
if (tc->valid_counter <= VALID_BITS)
return -1;
r = lut_lookup(&tc->def->lut, tc->bitstream);
if (r == -1)
return -1;
if (r >= 0) {
// normalize position to milliseconds, not timecode steps -- Owen
r = (double)r * (1000.0 / ((double)tc->def->resolution * tc->speed));
}
if (when)
*when = tc->timecode_ticker * tc->dt;
return r;
}
|