1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
|
/*
* yuvscaler.c
* Copyright (C) 2001-2004 Xavier Biquard <xbiquard@free.fr>
*
*
* Scales arbitrary sized yuv frame to yuv frames suitable for VCD, SVCD or specified
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
// Implementation: there are two scaling methods: one for not_interlaced output and one for interlaced output.
//
// First version doing only downscaling with no interlacing
// June 2001: interlacing capable version
// July 2001: upscaling capable version
// September 2001: line switching
// September/October 2001: new yuv4mpeg header
// October 2001: first MMX part for bicubic
// September/November 2001: what a mess this code! => cleaning and splitting
// December 2001: implementation of time reordering of frames
// January 2002: sample aspect ratio calculation by Matto
// February 2002: interlacing specification now possible. Replaced alloca with malloc
// Mars 2002: sample aspect ratio calculations are back!
// May/June 2002: remove file reading capabilities (do not duplicate lav2yuv), add -O DVD, add color chrominance correction
// as well as luminance linear reequilibrium. Lots of code cleaning, function renaming, etc...
// Keywords concerning interlacing/preprocessing now under INPUT case
// October 2002: yuvscaler functionnalities not related to image rescaling now part of yuvcorrect
// January 2003: reimplementation of the bicubic algorithm => goes faster
// December-January 2004: First MMX subroutine for bicubic calculus => speed x2
// January-February 2004: make it go even faster
// This first MMX version showed the limits of the use of cspline_w and cspline_h pointers => second
// MMX version will implement dedicated cspline_w and cspline_h pointers for MMX treatment
//
//
// TODO:
// no more global variables for librarification
// Remove file reading/writing
// treat the interlace case + specific cases
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#include <signal.h>
#include "mjpeg_logging.h"
#include "yuv4mpeg.h"
#include "mjpeg_types.h"
#include "yuvscaler.h"
#include "mpegconsts.h"
#ifdef HAVE_ASM_MMX
#include <fcntl.h>
#include "../utils/mmx.h"
#endif
#define yuvscaler_VERSION "11-Dec-2007"
// For pointer address alignement
#define ALIGNEMENT 16 // 16 bytes alignement for mmx registers in SIMD instructions for Pentium
#define MAXWIDTHNEIGHBORS 16
float PI = 3.141592654;
// For input
unsigned int input_width;
unsigned int input_height;
y4m_ratio_t input_sar; // see yuv4mpeg.h and yuv4mpeg_intern.h for possible values
unsigned int input_useful = 0; // =1 if specified
unsigned int input_useful_width = 0;
unsigned int input_useful_height = 0;
unsigned int input_discard_col_left = 0;
unsigned int input_discard_col_right = 0;
unsigned int input_discard_line_above = 0;
unsigned int input_discard_line_under = 0;
unsigned int input_black = 0; //=1 if black borders on input frames
unsigned int input_black_line_above = 0;
unsigned int input_black_line_under = 0;
unsigned int input_black_col_right = 0;
unsigned int input_black_col_left = 0;
unsigned int input_active_height = 0;
unsigned int input_active_width = 0;
uint8_t input_y_min, input_y_max;
float Ufactor, Vfactor, Gamma;
// Downscaling ratios
unsigned int input_height_slice;
unsigned int output_height_slice;
unsigned int input_width_slice;
unsigned int output_width_slice;
// For padded_input
unsigned int padded_width = 0;
unsigned int padded_height = 0;
// For output
unsigned int display_width;
unsigned int display_height;
unsigned int output_width;
unsigned int output_height;
unsigned int output_active_width;
unsigned int output_active_height;
unsigned int output_black_line_above = 0;
unsigned int output_black_line_under = 0;
unsigned int output_black_col_right = 0;
unsigned int output_black_col_left = 0;
unsigned int output_skip_line_above = 0;
unsigned int output_skip_line_under = 0;
unsigned int output_skip_col_right = 0;
unsigned int output_skip_col_left = 0;
unsigned int black = 0, black_line = 0, black_col = 0; // =1 if black lines must be generated on output
unsigned int skip = 0, skip_line = 0, skip_col = 0; // =1 if lines or columns from the active output will not be displayed on output frames
// NB: as these number may not be multiple of output_[height,width]_slice, it is not possible to remove the corresponding pixels in
// the input frame, a solution that could speed up things.
unsigned int vcd = 0; //=1 if vcd output was selected
unsigned int svcd = 0; //=1 if svcd output was selected
unsigned int dvd = 0; //=1 if dvd output was selected
// Global variables
int interlaced = -1; //=Y4M_ILACE_NONE for not-interlaced scaling, =Y4M_ILACE_TOP_FIRST or Y4M_ILACE_BOT_FIRST for interlaced scaling
int norm = -1; // =0 for PAL and =1 for NTSC
int wide = 0; // =1 for wide (16:9) input to standard (4:3) output conversion
int ratio = 0;
int size_keyword = 0; // =1 is the SIZE keyword has been used
int infile = 0; // =0 for stdin (default) =1 for file
int algorithm = -1; // =0 for resample, and =1 for bicubic
unsigned int specific = 0; // is >0 if a specific downscaling speed enhanced treatment of data is possible
unsigned int mono = 0; // is =1 for monochrome output
// Keywords for argument passing
const char VCD_KEYWORD[] = "VCD";
const char HIRESSTILL[] = "HIRESSTILL";
const char LOSVCDSTILL[] = "LOSVCDSTILL";
const char LOVCDSTILL[] = "LOVCDSTILL";
const char SVCD_KEYWORD[] = "SVCD";
const char DVD_KEYWORD[] = "DVD";
const char SIZE_KEYWORD[] = "SIZE_";
const char USE_KEYWORD[] = "USE_";
const char WIDE2STD_KEYWORD[] = "WIDE2STD";
const char INFILE_KEYWORD[] = "INFILE_";
const char RATIO_KEYWORD[] = "RATIO_";
const char MONO_KEYWORD[] = "MONOCHROME";
const char FASTVCD[] = "FASTVCD";
const char FAST_WIDE2VCD[] = "FAST_WIDE2VCD";
const char WIDE2VCD[] = "WIDE2VCD";
const char RESAMPLE[] = "RESAMPLE";
const char BICUBIC[] = "BICUBIC";
const char ACTIVE[] = "ACTIVE";
const char NO_HEADER[] = "NO_HEADER";
const char NOMMX[] = "NOMMX";
// Specific to BICUBIC algorithm
// 2048=2^11
#define FLOAT2INTEGER 2048
#define FLOAT2INTEGERPOWER 11
unsigned int bicubic_div_width = FLOAT2INTEGER, bicubic_div_height =
FLOAT2INTEGER;
unsigned int multiplicative;
// Unclassified
unsigned long int diviseur;
uint8_t *divide;
unsigned short int *u_i_p;
unsigned int out_nb_col_slice, out_nb_line_slice;
const static char *legal_opt_flags = "k:I:d:n:v:M:m:O:whtg";
int verbose = 1;
#define PARAM_LINE_MAX 256
uint8_t blacky = 16;
uint8_t blackuv = 128;
uint8_t no_header = 0; // =1 for no stream header output
#ifdef HAVE_ASM_MMX
int16_t *mmx_padded, *mmx_cubic;
int32_t *mmx_res;
int mmx = 1; // =1 for mmx activated, =0 for deactivated/not available
#endif
int32_t *intermediate,*intermediate_p,*inter_begin;
// *************************************************************************************
void
yuvscaler_print_usage (char *argv[])
{
fprintf (stderr,
"usage: yuvscaler -I [input_keyword] -M [mode_keyword] -O [output_keyword] [-S 0|1] [-n p|s|n] [-v 0-2] [-h]\n"
"yuvscaler UPscales or DOWNscales arbitrary-sized YUV frames coming from stdin (in YUV4MPEG 4:2:2 format)\n"
"to a specified YUV frame sizes to stdout. Please use yuvcorrect for interlacing or color corrections\n"
"\n"
"yuvscaler is keyword driven :\n"
"\t -I for keyword concerning INPUT frame characteristics\n"
