File: yuvscaler_resample.c

package info (click to toggle)
mjpegtools 1%3A2.1.0%2Bdebian-7
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,920 kB
  • sloc: ansic: 60,401; cpp: 32,321; sh: 13,910; makefile: 763; python: 291; asm: 103
file content (1081 lines) | stat: -rw-r--r-- 34,785 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#include <signal.h>
#include "yuv4mpeg.h"
#include "mjpeg_types.h"
#include "yuvscaler.h"

// From outide MAIN : global variables

extern unsigned int input_width;
extern unsigned int output_width;
// Downscaling ratios
extern unsigned int input_height_slice;
extern unsigned int output_height_slice;
extern unsigned int input_width_slice;
extern unsigned int output_width_slice;

extern int interlaced; 

extern unsigned int output_active_width;
extern unsigned int output_active_height;

extern int line_switching;
extern unsigned int specific;

extern unsigned int out_nb_col_slice, out_nb_line_slice;
extern uint8_t *divide;

// From inside MAIN function



// *************************************************************************************
int
average_coeff (unsigned int input_length, unsigned int output_length,
	       unsigned int *coeff)
{
  // This function calculates multiplicative coeeficients to average an input (vector of) length
  // input_length into an output (vector of) length output_length;
  // We sequentially store the number-of-non-zero-coefficients, followed by the coefficients
  // themselvesc, and that, output_length time
  int last_coeff = 0, remaining_coeff, still_to_go = 0, in, out, non_zero =
    0, nb;
  unsigned int *non_zero_p = NULL;
  unsigned int *pointer;

  if ((output_length > input_length) || (input_length == 0)
      || (output_length == 0) || (coeff == NULL))
    {
      mjpeg_error ("Function average_coeff : arguments are wrong");
      mjpeg_error ("input length = %d, output length = %d, input = %p",
		   input_length, output_length, coeff);
      exit (1);
    }
#ifdef DEBUG
  mjpeg_debug
    ("Function average_coeff : input length = %d, output length = %d, input = %p",
     input_length, output_length, coeff);
#endif

  pointer = coeff;

  if (output_length == 1)
    {
      *pointer = input_length;
      pointer++;
      for (in = 0; in < input_length; in++)
	{
	  *pointer = 1;
	  pointer++;
	}
    }
  else
    {
      for (in = 0; in < output_length; in++)
	{
	  non_zero = 0;
	  non_zero_p = pointer;
	  pointer++;
	  still_to_go = input_length;
	  if (last_coeff > 0)
	    {
	      remaining_coeff = output_length - last_coeff;
	      *pointer = remaining_coeff;
	      pointer++;
	      non_zero++;
	      still_to_go -= remaining_coeff;
	    }
	  nb = (still_to_go / output_length);
#ifdef DEBUG
	  mjpeg_debug ("in=%d,nb=%d,stgo=%d ol=%d", in, nb, still_to_go,
		       output_length);
#endif
	  for (out = 0; out < nb; out++)
	    {
	      *pointer = output_length;
	      pointer++;
	    }
	  still_to_go -= nb * output_length;
	  non_zero += nb;

	  if ((last_coeff = still_to_go) != 0)
	    {
	      *pointer = last_coeff;
#ifdef DEBUG
	      mjpeg_debug ("non_zero=%d,last_coeff=%d", non_zero,
			   last_coeff);
#endif
	      pointer++;	// now pointer points onto the next number-of-non_zero-coefficients
	      non_zero++;
	      *non_zero_p = non_zero;
	    }
	  else
	    {
	      if (in != output_length - 1)
		{
		  mjpeg_error
		    ("There is a common divider between %d and %d\n This should not be the case",
		     input_length, output_length);
		  exit (1);
		}
	    }