"\t -M for keyword concerning the scaling MODE of yuvscaler\n"
"\t -O for keyword concerning OUTPUT frame characteristics\n"
"\n"
"Possible input keyword are:\n"
"\t USE_WidthxHeight+WidthOffset+HeightOffset to select a useful area of the input frame (all multiple of 2,\n"
"\t Height and HeightOffset multiple of 4 if interlaced), the rest of the image being discarded\n"
"\t ACTIVE_WidthxHeight+WidthOffset+HeightOffset to select an active area of the input frame (all multiple of 2,\n"
"\t Height and HeightOffset multiple of 4 if interlaced), the rest of the image being made black\n"
"\n"
"Possible mode keyword are:\n"
"\t BICUBIC to use the (Mitchell-Netravalli) high-quality bicubic upscaling and/or downscaling algorithm\n"
"\t RESAMPLE to use a classical resampling algorithm -only for downscaling- that goes much faster than bicubic\n"
"\t For coherence reason, yuvscaler will use RESAMPLE if only downscaling is necessary, BICUBIC otherwise\n"
"\t WIDE2STD to converts widescreen (16:9) input frames to standard output (4:3), generating necessary black lines\n"
"\t RATIO_WidthIn_WidthOut_HeightIn_HeightOut to specified conversion ratios of\n"
"\t WidthIn/WidthOut for width and HeightIN/HeightOut for height to be applied to the useful area.\n"
"\t The output active area that results from scaling the input useful area might be different\n"
"\t from the display area specified thereafter using the -O KEYWORD syntax.\n"
"\t In that case, yuvscaler will automatically generate necessary black lines and columns and/or skip necessary\n"
"\t lines and columns to get an active output centered within the display size.\n"
"\t WIDE2VCD to transcode wide (16:9) frames to VCD (equivalent to -M WIDE2STD -O VCD)\n"
"\t FASTVCD to transcode full sized frames to VCD (equivalent to -M RATIO_2_1_2_1 -O VCD)\n"
"\t FAST_WIDE2VCD to transcode full sized wide (16:9) frames to VCD (-M WIDE2STD -M RATIO_2_1_2_1 -O VCD)\n"
"\t NO_HEADER to suppress stream header generation on output (chaining scaling with different ratios)\n"
"\t By default, yuvscaler will use either interlaced or not-interlaced scaling according to the input header interlace information.\n"
"\t If this information is missing in the header (cf. mpeg2dec), yuvscaler will use interlaced acaling\n"
"\n"
"Possible output keywords are:\n"
"\t MONOCHROME to generate monochrome frames on output\n"
"\t VCD to generate VCD compliant frames, taking care of PAL and NTSC standards, not-interlaced/progressive frames\n"
"\t SVCD to generate SVCD compliant frames, taking care of PAL and NTSC standards, any interlacing types\n"
"\t DVD to generate DVD compliant frames, taking care of PAL and NTSC standards, any interlacing types\n"
"\t (SVCD and DVD: if input is not-interlaced/progressive, output interlacing will be taken as top_first)\n"
"\t HIRESSTILL to generate HIgh-RESolution STILL images: not-interlaced/progressive frames of size 704x(PAL-576,NTSC-480)\n"
"\t LOSVCDSTILL to generate LOw-resolution SVCD still images, not-interlaced/progressive frames, size 480x(PAL-576,NTSC-480)\n"
"\t LOVCDSTILL to generate LOw-resolution VCD still images, not-interlaced/progressive frames, size 352x(PAL-288,NTSC-240)\n"
"\t SIZE_WidthxHeight to generate frames of size WidthxHeight on output (multiple of 2, Height of 4 if interlaced)\n"
"\n"
"-n (usually not necessary) if norm could not be determined from data flux, specifies the OUTPUT norm for VCD/SVCD p=pal,s=secam,n=ntsc\n"
"-v Specifies the degree of verbosity: 0=quiet, 1=normal, 2=verbose/debug\n"
"-h : print this lot!\n");
exit (1);
}
// *************************************************************************************
// *************************************************************************************
void
yuvscaler_print_information (y4m_stream_info_t in_streaminfo,
y4m_ratio_t frame_rate)
{
// This function print USER'S INFORMATION
const char TOP_FIRST[] = "INTERLACED_TOP_FIRST";
const char BOT_FIRST[] = "INTERLACED_BOTTOM_FIRST";
const char NOT_INTER[] = "NOT_INTERLACED";
const char PROGRESSIVE[] = "PROGRESSIVE";
y4m_log_stream_info (mjpeg_loglev_t("info"), "input: ", &in_streaminfo);
switch (interlaced)
{
case Y4M_ILACE_NONE:
mjpeg_info ("from %ux%u, take %ux%u+%u+%u, %s/%s",
input_width, input_height,
input_useful_width, input_useful_height,
input_discard_col_left, input_discard_line_above,
NOT_INTER, PROGRESSIVE);
break;
case Y4M_ILACE_TOP_FIRST:
mjpeg_info ("from %ux%u, take %ux%u+%u+%u, %s",
input_width, input_height,
input_useful_width, input_useful_height,
input_discard_col_left, input_discard_line_above,
TOP_FIRST);
break;
case Y4M_ILACE_BOTTOM_FIRST:
mjpeg_info ("from %ux%u, take %ux%u+%u+%u, %s",
input_width, input_height,
input_useful_width, input_useful_height,
input_discard_col_left, input_discard_line_above,
BOT_FIRST);
break;
default:
mjpeg_info ("from %ux%u, take %ux%u+%u+%u",
input_width, input_height,
input_useful_width, input_useful_height,
input_discard_col_left, input_discard_line_above);
}
if (input_black == 1)
{
mjpeg_info ("with %u and %u black line above and under",
input_black_line_above, input_black_line_under);
mjpeg_info ("and %u and %u black col left and right",
input_black_col_left, input_black_col_right);
mjpeg_info ("%u %u", input_active_width, input_active_height);
}
mjpeg_info ("scale to %ux%u, %ux%u being displayed",
output_active_width, output_active_height, display_width,
display_height);
switch (algorithm)
{
case 0:
mjpeg_info ("Scaling uses the %s algorithm, ", RESAMPLE);
break;
case 1:
mjpeg_info ("Scaling uses the %s algorithm, ", BICUBIC);
break;
default:
mjpeg_error_exit1 ("Unknown algorithm %d", algorithm);
}
if (black == 1)
{
mjpeg_info ("black lines: %u above and %u under",
output_black_line_above, output_black_line_under);
mjpeg_info ("black columns: %u left and %u right",
output_black_col_left, output_black_col_right);
}
if (skip == 1)
{
mjpeg_info ("skipped lines: %u above and %u under",
output_skip_line_above, output_skip_line_under);
mjpeg_info ("skipped columns: %u left and %u right",
output_skip_col_left, output_skip_col_right);
}
mjpeg_info ("frame rate: %.3f fps", Y4M_RATIO_DBL (frame_rate));
}
// *************************************************************************************
// *************************************************************************************
uint8_t
yuvscaler_nearest_integer_division (unsigned long int p, unsigned long int q)
{
// This function returns the nearest integer of the ratio p/q.
// As this ratio in yuvscaler corresponds to a pixel value, it should be between 0 and 255
unsigned long int ratio = p / q;
unsigned long int reste = p % q;
unsigned long int frontiere = q - q / 2; // Do **not** change this into q/2 => it is not the same for odd q numbers
if (reste >= frontiere)
ratio++;
if ((ratio < 0) || (ratio > 255))
mjpeg_error_exit1 ("Division error: %lu/%lu not in [0;255] range !!\n", p,
q);
return ((uint8_t) ratio);
}
// *************************************************************************************
// *************************************************************************************
static y4m_ratio_t
yuvscaler_calculate_output_sar (int out_w, int out_h,
int in_w, int in_h, y4m_ratio_t in_sar)
{
// This function calculates the sample aspect ratio (SAR) for the output stream,
// given the input->output scale factors, and the input SAR.