	}
      *non_zero_p = non_zero;

      if (still_to_go != 0)
	{
	  mjpeg_error
	    ("Function average_coeff : calculus doesn't stop right : %d",
	     still_to_go);
	}
    }
#ifdef DEBUG
  if (verbose == 2)
    {
      int i, j;
      for (i = 0; i < output_length; i++)
	{
	  mjpeg_debug ("line=%d", i);
	  non_zero = *coeff;
	  coeff++;
	  mjpeg_debug (" ");
	  for (j = 0; j < non_zero; j++)
	    {
	      fprintf (stderr, "%d : %d ", j, *coeff);
	      coeff++;
	    }
	  fprintf (stderr, "\n");
	}
    }
#endif
   return (0);
}

// *************************************************************************************



// *************************************************************************************
int
average (uint8_t * input, uint8_t * output, unsigned int *height_coeff,
	 unsigned int *width_coeff, unsigned int half)
{
  // This function average an input matrix of name input and of size local_input_width*(local_out_nb_line_slice*input_height_slice)
  // into an output matrix of name output and of size local_output_width*(local_out_nb_line_slice+output_height_slice)
  // input and output images are interleaved
  // if half==1 => we are dealing with an U or V component => height and width are / 2 => for speed sake, we use >>half
  unsigned int local_input_width = input_width >> half;
  unsigned int local_output_width = output_width >> half;
  unsigned int local_out_nb_col_slice = out_nb_col_slice >> half;
  unsigned int local_out_nb_line_slice = out_nb_line_slice >> half;
  uint8_t *input_line_p[input_height_slice];
  uint8_t *output_line_p[output_height_slice];
  unsigned int *H_var, *W_var, *H, *W;
  uint8_t *u_c_p;
  int j, nb_H, nb_W, in_line, first_line, out_line;
  int out_col_slice, out_col;
  int out_line_slice;
  int current_line, last_line;
  unsigned long int value = 0;

  //Init
  mjpeg_debug ("Start of average");
  //End of INIT

  if (interlaced == Y4M_ILACE_NONE)
    {
      mjpeg_debug ("Non-interlaced downscaling");
      // output frames are not interlaced => averaging will generate output lines is growing order, 
      // output_height_slice lines per output_height_slice lines. 

      // More important is the following question :
      // is input frames CONTENT interlaced or not (input frames are then said progressives). If content is interlaced (odd lines corresponds to time t 
      // and even lines to another time t+dt with dt=1/(2*frame_rate)), then input frames should be DEINTERLACED prior to averaging
      // So, if input frames are interlaced, we will suppose they are progressives
      // TO BE PROGRAMMED, cf. FlaskMPEG
      for (out_line_slice = 0; out_line_slice < local_out_nb_line_slice;
	   out_line_slice++)
	{
	  u_c_p = input +
	    out_line_slice * input_height_slice * local_input_width;
	  for (in_line = 0; in_line < input_height_slice; in_line++)
	    {
	      input_line_p[in_line] = u_c_p;
	      u_c_p += local_input_width;
	    }
	  u_c_p =
	    output +
	    out_line_slice * output_height_slice * local_output_width;
	  for (out_line = 0; out_line < output_height_slice; out_line++)
	    {
	      output_line_p[out_line] = u_c_p;
	      u_c_p += local_output_width;
	    }
	  for (out_col_slice = 0; out_col_slice < local_out_nb_col_slice;
	       out_col_slice++)
	    {
	      H = height_coeff;
	      first_line = 0;
	      for (out_line = 0; out_line < output_height_slice; out_line++)
		{
		  nb_H = *H;
		  W = width_coeff;
		  for (out_col = 0; out_col < output_width_slice; out_col++)
		    {
		      H_var = H + 1;
		      nb_W = *W;
		      value = 0;
		      last_line = first_line + nb_H;
		      for (current_line = first_line;
			   current_line < last_line; current_line++)
			{
			  W_var = W + 1;
			  // we average nb_W columns of input : we increment input_line_p[current_line] and W_var each time, except for the last value where 
			  // input_line_p[current_line] and W_var do not need to be incremented, but H_var does
			  for (j = 0; j < nb_W - 1; j++)
			    value +=
			      (*H_var) * (*W_var++) *
			      (*input_line_p[current_line]++);
			  value +=
			    (*H_var++) * (*W_var) *
			    (*input_line_p[current_line]);
			}
		      //                Straiforward implementation is 
		      //                *(output_line_p[out_line]++)=value/diviseur;
		      //                round_off_error=value%diviseur;
		      //                Here, we speed up things but using the pretabulated nearest integral parts
		      *(output_line_p[out_line]++) = divide[value];
		      W += nb_W + 1;
		    }
		  H += nb_H + 1;
		  first_line += nb_H - 1;
		  input_line_p[first_line] -= input_width_slice - 1;
		  // If last line of input is to be reused in next loop, 
		  // make the pointer points at the correct place
		}
	      input_line_p[first_line] += input_width_slice - 1;
	      for (in_line = 0; in_line < input_height_slice; in_line++)
		input_line_p[in_line]++;
	    }
	}
    }
  else
    {
      // output frames are interlaced, line numbers gioes from 0 to n-1. 
      // Therefore, downscaling is done between odd lines, then between even lines, but we do not mix odd and even lines.
      // So, we have to calculate the even and odd part of out_line_slice. 
      // If the odd part is naturally out_line_slice % 2, the even part is (out_line_slice/2)*2. For speed reason, 
      // the even part will be xritten as out_line_slice & ~(unsigned int) 1
      mjpeg_debug ("Interlaced downscaling");
      for (out_line_slice = 0; out_line_slice < local_out_nb_line_slice;
	   out_line_slice++)
	{
	  u_c_p =
	    input +
	    ((out_line_slice & ~(unsigned int) 1) * input_height_slice +
	     out_line_slice % 2) * local_input_width;
	  for (in_line = 0; in_line < input_height_slice; in_line++)
	    {
	      input_line_p[in_line] = u_c_p;
	      u_c_p += 2 * local_input_width;
	    }
	  u_c_p =
	    output +
	    ((out_line_slice & ~(unsigned int) 1) * output_height_slice +
	     out_line_slice % 2) * local_output_width;
	  for (out_line = 0; out_line < output_height_slice; out_line++)
	    {
	      output_line_p[out_line] = u_c_p;
	      u_c_p += 2 * local_output_width;
	    }

	  for (out_col_slice = 0; out_col_slice < local_out_nb_col_slice;
	       out_col_slice++)
	    {
	      H = height_coeff;
	      first_line = 0;
	      for (out_line = 0; out_line < output_height_slice; out_line++)
		{
		  nb_H = *H;
		  W = width_coeff;
		  for (out_col = 0; out_col < output_width_slice; out_col++)
		    {
		      H_var = H + 1;
		      nb_W = *W;
		      value = 0;
		      last_line = first_line + nb_H;
		      for (current_line = first_line;
			   current_line < last_line; current_line++)
			{
			  W_var = W + 1;
			  // we average nb_W columns of input : we increment input_line_p[current_line] and W_var each time, except for the last value where 
			  // input_line_p[current_line] and W_var do not need to be incremented, but H_var does
			  for (j = 0; j < nb_W - 1; j++)
			    value +=
			      (*H_var) * (*W_var++) *
			      (*input_line_p[current_line]++);
			  value +=
			    (*H_var++) * (*W_var) *
			    (*input_line_p[current_line]);
			}
		      //                Straiforward implementation is 
		      //                *(output_line_p[out_line]++)=value/diviseur;
		      //                round_off_error=value%diviseur;
		      //                Here, we speed up things but using the pretabulated integral parts
		      *(output_line_p[out_line]++) = divide[value];
		      W += nb_W + 1;
		    }
		  H += nb_H + 1;
		  first_line += nb_H - 1;
		  input_line_p[first_line] -= input_width_slice - 1;
		  // If last line of input is to be reused in next loop, 
		  // make the pointer points at the correct place
		}
	      input_line_p[first_line] += input_width_slice - 1;
	      for (in_line = 0; in_line < input_height_slice; in_line++)
		input_line_p[in_line]++;
	    }
	}
    }
  mjpeg_debug ("End of average");
  return (0);
}