if (Y4M_RATIO_EQL (in_sar, y4m_sar_UNKNOWN))
{
return y4m_sar_UNKNOWN;
}
else
{
y4m_ratio_t out_sar;
/*
out_SAR_w in_SAR_w input_W output_H
--------- = -------- * ------- * --------
out_SAR_h in_SAR_h input_H output_W
*/
out_sar.n = in_sar.n * in_w * out_h;
out_sar.d = in_sar.d * in_h * out_w;
y4m_ratio_reduce (&out_sar);
return out_sar;
}
}
// *************************************************************************************
// *************************************************************************************
int
yuvscaler_y4m_read_frame (int fd, y4m_stream_info_t *si,
y4m_frame_info_t * frameinfo,
unsigned long int buflen, uint8_t * buf)
{
// This function reads a frame from input stream. It does the same thing as the y4m_read_frame function (from yuv4mpeg.c)
// May be replaced directly by it in the near future
static int err = Y4M_OK;
if ((err = y4m_read_frame_header (fd, si, frameinfo)) == Y4M_OK)
{
if ((err = y4m_read (fd, buf, buflen)) != Y4M_OK)
{
mjpeg_info ("Couldn't read FRAME content: %s!",
y4m_strerr (err));
return (err);
}
}
else
{
if (err != Y4M_ERR_EOF)
mjpeg_info ("Couldn't read FRAME header: %s!", y4m_strerr (err));
else
mjpeg_info ("End of stream!");
return (err);
}
return Y4M_OK;
}
// *************************************************************************************
// *************************************************************************************
// PREPROCESSING
// *************************************************************************************
int
blackout (uint8_t * input_y, uint8_t * input_u, uint8_t * input_v)
{
// The blackout function makes input borders pixels become black
unsigned int line;
uint8_t *right;
// Y COMPONENT
for (line = 0; line < input_black_line_above; line++)
{
memset (input_y, blacky, input_useful_width);
input_y += input_width;
}
right = input_y + input_black_col_left + input_active_width;
for (line = 0; line < input_active_height; line++)
{
memset (input_y, blacky, input_black_col_left);
memset (right, blacky, input_black_col_right);
input_y += input_width;
right += input_width;
}
for (line = 0; line < input_black_line_under; line++)
{
memset (input_y, blacky, input_useful_width);
input_y += input_width;
}
// U COMPONENT
for (line = 0; line < (input_black_line_above >> 1); line++)
{
memset (input_u, blackuv, input_useful_width >> 1);
input_u += input_width >> 1;
}
right = input_u + ((input_black_col_left + input_active_width) >> 1);
for (line = 0; line < (input_active_height >> 1); line++)
{
memset (input_u, blackuv, input_black_col_left >> 1);
memset (right, blackuv, input_black_col_right >> 1);
input_u += input_width >> 1;
right += input_width >> 1;
}
for (line = 0; line < (input_black_line_under >> 1); line++)
{
memset (input_u, blackuv, input_useful_width >> 1);
input_u += input_width >> 1;
}
// V COMPONENT
for (line = 0; line < (input_black_line_above >> 1); line++)
{
memset (input_v, blackuv, input_useful_width >> 1);
input_v += input_width >> 1;
}
right = input_v + ((input_black_col_left + input_active_width) >> 1);
for (line = 0; line < (input_active_height >> 1); line++)
{
memset (input_v, blackuv, input_black_col_left >> 1);
memset (right, blackuv, input_black_col_right >> 1);
input_v += input_width >> 1;
right += input_width >> 1;
}
for (line = 0; line < (input_black_line_under >> 1); line++)
{
memset (input_v, blackuv, input_useful_width >> 1);
input_v += input_width >> 1;
}
return (0);
}
// *************************************************************************************
// *************************************************************************************
void
handle_args_global (int argc, char *argv[])
{
// This function takes care of the global variables
// initialisation that are independent of the input stream
// The main goal is to know whether input frames originate from file or stdin
int c;
while ((c = getopt (argc, argv, legal_opt_flags)) != -1)
{
switch (c)
{
case 'v':
verbose = atoi (optarg);
if (verbose < 0 || verbose > 2)
{
mjpeg_error_exit1 ("Verbose level must be [0..2]");
}
break;
case 'n': // TV norm for SVCD/VCD output
switch (*optarg)
{
case 'p':
case 's':
norm = 0;
break;
case 'n':
norm = 1;
break;
default:
mjpeg_error_exit1 ("Illegal norm letter specified: %c",
*optarg);
}
break;
case 'h':
// case '?':
yuvscaler_print_usage (argv);
break;
default:
break;
}
}
if (optind != argc)
yuvscaler_print_usage (argv);
}
// *************************************************************************************
// *************************************************************************************
void
handle_args_dependent (int argc, char *argv[])
{
// This function takes care of the global variables
// initialisation that may depend on the input stream
// It does also coherence check on input, useful_input, display, output_active sizes and ratio sizes
int c;
unsigned int ui1, ui2, ui3, ui4;
int output, input, mode;
// By default, display sizes is the same as input size
display_width = input_width;
display_height = input_height;
optind = 1;
while ((c = getopt (argc, argv, legal_opt_flags)) != -1)
{
switch (c)
{
// **************
// OUTPUT KEYWORD
// **************
case 'O':
output = 0;
if (strcmp (optarg, VCD_KEYWORD) == 0)
{
output = 1;
vcd = 1;
svcd = 0; // if user gives VCD, SVCD and DVD keywords, take last one only into account
dvd = 0;
display_width = 352;
if (norm == 0)
{
mjpeg_info
("VCD output format requested in PAL/SECAM norm");
display_height = 288;
}
else if (norm == 1)
{
mjpeg_info ("VCD output format requested in NTSC norm");
display_height = 240;
}
else
mjpeg_error_exit1
("No norm specified, cannot determine VCD output size. Please use the -n option!");
}
if (strcmp (optarg, SVCD_KEYWORD) == 0)
{
output = 1;
svcd = 1;
vcd = 0; // if user gives VCD, SVCD and DVD keywords, take last one only into account
dvd = 0;
display_width = 480;
if (norm == 0)
{
mjpeg_info
("SVCD output format requested in PAL/SECAM norm");
display_height = 576;
}
else if (norm == 1)
{
mjpeg_info ("SVCD output format requested in NTSC norm");
display_height = 480;
}
else
mjpeg_error_exit1
("No norm specified, cannot determine SVCD output size. Please use the -n option!");
}
if (strcmp (optarg, DVD_KEYWORD) == 0)
{
output = 1;
vcd = 0;
svcd = 0; // if user gives VCD, SVCD and DVD keywords, take last one only into account
dvd = 1;
display_width = 720;
if (norm == 0)
{
mjpeg_info
("DVD output format requested in PAL/SECAM norm");
display_height = 576;
}
else if (norm == 1)
{
mjpeg_info ("DVD output format requested in NTSC norm");
display_height = 480;
}
else
mjpeg_error_exit1
("No norm specified, cannot determine DVD output size. Please use the -n option!");
}
if (strncmp (optarg, SIZE_KEYWORD, 5) == 0)
{
output = 1;
if (sscanf (optarg, "SIZE_%ux%u", &ui1, &ui2) == 2)
{
// Coherence check: sizes must be multiple of 2
if ((ui1 % 2 == 0) && (ui2 % 2 == 0))
{
display_width = ui1;
display_height = ui2;
size_keyword = 1;
}
else
mjpeg_error_exit1
("Unconsistent SIZE keyword, not multiple of 2: %s",
optarg);
// A second check will eventually be done when output interlacing is finally known
}
else
mjpeg_error_exit1
("Wrong number of argument to SIZE keyword: %s", optarg);
}
// Theoritically, this should go into yuvcorrect, but I hesitate to do so
if (strcmp (optarg, HIRESSTILL) == 0)
{
output = 1;
interlaced = Y4M_ILACE_NONE;
display_width = 704;
if (norm == 0)
{
mjpeg_info
("HIRESSTILL output format requested in PAL/SECAM norm");
display_height = 576;
}
else if (norm == 1)
{
mjpeg_info ("HIRESSTILL output format requested in NTSC norm");
display_height = 480;
}
else
mjpeg_error_exit1
("No norm specified, cannot determine HIRESSTILL output size. Please use the -n option!");
}
if (strcmp (optarg, LOSVCDSTILL) == 0)
{
output = 1;
interlaced = Y4M_ILACE_NONE;
display_width = 480;
if (norm == 0)
{
mjpeg_info
("LOSVCDSTILL output format requested in PAL/SECAM norm");
display_height = 576;
}
else if (norm == 1)
{
mjpeg_info ("LOSVCDSTILL output format requested in NTSC norm");
display_height = 480;
}
else
mjpeg_error_exit1
("No norm specified, cannot determine LOSVCDSTILL output size. Please use the -n option!");
}
if (strcmp (optarg, LOVCDSTILL) == 0)
{
output = 1;
interlaced = Y4M_ILACE_NONE;
display_width = 352;
if (norm == 0)
{
mjpeg_info
("LOVCDSTILL output format requested in PAL/SECAM norm");
display_height = 288;
}
else if (norm == 1)
{
mjpeg_info ("LOVCDSTILL output format requested in NTSC norm");
display_height = 240;
}
else
mjpeg_error_exit1
("No norm specified, cannot determine LOVCDSTILL output size. Please use the -n option!");
}
if (strcmp (optarg, MONO_KEYWORD) == 0)
{
output = 1;
mono = 1;
}
if (output == 0)
mjpeg_error_exit1 ("Uncorrect output keyword: %s", optarg);
break;
// **************
// MODE KEYOWRD
// *************
case 'M':
mode = 0;
if (strcmp (optarg, WIDE2STD_KEYWORD) == 0)
{
wide = 1;
mode = 1;
}
// developper's Testing purpose only
if (strcmp (optarg, NOMMX) == 0)
{
#ifdef HAVE_ASM_MMX
mmx = 0;
#endif
mode = 1;
}
if (strcmp (optarg, RESAMPLE) == 0)
{
mode = 1;
algorithm = 0;
}
if (strcmp (optarg, BICUBIC) == 0)
{
mode = 1;
algorithm = 1;
}
if (strcmp (optarg, NO_HEADER) == 0)
{
mode = 1;
no_header = 1;
}
if (strncmp (optarg, RATIO_KEYWORD, 6) == 0)
{
if (sscanf (optarg, "RATIO_%u_%u_%u_%u", &ui1, &ui2, &ui3, &ui4)
== 4)
{
// A coherence check will be done when the useful input sizes are known
ratio = 1;
mode = 1;
input_width_slice = ui1;
output_width_slice = ui2;
input_height_slice = ui3;
output_height_slice = ui4;
}
if (ratio == 0)
mjpeg_error_exit1 ("Unconsistent RATIO keyword: %s", optarg);
}
if (strcmp (optarg, FAST_WIDE2VCD) == 0)
{
wide = 1;
mode = 1;
ratio = 1;
input_width_slice = 2;
output_width_slice = 1;
input_height_slice = 2;
output_height_slice = 1;
vcd = 1;
svcd = 0; // if user gives VCD and SVCD keyword, take last one only into account
display_width = 352;
if (norm == 0)
{
mjpeg_info
("VCD output format requested in PAL/SECAM norm");
display_height = 288;
}
else if (norm == 1)
{
mjpeg_info ("VCD output format requested in NTSC norm");
display_height = 240;
}
else
mjpeg_error_exit1
("No norm specified, cannot determine VCD output size. Please use the -n option!");
}
if (strcmp (optarg, WIDE2VCD) == 0)
{
wide = 1;
mode = 1;
vcd = 1;
svcd = 0; // if user gives VCD and SVCD keyword, take last one only into account
display_width = 352;
if (norm == 0)
{
mjpeg_info
("VCD output format requested in PAL/SECAM norm");
display_height = 288;
}
else if (norm == 1)
{
mjpeg_info ("VCD output format requested in NTSC norm");
display_height = 240;
}
else
mjpeg_error_exit1
("No norm specified, cannot determine VCD output size. Please use the -n option!");
}
if (strcmp (optarg, FASTVCD) == 0)
{
mode = 1;
vcd = 1;
svcd = 0; // if user gives VCD and SVCD keyword, take last one only into account
ratio = 1;
input_width_slice = 2;
output_width_slice = 1;
input_height_slice = 2;
output_height_slice = 1;
display_width = 352;
if (norm == 0)
{
mjpeg_info
("VCD output format requested in PAL/SECAM norm");
display_height = 288;
}
else if (norm == 1)
{
mjpeg_info ("VCD output format requested in NTSC norm");
display_height = 240;
}
else
mjpeg_error_exit1
("No norm specified, cannot determine VCD output size. Please use the -n option!");
}
if (mode == 0)
mjpeg_error_exit1 ("Uncorrect mode keyword: %s", optarg);
break;
// **************
// INPUT KEYOWRD
// *************
case 'I':
input = 0;
if (strncmp (optarg, USE_KEYWORD, 4) == 0)
{
input = 1;
if (sscanf (optarg, "USE_%ux%u+%u+%u", &ui1, &ui2, &ui3, &ui4)
== 4)
{
// Coherence check:
// every values must be multiple of 2
// and if input is interlaced, height offsets must be multiple of 4
// since U and V have half Y resolution and are interlaced
// and the required zone must be inside the input size
if ((ui1 % 2 == 0) && (ui2 % 2 == 0) && (ui3 % 2 == 0)
&& (ui4 % 2 == 0) && (ui1 + ui3 <= input_width)
&& (ui2 + ui4 <= input_height))
{
input_useful_width = ui1;
input_useful_height = ui2;
input_discard_col_left = ui3;
input_discard_line_above = ui4;
input_discard_col_right =
input_width - input_useful_width -
input_discard_col_left;
input_discard_line_under =
input_height - input_useful_height -
input_discard_line_above;
input_useful = 1;
}
else
mjpeg_error_exit1
("Unconsistent USE keyword: %s, offsets/sizes not multiple of 2 or offset+size>input size",
optarg);
if (interlaced != Y4M_ILACE_NONE)
{
if ((input_useful_height % 4 != 0)
|| (input_discard_line_above % 4 != 0))
mjpeg_error_exit1
("Unconsistent USE keyword: %s, height offset or size not multiple of 4 but input is interlaced!!",
optarg);
}
}
else
mjpeg_error_exit1
("Uncorrect USE input flag argument: %s", optarg);
}
if (strncmp (optarg, ACTIVE, 6) == 0)
{
input = 1;
if (sscanf
(optarg, "ACTIVE_%ux%u+%u+%u", &ui1, &ui2, &ui3, &ui4) == 4)
{
// Coherence check : offsets must be multiple of 2 since U and V have half Y resolution
// if interlaced, height must be multiple of 4
// and the required zone must be inside the input size
if ((ui1 % 2 == 0) && (ui2 % 2 == 0) && (ui3 % 2 == 0)
&& (ui4 % 2 == 0) && (ui1 + ui3 <= input_width)
&& (ui2 + ui4 <= input_height))
{
input_active_width = ui1;
input_active_height = ui2;
input_black_col_left = ui3;
input_black_line_above = ui4;
input_black_col_right =
input_width - input_active_width -
input_black_col_left;
input_black_line_under =
input_height - input_active_height -
input_black_line_above;
input_black = 1;
}
else
mjpeg_error_exit1
("Unconsistent ACTIVE keyword: %s, offsets/sizes not multiple of 2 or offset+size>input size",
optarg);
if (interlaced != Y4M_ILACE_NONE)
{
if ((input_active_height % 4 != 0)
|| (input_black_line_above % 4 != 0))
mjpeg_error_exit1
("Unconsistent ACTIVE keyword: %s, height offset or size not multiple of 4 but input is interlaced!!",
optarg);
}
}
else
mjpeg_error_exit1
("Uncorrect ACTIVE input flag argument: %s", optarg);
}
if (input == 0)
mjpeg_error_exit1 ("Uncorrect input keyword: %s", optarg);
break;
default:
break;
}
}
// Interlacing warnings
if (vcd == 1)
{
if ((interlaced == Y4M_ILACE_TOP_FIRST)
|| (interlaced == Y4M_ILACE_BOTTOM_FIRST))
mjpeg_warn
("Interlaced input frames will be downscaled to non-interlaced VCD frames\nIf quality is an issue, please consider deinterlacing input frames with yuvdeinterlace");
interlaced = Y4M_ILACE_NONE;
}
// Size Keyword final coherence check
if ((interlaced != Y4M_ILACE_NONE) && (size_keyword == 1))
{
if (display_height % 4 != 0)
mjpeg_error_exit1
("Unconsistent SIZE keyword, Height is not multiple of 4 but output interlaced!!");
}
// Unspecified input variables specification
if (input_useful_width == 0)
input_useful_width = input_width;
if (input_useful_height == 0)
input_useful_height = input_height;
// Ratio coherence check against input_useful size
if (ratio == 1)
{
if ((input_useful_width % input_width_slice == 0)
&& (input_useful_height % input_height_slice == 0))
{
output_active_width =
(input_useful_width / input_width_slice) * output_width_slice;
output_active_height =
(input_useful_height / input_height_slice) * output_height_slice;
}
else
mjpeg_error_exit1
("Specified input ratios (%u and %u) does not divide input useful size (%u and %u)!",
input_width_slice, input_height_slice, input_useful_width,
input_useful_height);
}
// if USE and ACTIVE keywords were used, redefined input ACTIVE size relative to USEFUL zone
if ((input_black == 1) && (input_useful == 1))
{
input_black_line_above =
input_black_line_above >
input_discard_line_above ? input_black_line_above -
input_discard_line_above : 0;
input_black_line_under =
input_black_line_under >
input_discard_line_under ? input_black_line_under -
input_discard_line_under : 0;
input_black_col_left =
input_black_col_left >
input_discard_col_left ? input_black_col_left -
input_discard_col_left : 0;
input_black_col_right =
input_black_col_right >
input_discard_col_right ? input_black_col_right -
input_discard_col_right : 0;
input_active_width =
input_useful_width - input_black_col_left - input_black_col_right;
input_active_height =
input_useful_height - input_black_line_above - input_black_line_under;
if ((input_active_width == input_useful_width)
&& (input_active_height == input_useful_height))
input_black = 0; // black zone is not enterely inside useful zone
}
// Unspecified output variables specification
if (output_active_width == 0)
output_active_width = display_width;
if (output_active_height == 0)
output_active_height = display_height;
// if (display_width == 0)
// display_width = output_active_width;
// if (display_height == 0)
// display_height = output_active_height;
if (wide == 1)
output_active_height = (output_active_height * 3) / 4;
// Common pitfall! it is 3/4 not 9/16!