// *************************************************************************************



// *************************************************************************************
int
average_specific (uint8_t * input, uint8_t * output,
		  unsigned int *height_coeff, unsigned int *width_coeff,
		  unsigned int half)
{
  // This function gathers code that are speed enhanced due to specific downscaling ratios     
  unsigned int line_index;
  unsigned int local_output_active_height = output_active_height >> half;
  unsigned int local_input_width = input_width >> half;
  unsigned int local_output_width = output_width >> half;
  unsigned int local_output_active_width = output_active_width >> half;
  unsigned int local_out_nb_col_slice = out_nb_col_slice >> half;
  unsigned int local_out_nb_line_slice = out_nb_line_slice >> half;
  unsigned int number,in_line_offset,out_line_offset;
  // specific==1, 4
  uint8_t temp_uint8_t;
  uint8_t *in_line_p;
  uint8_t *out_line_p;
  unsigned int *W_var, *W;
  int j, nb_W;
  unsigned int out_col_slice, out_col;
  int treatment = 0;
  unsigned long int value = 0, value1 = 0, value2 = 0, value3 = 0;
  // Specific==2
  uint8_t *in_first_line_p, *in_second_line_p;
  unsigned int out_line;
  // specific=3
  unsigned char *u_c_p;
  unsigned int in_line;
  uint8_t *input_line_p[input_height_slice];
  // specific=5
  unsigned int *H_var, *H;
  unsigned int nb_H, first_line, last_line, current_line;
  unsigned int out_line_slice;
  uint8_t *output_line_p[output_height_slice];

  //Init
  mjpeg_debug ("Start of average_specific %u", specific);
  //End of INIT

  if (specific == 1)
    {
      treatment = 1;
      mjpeg_debug ("Non interlaced and/or interlaced treatment");
      // We just take the average along the width, not the height, line per line
      // Infered from average, with input_height_slice=output_height_slice=1;
      for (line_index = 0; line_index < local_output_active_height;
	   line_index++)
	{
	  in_line_p = input + line_index * local_input_width;
	  out_line_p = output + line_index * local_output_width;
	  for (out_col_slice = 0; out_col_slice < local_out_nb_col_slice;
	       out_col_slice++)
	    {
	      W = width_coeff;
	      for (out_col = 0; out_col < output_width_slice; out_col++)
		{
		  nb_W = *W;
		  value = 0;
		  W_var = W + 1;
		  for (j = 0; j < nb_W - 1; j++)
		    value += (*W_var++) * (*in_line_p++);
		  value += (*W_var) * (*in_line_p);
		  *(out_line_p++) = divide[value];
		  W += nb_W + 1;
		}
	      in_line_p++;
	    }
	}
    }