// Indeed, Standard ratio is 4:3, so 16:9 has an height that is 3/4 smaller than the display_height
// At this point, input size, input_useful size, output_active size and display size are specified
// Time for the final coherence check and black and skip initialisations
// Final check
output_width =
output_active_width > display_width ? output_active_width : display_width;
output_height =
output_active_height >
display_height ? output_active_height : display_height;
if (interlaced == Y4M_ILACE_NONE)
{
if ((output_active_width % 2 !=0) || (output_active_height % 2 != 0)
|| (display_width % 2 != 0) || (display_height % 2 != 0))
mjpeg_error_exit1
("Output sizes are not multiple of 2 !!! %ux%u, %ux%u being displayed",
output_active_width, output_active_height, display_width,
display_height);
}
else
{
if ((output_active_width % 2 != 0) || (output_active_height % 4 != 0)
|| (display_width % 2 != 0) || (display_height % 4 != 0))
mjpeg_error_exit1
("Output sizes are not multiple of 2 on width and 4 on height (interlaced)! %ux%u, %ux%u being displayed",
output_active_width, output_active_height, display_width,
display_height);
}
// Skip and black initialisations
//
if (output_active_width > display_width)
{
skip = 1;
skip_col = 1;
// output_skip_col_right and output_skip_col_left must be even numbers
output_skip_col_right = ((output_active_width - display_width) / 4)*2;
output_skip_col_left =
output_active_width - display_width - output_skip_col_right;
}
if (output_active_width < display_width)
{
black = 1;
black_col = 1;
// output_black_col_right and output_black_col_left must be even numbers
output_black_col_right = ((display_width - output_active_width) / 4)*2;
output_black_col_left =
display_width - output_active_width - output_black_col_right;
}
if (output_active_height > display_height)
{
skip = 1;
skip_line = 1;
// output_skip_line_above and output_skip_line_under must be even numbers
output_skip_line_above = ((output_active_height - display_height) / 4)*2;
output_skip_line_under =
output_active_height - display_height - output_skip_line_above;
}
if (output_active_height < display_height)
{
black = 1;
black_line = 1;
// output_black_line_above and output_black_line_under must be even numbers
output_black_line_above = ((display_height - output_active_height) / 4)*2;
output_black_line_under =
display_height - output_active_height - output_black_line_above;
}
}
// *************************************************************************************
// MAIN
// *************************************************************************************
int
main (int argc, char *argv[])
{
int input_fd = 0;
int output_fd = 1;
// DDD and time use
// int input_fd = open("./yuvscaler.input",O_RDONLY);
// int output_fd = open("./yuvscaler.output",O_WRONLY);
// DDD use
int err = Y4M_OK, nb;
unsigned long int i, j, h, w;
long int frame_num = 0;
unsigned int *height_coeff = NULL, *width_coeff = NULL;
uint8_t *input = NULL, *output = NULL,
*padded_input = NULL, *padded_bottom = NULL, *padded_top = NULL;
uint8_t *input_y, *input_u, *input_v;
uint8_t *output_y, *output_u, *output_v;
uint8_t *frame_y, *frame_u, *frame_v;
uint8_t **frame_y_p = NULL, **frame_u_p = NULL, **frame_v_p = NULL; // size is not yet known => pointer of pointer
uint8_t *u_c_p; //u_c_p = uint8_t pointer
unsigned int divider;
// SPECIFIC TO BICUBIC
unsigned int *in_line = NULL, *in_col = NULL, out_line, out_col;
unsigned long int somme;
float *a = NULL, *b = NULL;
int16_t *cspline_w=NULL,*cspline_h=NULL;
uint16_t width_offset=0,height_offset=0,left_offset=0,top_offset=0,right_offset=0,bottom_offset=0;
uint16_t height_pad=0,width_pad=0,width_neighbors=0,height_neighbors=0;
// On constate que souvent, le dernier coeff cspline est nul =>
// pas la peine de le prendre en compte dans les calculs
// Attention ! optimisation vitesse yuvscaler_bicubic.c suppose que zero_width_neighbors=0 ou 1 seulement
uint8_t zero_width_neighbors=1,zero_height_neighbors=1;
float width_scale,height_scale;
int16_t cspline_value = 0;
int16_t *pointer;
// SPECIFIC TO YUV4MPEG
unsigned long int nb_pixels;
y4m_frame_info_t frameinfo;
y4m_stream_info_t in_streaminfo;
y4m_stream_info_t out_streaminfo;
y4m_ratio_t frame_rate = y4m_fps_UNKNOWN;
// Initialisation of global variables that are independent of the input stream, input_file in particular
handle_args_global (argc, argv);
// Information output
if (verbose)
{
mjpeg_info ("yuvscaler %s %s", PACKAGE_VERSION, yuvscaler_VERSION);
mjpeg_info ("(C) 2001-2004 Xavier Biquard <xbiquard@free.fr>, yuvscaler -h for help, or man yuvscaler");
}
// mjpeg tools global initialisations
mjpeg_default_handler_verbosity (verbose);
y4m_init_stream_info (&in_streaminfo);
y4m_init_stream_info (&out_streaminfo);
y4m_init_frame_info (&frameinfo);
// ***************************************************************
// Get video stream informations (size, framerate, interlacing, sample aspect ratio).
// The in_streaminfo structure is filled in accordingly
// ***************************************************************
if (y4m_read_stream_header (input_fd, &in_streaminfo) != Y4M_OK)
mjpeg_error_exit1 ("Could'nt read YUV4MPEG header!");
input_width = y4m_si_get_width (&in_streaminfo);
input_height = y4m_si_get_height (&in_streaminfo);
frame_rate = y4m_si_get_framerate (&in_streaminfo);
interlaced = y4m_si_get_interlace (&in_streaminfo);
// ***************************************************************
// INITIALISATIONS
// Norm determination from header (this has precedence over user's specification through the -n flag)
if (Y4M_RATIO_EQL (frame_rate, y4m_fps_PAL))
norm = 0;
if (Y4M_RATIO_EQL (frame_rate, y4m_fps_NTSC))
norm = 1;
if (norm < 0)
{
mjpeg_warn
("Could not infer norm (PAL/SECAM or NTSC) from input data (frame size=%dx%d, frame rate=%d:%d fps)!!",
input_width, input_height, frame_rate.n, frame_rate.d);
}
// Deal with args that depend on input stream
handle_args_dependent (argc, argv);
// Scaling algorithm determination
if ((algorithm == 0) || (algorithm == -1))
{
// Coherences check: resample can only downscale not upscale
if ((input_useful_width < output_active_width)
|| (input_useful_height < output_active_height))
{
if (algorithm == 0)
mjpeg_info
("Resampling algorithm can only downscale, not upscale => switching to bicubic algorithm");
algorithm = 1;
}
else
algorithm = 0;
}
// USER'S INFORMATION OUTPUT
yuvscaler_print_information (in_streaminfo, frame_rate);
divider = pgcd (input_useful_width, output_active_width);
input_width_slice = input_useful_width / divider;
output_width_slice = output_active_width / divider;
mjpeg_debug ("divider,i_w_s,o_w_s = %d,%d,%d",
divider, input_width_slice, output_width_slice);
divider = pgcd (input_useful_height, output_active_height);
input_height_slice = input_useful_height / divider;
output_height_slice = output_active_height / divider;
mjpeg_debug ("divider,i_w_s,o_w_s = %d,%d,%d",
divider, input_height_slice, output_height_slice);
diviseur = input_height_slice * input_width_slice;
mjpeg_debug ("Diviseur=%ld", diviseur);
mjpeg_info ("Scaling ratio for width is %u to %u",
input_width_slice, output_width_slice);
mjpeg_info ("and is %u to %u for height", input_height_slice,
output_height_slice);
// Now that we know about scaling ratios, we can optimize treatment of an active input zone:
// we must also check final new size is multiple of 2 on width and 2 or 4 on height
if (input_black == 1)
{
if (((nb = input_black_line_above / input_height_slice) > 0)
&& ((nb * input_height_slice) % 2 == 0))
{
if (interlaced == Y4M_ILACE_NONE)
{
input_useful = 1;
black = 1;
black_line = 1;
output_black_line_above += nb * output_height_slice;
input_black_line_above -= nb * input_height_slice;
input_discard_line_above += nb * input_height_slice;
}
if ((interlaced != Y4M_ILACE_NONE)
&& ((nb * input_height_slice) % 4 == 0))
{
input_useful = 1;
black = 1;
black_line = 1;
output_black_line_above += nb * output_height_slice;
input_black_line_above -= nb * input_height_slice;
input_discard_line_above += nb * input_height_slice;
}
}
if (((nb = input_black_line_under / input_height_slice) > 0)
&& ((nb * input_height_slice) % 2 == 0))
{
if (interlaced == Y4M_ILACE_NONE)
{
input_useful = 1;
black = 1;
black_line = 1;
output_black_line_under += nb * output_height_slice;
input_black_line_under -= nb * input_height_slice;
input_discard_line_under += nb * input_height_slice;
}
if ((interlaced != Y4M_ILACE_NONE)
&& ((nb * input_height_slice) % 4 == 0))
{
input_useful = 1;
black = 1;
black_line = 1;
output_black_line_under += nb * output_height_slice;
input_black_line_under -= nb * input_height_slice;
input_discard_line_under += nb * input_height_slice;
}
}
if (((nb = input_black_col_left / input_width_slice) > 0)
&& ((nb * input_height_slice) % 2 == 0))
{
input_useful = 1;
black = 1;
black_col = 1;
output_black_col_left += nb * output_width_slice;
input_black_col_left -= nb * input_width_slice;
input_discard_col_left += nb * input_width_slice;
}
if (((nb = input_black_col_right / input_width_slice) > 0)
&& ((nb * input_height_slice) % 2 == 0))
{
input_useful = 1;
black = 1;
black_col = 1;
output_black_col_right += nb * output_width_slice;
input_black_col_right -= nb * input_width_slice;
input_discard_col_right += nb * input_width_slice;
}
input_useful_height =
input_height - input_discard_line_above - input_discard_line_under;
input_useful_width =
input_width - input_discard_col_left - input_discard_col_right;
input_active_width =
input_useful_width - input_black_col_left - input_black_col_right;
input_active_height =
input_useful_height - input_black_line_above - input_black_line_under;
if ((input_active_width == input_useful_width)
&& (input_active_height == input_useful_height))
input_black = 0; // black zone doesn't go beyong useful zone
output_active_width =
(input_useful_width / input_width_slice) * output_width_slice;
output_active_height =
(input_useful_height / input_height_slice) * output_height_slice;
// USER'S INFORMATION OUTPUT
mjpeg_info (" --- Newly speed optimized parameters ---");
yuvscaler_print_information (in_streaminfo, frame_rate);
}
// Take care of the case where ratios are 1:1 and 1:1 => in the resample algorithm category by convention
if ((output_height_slice == 1) && (input_height_slice == 1)
&& (output_width_slice == 1) && (input_width_slice == 1))
algorithm =0;
// RESAMPLE RESAMPLE RESAMPLE
if (algorithm == 0)
{
// SPECIFIC
// Is a specific downscaling speed enhanced treatment available?
if ((output_width_slice == 1) && (input_width_slice == 1))
specific = 5;
if ((output_width_slice == 1) && (input_width_slice == 1)
&& (input_height_slice == 4) && (output_height_slice == 3))
specific = 7;
if ((input_height_slice == 2) && (output_height_slice == 1))
specific = 3;
if ((output_height_slice == 1) && (input_height_slice == 1))
specific = 1;
if ((output_height_slice == 1) && (input_height_slice == 1)
&& (output_width_slice == 2) && (input_width_slice == 3))
specific = 6;
if ((output_height_slice == 1) && (input_height_slice == 1)
&& (output_width_slice == 1) && (input_width_slice == 1))
specific = 4;
if ((input_height_slice == 2) && (output_height_slice == 1)
&& (input_width_slice == 2) && (output_width_slice == 1))
specific = 2;
if ((input_height_slice == 8) && (output_height_slice == 3))
specific = 9;
if ((input_height_slice == 8) && (output_height_slice == 3)
&& (input_width_slice == 2) && (output_width_slice == 1))
specific = 8;
if (specific)
mjpeg_info ("Specific downscaling routing number %u", specific);
// To determine scaled value of pixels in the case of the resample algorithm, we have to divide a long int by
// the long int "diviseur". So, to speed up downscaling, we tabulate all possible results of this division
// using the divide vector and the function yuvscaler_nearest_integer_division.
if (!
(divide =
(uint8_t *) malloc ((1 + 255 * diviseur) * sizeof (uint8_t) +
ALIGNEMENT)))
mjpeg_error_exit1
("Could not allocate memory for divide table. STOP!");
mjpeg_debug ("before alignement: divide=%p", divide);
// alignement instructions
if (((unsigned long) divide % ALIGNEMENT) != 0)
divide =
(uint8_t *) ((((unsigned long) divide / ALIGNEMENT) + 1) *
ALIGNEMENT);
mjpeg_debug ("after alignement: divide=%p", divide);
u_c_p = divide;
for (i = 0; i <= 255 * diviseur; i++)
*(u_c_p++) = yuvscaler_nearest_integer_division (i, diviseur);
// Calculate averaging coefficient
// For the height
height_coeff =
malloc ((input_height_slice + 1) * output_height_slice *
sizeof (unsigned int));
average_coeff (input_height_slice, output_height_slice, height_coeff);
// For the width
width_coeff =
malloc ((input_width_slice + 1) * output_width_slice *
sizeof (unsigned int));
average_coeff (input_width_slice, output_width_slice, width_coeff);
}
// END OF RESAMPLE RESAMPLE RESAMPLE
// BICUBIC BICUBIC BICUBIC
if (algorithm == 1)
{
// SPECIFIC
// Is a specific downscaling speed enhanced treatment available?
// We only downscale on height, not width.
// Ex: 16/9 to 4/3 conversion
if ((output_width_slice == 1) && (input_width_slice == 1))
specific = 5;
// We only downscale on width, not height
// Ex: Full size to SVCD
if ((output_height_slice == 1) && (input_height_slice == 1))
specific = 1;
if (specific)
mjpeg_info ("Specific downscaling routing number %u", specific);
// specific=0;
// Let us tabulate several values which are explained below:
//
// Given the scaling factor "height_scale" on height and "width_scale" on width, to an output pixel of coordinates (out_col,out_line)
// corresponds an input pixel of coordinates (in_col,in_line), where in_col = out_col/width_scale and in_line = out_line/height_scale.
// As pixel coordinates are integer values, we take for in_col and out_col the nearest smaller integer
// value: in_col = floor(out_col/width_scale) and in_line = floor(out_line/height_scale).
// The input pixel of coordinates (in_col,in_line) is called the base input pixel
// Thus, we make an error conventionnally named "b" for columns and "a" for lines
// with b = out_col/width_scale - floor(out_col/width_scale) and a = out_line/height_scale - floor(out_line/height_scale).
// Please note that a and b are inside range [0,1[.
//
// For upscaling along w (resp. h), we need to take into account the 4 nearest neighbors along w (resp. h) of the base input pixel.
// For downscaling along w (resp. h), we need to take into account AT LEAST 6 nearest neighbors of the base input pxel.
// And the real number of neighbors pixel from the base input pixel to be taken into account depends on the scaling ratios.
// We have to take into account "width_neighbors" neighbors on the width and "height_neighbors" on the height;
// with width_neighbors = 2*nearest_higher_integer(2/width_scale), or 4 if upscaling (output_width_slice>input_width_slice)
// and width_offset=(width_neighbors/2)-1;
// with height_neighbors = 2*nearest_higher_integer(2/height_scale), or 4 if upscaling (output_height_slice>input_height_slice)
// and height_offset=(height_neighbors/2)-1;
//
// *****************
// The general formula giving the value of the output pixel as a function of the input pixels is:
// OutputPixel(out_col,out_line)=
// Sum(h=-height_offset,...(height_neigbors-height_offset-1))Sum(w=-width_offset,...(width_neigbors-width_offset-1))
// InputPixel(in_col+w,in_line+h)*BicubicCoefficient((b-w)*scale_width)*BicubicCoefficient((a-h)*scale_height)*scale_height*scale_width
// *****************
// Please note that [theoretically] (a-h)*scale_height is [-2:2], as well as (b-w)*scale_width.
// But, as height_neigbors is the nearest higher integer, the practical range for "(a-h)*scale_height" and "(b-w)*scale_width" is
// extended from theorital [-2:2] to [-3:3] => "(a-h)*scale_height" and "(b-w)*scale_width" are considered 0 outside of [-2:2].
// Please note also that for upscaling only, scale_height and scale_width are artifially taken as 1.0 in the formula.
//
// For an easier implementation, it is preferable that h and w start from 0. Therefore, in the general formula, we will replace
// "h" by "h-height_offset" and "w" by "w-width_offset".
//
// Moreover, the output pixel value depends on at least the 4x4 nearest neighbors from the base input pixel in the input image.
// As a consequence, if the base input pixel is at on the border of the image, the bicubic algorithm will try to find values
// outside the input image => to avoid this, we will pad the input image height_offset pixel on the top, width_offset pixels on the left,
// (and right_offset pixels on the right and bottom_offset pixels at the bottom).
// Therefore, in the general formula, we will replace InputPixel(x,y) by PaddedInputPixel(x+width_offset,y+height_offset).
//
// *****************
// Finally, the general formula may be rewritten as:
// OutputPixel(out_col,out_line)=
// Sum(h=0,...(height_neigbors-1))Sum(w=0...(width_neigbors-1))
// PaddedInputPixel(in_col+w,in_line+h)*BicubicCoefficient((b-w+width_offset)*scale_width)*BicubicCoefficient((a-h+height_offset)*scale_height)*scale_height*scale_width
// *****************
//
//
// *****************
// IMPLEMENTATION
// *****************
// To insure a fast implementation of the general formula, we will pre-calculate all possible values of
// BicubicCoefficient((b-w+width_offset)*scale_width)*scale_width, and tabulate them as cspline_w:
// cspline_w[w,out_col]=BicubicCoefficient((b[out_col]-w+width_offset)*scale_width)*scale_width.
// And the same stands for height:
// cspline_h[h,out_line]=BicubicCoefficient((a[out_line]-h+height_offset)*scale_height)*scale_height
//
// To be continued ...