  if (specific == 2)
    {
      treatment = 2;
      // SPECIAL FAST Full_size to VCD downscaling : 2to1 for width and height
      // Since 2 to 1 height dowscaling, no need for line switching
      // Drawback: slight distortion on width
      if (interlaced == Y4M_ILACE_NONE)
	{
	  mjpeg_debug ("Non-interlaced downscaling");
	  for (out_line = 0; out_line < local_output_active_height;
	       out_line++)
	    {
	      in_first_line_p = input + out_line * (local_input_width << 1);
	      in_second_line_p = in_first_line_p + local_input_width;
	      out_line_p = output + out_line * local_output_width;
	      for (out_col = 0; out_col < local_output_active_width;
		   out_col++)
		{
		  // Division of integers is always made by default. This results in a systematic drift towards smaller values. 
		  // What we really need,
		  // is a division that takes the nearest integer. 
		  // So, we add 1/2 of the divider to the value to be divided
//                *(out_line_p++) =
//                  (2 + *(in_first_line_p) + *(in_first_line_p + 1) +
//                   *(in_second_line_p) + *(in_second_line_p + 1)) >> 2;
		  *(out_line_p++) =
		    divide[*(in_first_line_p) + *(in_first_line_p + 1) +
			   *(in_second_line_p) + *(in_second_line_p + 1)];
		  in_first_line_p += 2;
		  in_second_line_p += 2;
		}
	    }
	}
      else
	{
	  mjpeg_debug ("Interlaced downscaling");
	  for (line_index = 0; line_index < local_output_active_height;
	       line_index++)
	    {
	      in_first_line_p =
		input + (((line_index & ~(unsigned int) 1) << 1) +
			 (line_index % 2)) * local_input_width;
	      in_second_line_p = in_first_line_p + (local_input_width << 1);
	      out_line_p = output + line_index * local_output_width;
	      for (out_col = 0; out_col < local_output_active_width;
		   out_col++)
		{
/*		  *(out_line_p++) =
		    (2 + *(in_first_line_p) + *(in_first_line_p + 1) +
		     *(in_second_line_p) + *(in_second_line_p + 1)) >> 2;
*/ *(out_line_p++) = divide[*(in_first_line_p) + *(in_first_line_p + 1) +
											*
											(in_second_line_p)
											+
											*
											(in_second_line_p
											 +
											 1)];
		  in_first_line_p += 2;
		  in_second_line_p += 2;
		}
	    }
	}
    }


  if (specific == 3)
    {
      treatment = 3;
      // input_height_slice=2, output_height_slice=1 => input lines will be summed together.
      // infered from average with output_height_slice=1 and explicity writting of the for(in_line=0;in_line<input_height_slice;in_line++)
      // Special VCD downscaling without width distortion
      if (interlaced == Y4M_ILACE_NONE)
	{
	  mjpeg_debug ("Non-interlaced downscaling");
	  for (out_line = 0; out_line < local_output_active_height;
	       out_line++)
	    {
	      input_line_p[0] =
		input + out_line * input_height_slice * local_input_width;
	      input_line_p[1] = input_line_p[0] + local_input_width;
	      out_line_p = output + out_line * local_output_width;
	      for (out_col_slice = 0;
		   out_col_slice < local_out_nb_col_slice; out_col_slice++)
		{
		  W = width_coeff;
		  for (out_col = 0; out_col < output_width_slice; out_col++)
		    {
		      nb_W = *W;
		      value = 0;
		      W_var = W + 1;
		      for (j = 0; j < nb_W - 1; j++)
			value +=
			  (*W_var++) * ((*input_line_p[0]++) +
					(*input_line_p[1]++));
		      value +=
			(*W_var) * (*input_line_p[0] + *input_line_p[1]);
		      *(out_line_p++) = divide[value];
		      W += nb_W + 1;
		    }
		  input_line_p[0]++;
		  input_line_p[1]++;
		}
	    }
	}
      else
	{
	  mjpeg_debug ("Interlaced downscaling");
	  for (line_index = 0; line_index < local_output_active_height;
	       line_index++)
	    {
	      input_line_p[0] =
		input +
		(input_height_slice * (line_index & ~(unsigned int) 1) +
		 line_index % 2) * local_input_width;
	      input_line_p[1] = input_line_p[0] + 2 * local_input_width;
	      out_line_p = output + line_index * local_output_width;
	      for (out_col_slice = 0;
		   out_col_slice < (out_nb_col_slice >> half);
		   out_col_slice++)
		{
		  W = width_coeff;
		  for (out_col = 0; out_col < output_width_slice; out_col++)
		    {
		      nb_W = *W;
		      value = 0;
		      W_var = W + 1;
		      for (j = 0; j < nb_W - 1; j++)
			value +=
			  (*W_var++) * ((*input_line_p[0]++) +
					(*input_line_p[1]++));
		      value +=
			(*W_var) * (*input_line_p[0] + *input_line_p[1]);
		      *(out_line_p++) = divide[value];
		      W += nb_W + 1;
		    }
		  input_line_p[0]++;
		  input_line_p[1]++;
		}
	    }
	}

    }

  if (specific == 4)
    {
      // just a copy: we copy line per line (warning! these lines are output_width long BUT we only copy output_active_width length of them)
      treatment = 4;
      mjpeg_debug ("Non-interlaced or interlaced downscaling");
      for (line_index = 0; line_index < local_output_active_height;
	   line_index++)
//       ;
	memcpy (output + line_index * local_output_width,
		input + line_index * local_input_width,
		local_output_active_width);
    }

  if (specific == 5)
    {
      // We downscale only lines along the height, not the width
      treatment = 5;
      if (interlaced == Y4M_ILACE_NONE)
	{
	  mjpeg_debug ("Non-interlaced downscaling");
	  for (out_line_slice = 0; out_line_slice < local_out_nb_line_slice;
	       out_line_slice++)
	    {
	      for (in_line = 0; in_line < input_height_slice; in_line++)
		{
		  number = out_line_slice * input_height_slice + in_line;
		  input_line_p[in_line] = input + number * local_input_width;
		}
	      u_c_p =
		output +
		out_line_slice * output_height_slice * local_output_width;
	      for (out_line = 0; out_line < output_height_slice; out_line++)
		{
		  output_line_p[out_line] = u_c_p;
		  u_c_p += local_output_width;
		}
	      for (out_col = 0; out_col < local_output_active_width;
		   out_col++)
		{
		  H = height_coeff;
		  first_line = 0;
		  for (out_line = 0; out_line < output_height_slice;
		       out_line++)
		    {
		      nb_H = *H;
		      H_var = H + 1;
		      value = 0;
		      last_line = first_line + nb_H;
		      for (current_line = first_line;
			   current_line < last_line; current_line++)
			value += (*H_var++) * (*input_line_p[current_line]);
		      *(output_line_p[out_line]++) = divide[value];
		      H += nb_H + 1;
		      first_line += nb_H - 1;
		    }
		  for (in_line = 0; in_line < input_height_slice; in_line++)
		    input_line_p[in_line]++;
		}
	    }
	}
      else
	{
	  mjpeg_debug ("Interlaced downscaling");
	  for (out_line_slice = 0; out_line_slice < local_out_nb_line_slice;
	       out_line_slice++)
	    {
	      u_c_p =
		input +
		((out_line_slice & ~(unsigned int) 1) * input_height_slice +
		 out_line_slice % 2) * local_input_width;
	      for (in_line = 0; in_line < input_height_slice; in_line++)
		{
		  input_line_p[in_line] = u_c_p;
		  u_c_p += 2 * local_input_width;
		}
	      u_c_p =
		output +
		((out_line_slice & ~(unsigned int) 1) *
		 output_height_slice +
		 out_line_slice % 2) * local_output_width;
	      for (out_line = 0; out_line < output_height_slice; out_line++)
		{
		  output_line_p[out_line] = u_c_p;
		  u_c_p += 2 * local_output_width;
		}

	      for (out_col = 0; out_col < local_output_active_width;
		   out_col++)
		{
		  H = height_coeff;
		  first_line = 0;
		  for (out_line = 0; out_line < output_height_slice;
		       out_line++)
		    {
		      nb_H = *H;
		      H_var = H + 1;
		      value = 0;
		      last_line = first_line + nb_H;
		      for (current_line = first_line;
			   current_line < last_line; current_line++)
			value += (*H_var++) * (*input_line_p[current_line]);
		      *(output_line_p[out_line]++) = divide[value];
		      H += nb_H + 1;
		      first_line += nb_H - 1;
		    }
		  for (in_line = 0; in_line < input_height_slice; in_line++)
		    input_line_p[in_line]++;
		}
	    }
	}
    }