height_scale=(float)output_height_slice/(float)input_height_slice;
if (height_scale>1.0)
height_scale=1.0;
width_scale=(float)output_width_slice/(float)input_width_slice;
if (width_scale>1.0)
width_scale=1.0;
width_neighbors = (2 * input_width_slice ) / output_width_slice;
if (((2 * input_width_slice ) % output_width_slice)!=0)
width_neighbors++;
width_neighbors*=2;
if (width_neighbors < 4)
width_neighbors = 4;
width_offset = left_offset = width_neighbors/2-1;
width_pad=width_neighbors - 1;
right_offset=width_neighbors/2;
height_neighbors = (2 * input_height_slice ) / output_height_slice;
if (((2 * input_height_slice ) % output_height_slice)!=0)
height_neighbors++;
height_neighbors*=2;
if (height_neighbors < 4)
height_neighbors = 4;
height_offset = top_offset = height_neighbors/2-1;
height_pad=height_neighbors - 1;
bottom_offset=height_neighbors/2;
mjpeg_debug("height_scale=%f, width_scale=%f, width_neighbors=%d, height_neighbors=%d",height_scale,width_scale,width_neighbors,height_neighbors);
// Memory allocations
#ifdef HAVE_ASM_MMX
if (!(mmx_res =
(int32_t *) malloc (2 * sizeof (int32_t) + ALIGNEMENT)))
mjpeg_error_exit1
("Could not allocate memory for mmx registers. STOP!");
// alignement instructions
if (((unsigned long int) mmx_res % ALIGNEMENT) != 0)
mmx_res =
(int32_t *) ((((unsigned long int) mmx_res / ALIGNEMENT) + 1) *
ALIGNEMENT);
if (mmx==1)
{
if (width_neighbors <= MAXWIDTHNEIGHBORS)
{
mjpeg_info("MMX accelerated treatment activated");
mmx = 1;
}
else
{
mmx=0;
mjpeg_warn("MMX accelerated treatment not available for downscaling ratio larger than 4 to 1");
mjpeg_warn("If you still want to use an MMX treatment (not really useful for such a large downscaling ratio");
mjpeg_warn("please use multiple yuvscaler downscaling to achieve the desired downscaling ratio");
}
}
#endif
// Il faudrait peut-tre aligner correctement tous ces pointeurs, en particulier cspline_w_neighbors et cspline_h_neighbors
// qui sont amplement utiliss dans les routines de scaling => il faut aussi aligner cspline_w et cspline_h
if (
!(cspline_w = (int16_t *) malloc ( width_neighbors * output_active_width * sizeof (int16_t))) ||
!(cspline_h = (int16_t *) malloc ( height_neighbors * output_active_height * sizeof (int16_t))) ||
!(in_col = (unsigned int *) malloc ( output_active_width * sizeof (unsigned int))) ||
!(b = (float *) malloc ( output_active_width * sizeof (float))) ||
!(in_line = (unsigned int *) malloc ( output_active_height * sizeof (unsigned int))) ||
!(a = (float *) malloc ( output_active_height * sizeof (float)))
)
mjpeg_error_exit1
("Could not allocate memory for bicubic tables. STOP!");
// Initialisation of bicubic tables
pointer=cspline_h;
for (out_line = 0; out_line < output_active_height; out_line++)
{
in_line[out_line] = (out_line * input_height_slice) / output_height_slice;
// mjpeg_debug("in_line[%u]=%u",out_line,in_line[out_line]);
a[out_line] =
(float) ((out_line * input_height_slice) % output_height_slice) /
(float) output_height_slice;
somme=0;
for (h=0;h<height_neighbors;h++)
{
cspline_value=cubic_spline ((a[out_line] + height_offset -h)*height_scale, bicubic_div_height)*height_scale;
mjpeg_debug("cspline_value=%d,cspline=%d,a[%u]=%g,height_offset=%d,height_scale=%g,h=%lu",cspline_value,cubic_spline ((a[out_line] + height_offset -h)*height_scale, bicubic_div_height),out_line,a[out_line],height_offset,height_scale,h);
somme+=cspline_value;
*(pointer++)=cspline_value;
}
if (cspline_value!=0)
zero_height_neighbors=0;
// Normalisation test and normalisation of cspline
if (somme != bicubic_div_height)
*(pointer-2) += bicubic_div_height-somme;
}
pointer=cspline_w;
for (out_col = 0; out_col < output_active_width; out_col++)
{
in_col[out_col] = (out_col * input_width_slice) / output_width_slice;
b[out_col] =
(float) ((out_col * input_width_slice) % output_width_slice) /
(float) output_width_slice;
somme=0;
for (w=0;w<width_neighbors;w++)
{
// mjpeg_debug("b[%u]=%g,width_offset=%d,width_scale=%g,w=%lu",out_col,b[out_col],width_offset,width_scale,w);
cspline_value=cubic_spline ((b[out_col] + width_offset -w)*width_scale, bicubic_div_width)*width_scale;
mjpeg_debug("cspline_value=%d,b[%u]=%g,height_offset=%d,height_scale=%g,w=%lu",cspline_value,out_col,b[out_col],height_offset,height_scale,w);
somme+=cspline_value;
*(pointer++)=cspline_value;
}
if (cspline_value!=0)
zero_width_neighbors=0;
// Normalisation test and normalisation of cspline
if (somme != bicubic_div_width)
*(pointer-2) += bicubic_div_width-somme;
}
// Added +2*ALIGNEMENT for MMX scaling routines that loads a higher number of pixels than necessary (memory overflow)
if (interlaced == Y4M_ILACE_NONE)
{
if (!(padded_input =
(uint8_t *) malloc ((input_useful_width + width_neighbors) *
(input_useful_height + height_neighbors)+2*ALIGNEMENT)))
mjpeg_error_exit1
("Could not allocate memory for padded_input table. STOP!");
}
else
{
if (!(padded_top =
(uint8_t *) malloc ((input_useful_width + width_neighbors) *
(input_useful_height / 2 + height_neighbors)+2*ALIGNEMENT)) ||
!(padded_bottom =
(uint8_t *) malloc ((input_useful_width + width_neighbors) *
(input_useful_height / 2 + height_neighbors)+2*ALIGNEMENT)))
mjpeg_error_exit1
("Could not allocate memory for padded_top|bottom tables. STOP!");
}
if (!(intermediate = (int32_t *) malloc(output_active_width*(input_useful_height + height_neighbors+1)*sizeof(int32_t))))
mjpeg_error_exit1
("Could not allocate memory for intermediate. STOP!");
}
// END OF BICUBIC BICUBIC BICUBIC
// Pointers allocations
if (!(input = malloc (((input_width * input_height * 3) / 2) + ALIGNEMENT)) ||
!(output = malloc (((output_width * output_height * 3) / 2) + ALIGNEMENT))
)
mjpeg_error_exit1
("Could not allocate memory for input or output tables. STOP!");
// input and output pointers alignement
mjpeg_debug ("before alignement: input=%p output=%p", input, output);
if (((unsigned long) input % ALIGNEMENT) != 0)
input =
(uint8_t *) ((((unsigned long) input / ALIGNEMENT) + 1) * ALIGNEMENT);
if (((unsigned long) output % ALIGNEMENT) != 0)
output =
(uint8_t *) ((((unsigned long) output / ALIGNEMENT) + 1) * ALIGNEMENT);
mjpeg_debug ("after alignement: input=%p output=%p", input, output);
// if skip_col==1
if (!(frame_y_p = (uint8_t **) malloc (display_height * sizeof (uint8_t *)))
|| !(frame_u_p =
(uint8_t **) malloc (display_height / 2 * sizeof (uint8_t *)))
|| !(frame_v_p =
(uint8_t **) malloc (display_height / 2 * sizeof (uint8_t *))))
mjpeg_error_exit1
("Could not allocate memory for frame_y_p, frame_u_p or frame_v_p tables. STOP!");
// Incorporate blacks lines and columns directly into output matrix since this will never change.
// BLACK pixel in YUV = (16,128,128)
if (black == 1)
{
u_c_p = output;
// Y component
for (i = 0; i < output_black_line_above * output_width; i++)
*(u_c_p++) = blacky;
if (black_col == 0)
u_c_p += output_active_height * output_width;
else
{
for (i = 0; i < output_active_height; i++)
{
for (j = 0; j < output_black_col_left; j++)
*(u_c_p++) = blacky;
u_c_p += output_active_width;
for (j = 0; j < output_black_col_right; j++)
*(u_c_p++) = blacky;
}
}
for (i = 0; i < output_black_line_under * output_width; i++)
*(u_c_p++) = blacky;
// U component
// u_c_p=output+output_width*output_height;
for (i = 0; i < output_black_line_above / 2 * output_width / 2; i++)
*(u_c_p++) = blackuv;
if (black_col == 0)
u_c_p += output_active_height / 2 * output_width / 2;
else
{
for (i = 0; i < output_active_height / 2; i++)
{
for (j = 0; j < output_black_col_left / 2; j++)
*(u_c_p++) = blackuv;
u_c_p += output_active_width / 2;
for (j = 0; j < output_black_col_right / 2; j++)
*(u_c_p++) = blackuv;
}
}
for (i = 0; i < output_black_line_under / 2 * output_width / 2; i++)
*(u_c_p++) = blackuv;
// V component
// u_c_p=output+(output_width*output_height*5)/4;
for (i = 0; i < output_black_line_above / 2 * output_width / 2; i++)
*(u_c_p++) = blackuv;
if (black_col == 0)
u_c_p += output_active_height / 2 * output_width / 2;
else
{
for (i = 0; i < output_active_height / 2; i++)
{
for (j = 0; j < output_black_col_left / 2; j++)
*(u_c_p++) = blackuv;
u_c_p += output_active_width / 2;
for (j = 0; j < output_black_col_right / 2; j++)
*(u_c_p++) = blackuv;
}
}
for (i = 0; i < output_black_line_under / 2 * output_width / 2; i++)
*(u_c_p++) = blackuv;
}
// MONOCHROME FRAMES
if (mono == 1)
{
// the U and V components of output frame will always be 128
u_c_p = output + output_width * output_height;
for (i = 0; i < 2 * output_width / 2 * output_height / 2; i++)
*(u_c_p++) = blackuv;
}
// Various initialisatiosn for variables concerning input and output
out_nb_col_slice = output_active_width / output_width_slice;
out_nb_line_slice = output_active_height / output_height_slice;
input_y =
input + input_discard_line_above * input_width + input_discard_col_left;
input_u =
input + input_width * input_height +
input_discard_line_above / 2 * input_width / 2 +
input_discard_col_left / 2;
input_v =
input + (input_height * input_width * 5) / 4 +
input_discard_line_above / 2 * input_width / 2 +
input_discard_col_left / 2;
output_y =
output + output_black_line_above * output_width + output_black_col_left;
output_u =
output + output_width * output_height +
output_black_line_above / 2 * output_width / 2 +
output_black_col_left / 2;
output_v =
output + (output_width * output_height * 5) / 4 +
output_black_line_above / 2 * output_width / 2 +
output_black_col_left / 2;
// Other initialisations for frame output
frame_y =
output + output_skip_line_above * output_width + output_skip_col_left;
frame_u =
output + output_width * output_height +
output_skip_line_above / 2 * output_width / 2 + output_skip_col_left / 2;
frame_v =
output + (output_width * output_height * 5) / 4 +
output_skip_line_above / 2 * output_width / 2 + output_skip_col_left / 2;
if (skip_col == 1)
{
for (i = 0; i < display_height; i++)
frame_y_p[i] = frame_y + i * output_width;
for (i = 0; i < display_height / 2; i++)
{
frame_u_p[i] = frame_u + i * output_width / 2;
frame_v_p[i] = frame_v + i * output_width / 2;
}
}
nb_pixels = (input_width * input_height * 3) / 2;
mjpeg_debug ("End of Initialisation");
// END OF INITIALISATION
// END OF INITIALISATION
// END OF INITIALISATION
// SCALE AND OUTPUT FRAMES
// Output file header
y4m_copy_stream_info (&out_streaminfo, &in_streaminfo);
y4m_si_set_width (&out_streaminfo, display_width);
y4m_si_set_height (&out_streaminfo, display_height);
y4m_si_set_interlace (&out_streaminfo, interlaced);
y4m_si_set_sampleaspect (&out_streaminfo,
yuvscaler_calculate_output_sar (output_width_slice,
output_height_slice,
input_width_slice,
input_height_slice,
y4m_si_get_sampleaspect
(&in_streaminfo)));
if (no_header == 0)
y4m_write_stream_header (output_fd, &out_streaminfo);
y4m_log_stream_info (mjpeg_loglev_t("info"), "output: ", &out_streaminfo);
// Master loop : continue until there is no next frame in stdin
while ((err = yuvscaler_y4m_read_frame
(input_fd, &in_streaminfo, &frameinfo, nb_pixels, input)) == Y4M_OK)
{
mjpeg_info ("Frame number %ld", frame_num);
// Blackout if necessary
if (input_black == 1)
blackout (input_y, input_u, input_v);
frame_num++;
// Output Frame Header
if (y4m_write_frame_header (output_fd, &out_streaminfo, &frameinfo) != Y4M_OK)
goto out_error;
// ***************
// SCALE THE FRAME
// ***************
// RESAMPLE ALGORITHM
// ***************
if (algorithm == 0)
{
if (specific)
{
average_specific (input_y, output_y, height_coeff,width_coeff, 0);
if (!mono)
{
average_specific (input_u, output_u, height_coeff,
width_coeff, 1);
average_specific (input_v, output_v, height_coeff,
width_coeff, 1);
}
}
else
{
average (input_y, output_y, height_coeff, width_coeff, 0);
if (!mono)
{
average (input_u, output_u, height_coeff, width_coeff, 1);
average (input_v, output_v, height_coeff, width_coeff, 1);
}
}
}
// ***************
// RESAMPLE ALGO
// ***************
// BICIBIC ALGO
// ***************
if (algorithm == 1)
{
// INPUT FRAME PADDING BEFORE BICUBIC INTERPOLATION
// PADDING IS DONE SEPARATELY FOR EACH COMPONENT
//
if (interlaced != Y4M_ILACE_NONE)
{
padding_interlaced (padded_top, padded_bottom, input_y, 0,left_offset,top_offset,right_offset,bottom_offset,width_pad);
cubic_scale_interlaced (padded_top, padded_bottom, output_y,
in_col, in_line,
cspline_w, width_neighbors, zero_width_neighbors,
cspline_h, height_neighbors, zero_height_neighbors,
0);
if (!mono)
{
padding_interlaced (padded_top, padded_bottom, input_u, 1,left_offset,top_offset,right_offset,bottom_offset,width_pad);
cubic_scale_interlaced (padded_top, padded_bottom, output_u,
in_col, in_line,
cspline_w, width_neighbors,zero_width_neighbors,
cspline_h, height_neighbors,zero_height_neighbors,
1);
padding_interlaced (padded_top, padded_bottom, input_v, 1,left_offset,top_offset,right_offset,bottom_offset,width_pad);
cubic_scale_interlaced (padded_top, padded_bottom, output_v,
in_col, in_line,
cspline_w, width_neighbors,zero_width_neighbors,
cspline_h, height_neighbors,zero_height_neighbors,
1);
}
}
else
{
padding (padded_input, input_y, 0,left_offset,top_offset,right_offset,bottom_offset,width_pad);
cubic_scale (padded_input, output_y,
in_col, in_line,
cspline_w, width_neighbors, zero_width_neighbors,
cspline_h, height_neighbors, zero_height_neighbors,
0);
if (!mono)
{
padding (padded_input, input_u, 1,left_offset,top_offset,right_offset,bottom_offset,width_pad);
cubic_scale (padded_input, output_u,
in_col, in_line,
cspline_w, width_neighbors, zero_width_neighbors,
cspline_h, height_neighbors, zero_height_neighbors,
1);
padding (padded_input, input_v, 1,left_offset,top_offset,right_offset,bottom_offset,width_pad);
cubic_scale (padded_input, output_v,
in_col, in_line,
cspline_w, width_neighbors, zero_width_neighbors,
cspline_h, height_neighbors, zero_height_neighbors,
1);
}
}
}
// ***************
// BICIBIC ALGO
// ***************
// END OF SCALE THE FRAME
// **********************
// OUTPUT FRAME CONTENTS
if (skip == 0)
{
// Here, display=output_active
if (y4m_write
(output_fd, output,
(display_width * display_height * 3) / 2) != Y4M_OK)
goto out_error;
}
else
{
// skip == 1
if (skip_col == 0)
{
// output_active_width==display_width, component per component frame output
if (y4m_write
(output_fd, frame_y,
display_width * display_height) != Y4M_OK)
goto out_error;
if (y4m_write
(output_fd, frame_u,
display_width / 2 * display_height / 2) != Y4M_OK)
goto out_error;
if (y4m_write
(output_fd, frame_v,
display_width / 2 * display_height / 2) != Y4M_OK)
goto out_error;
}
else
{
// output_active_width > display_width, line per line frame output for each component
for (i = 0; i < display_height; i++)
{
if (y4m_write (output_fd, frame_y_p[i], display_width)
!= Y4M_OK)
goto out_error;
}
for (i = 0; i < display_height / 2; i++)
{
if (y4m_write
(output_fd, frame_u_p[i], display_width / 2) != Y4M_OK)
goto out_error;
}
for (i = 0; i < display_height / 2; i++)
{
if (y4m_write
(output_fd, frame_v_p[i], display_width / 2) != Y4M_OK)
goto out_error;
}
}
}
}
// End of master loop => no more frame in stdin
if (err != Y4M_ERR_EOF)
mjpeg_error_exit1 ("Couldn't read frame number %ld!", frame_num);
else
mjpeg_info ("Normal exit: end of stream with frame number %ld!",
frame_num);
y4m_fini_stream_info (&in_streaminfo);
y4m_fini_stream_info (&out_streaminfo);
y4m_fini_frame_info (&frameinfo);
return 0;
out_error:
mjpeg_error_exit1 ("Unable to write to output - aborting!");
return 1;
}
// *************************************************************************************
unsigned int
pgcd (unsigned int num1, unsigned int num2)
{
// Calculates the biggest common divider between num1 and num2, after Euclid's
// pgcd(a,b)=pgcd(b,a%b)
// My thanks to Chris Atenasio <chris@crud.net>
unsigned int c, bigger, smaller;
if (num2 < num1)
{
smaller = num2;
bigger = num1;
}
else
{
smaller = num1;
bigger = num2;
}
while (smaller)
{
c = bigger % smaller;
bigger = smaller;
smaller = c;
}
return (bigger);
}
// *************************************************************************************
// if ((output_width_slice == 1) && (input_width_slice == 1)
// && (input_height_slice == 4) && (output_height_slice == 3))
// specific = 7;
// if ((output_height_slice == 1) && (input_height_slice == 1)
// && (output_width_slice == 2) && (input_width_slice == 3))
// specific = 6;
// if ((input_height_slice == 2) && (output_height_slice == 1))
// specific = 3;
// Full size to VCD
// if ((input_height_slice == 2) && (output_height_slice == 1)
// && (input_width_slice == 2) && (output_width_slice == 1))
// specific = 2;
// if ((input_height_slice == 8) && (output_height_slice == 3))
// specific = 9;
// if ((input_height_slice == 8) && (output_height_slice == 3)
// && (input_width_slice == 2) && (output_width_slice == 1))
// specific = 8;
// alignement instructions
/* if (((unsigned int) cspline_w % ALIGNEMENT) != 0)
cspline_w =
(int16_t *) ((((unsigned int) cspline_w / ALIGNEMENT) + 1) *
ALIGNEMENT);
if (((unsigned int) cspline_h % ALIGNEMENT) != 0)
cspline_h =
(int16_t *) ((((unsigned int) cspline_h / ALIGNEMENT) + 1) *
ALIGNEMENT);
if (((unsigned int) cspline_w_neighbors % ALIGNEMENT) != 0)
cspline_w_neighbors =
(int16_t **) ((((unsigned int) cspline_w_neighbors / ALIGNEMENT) + 1) *
ALIGNEMENT);
if (((unsigned int) cspline_h_neighbors % ALIGNEMENT) != 0)
cspline_h_neighbors =
(int16_t **) ((((unsigned int) cspline_h_neighbors / ALIGNEMENT) + 1) *
ALIGNEMENT);
*/
/*
* Local variables:
* tab-width: 8
* indent-tabs-mode: nil
* End:
*/
|