  if (specific == 6)
    {
      // Dedicated SVCD: we downscale 3 for 2 on width, and 1 to 1 on height. Infered from specific=1
      // For width, W points are "2 2 1 2 1 2" => we can explicitely write down the calculs of value
      treatment = 6;
      mjpeg_debug ("Non interlaced and/or interlaced treatment");
      in_line_offset  = local_input_width  - local_out_nb_col_slice * 3;
      out_line_offset = local_output_width - local_out_nb_col_slice * 2;
      in_line_p  = input;
      out_line_p = output;
      for (line_index = 0; line_index < local_output_active_height;
	   line_index++)
	{
//	  in_line_p = input + line_index * local_input_width;
//	  out_line_p = output + line_index * local_output_width;
	  for (out_col_slice = 0; out_col_slice < local_out_nb_col_slice;
	       out_col_slice++)
	    {
	      temp_uint8_t = in_line_p[1];
//	      *(out_line_p++) = divide[((*in_line_p) << 1) + temp_uint8_t];
	       *(out_line_p++) = (((*in_line_p) << 1) + temp_uint8_t + 1) / 3;
	      in_line_p += 2;
//	      *(out_line_p++) = divide[temp_uint8_t + ((*in_line_p++) << 1)];
	      *(out_line_p++) = (temp_uint8_t + ((*in_line_p++) << 1) + 1) / 3;	      
	    }
	   in_line_p  += in_line_offset;
	   out_line_p += out_line_offset;
	}
    }

  if (specific == 7)
    {
      // Dedicated to WIDE2STD alone downscaling: 4 to 3 on height, width not downscaled
      // For the height, H is equal to 2 3 1 2 2 2 2 1 3
      // Infered from specific=5
      treatment = 7;
      if (interlaced == Y4M_ILACE_NONE)
	{
	  mjpeg_debug ("Non-interlaced downscaling");
	  for (out_line_slice = 0; out_line_slice < local_out_nb_line_slice;
	       out_line_slice++)
	    {
	      input_line_p[0] =
		input + (4 * out_line_slice + 0) * local_input_width;
	      input_line_p[1] =
		input + (4 * out_line_slice + 1) * local_input_width;
	      input_line_p[2] =
		input + (4 * out_line_slice + 2) * local_input_width;
	      input_line_p[3] =
		input + (4 * out_line_slice + 3) * local_input_width;
	      output_line_p[0] =
		output + 3 * out_line_slice * local_output_width;
	      output_line_p[1] = output_line_p[0] + local_output_width;
	      output_line_p[2] = output_line_p[1] + local_output_width;
	      for (out_col = 0; out_col < local_output_active_width;
		   out_col++)
		{
		  *(output_line_p[0]++) =
		    divide[3 * (*input_line_p[0]++) + (*input_line_p[1])];
		  *(output_line_p[1]++) =
		    divide[2 * (*input_line_p[1]++) + 2 * (*input_line_p[2])];
		  *(output_line_p[2]++) =
		    divide[(*input_line_p[2]++) + 3 * (*input_line_p[3]++)];
		}
	    }
	}
      else
	{
	  mjpeg_debug ("Interlaced downscaling");
	  for (out_line_slice = 0; out_line_slice < local_out_nb_line_slice;
	       out_line_slice++)
	    {
	      u_c_p =
		input +
		((out_line_slice & ~(unsigned int) 1) * input_height_slice +
		 (out_line_slice % 2)) * local_input_width;
	      for (in_line = 0; in_line < input_height_slice; in_line++)
		{
		  input_line_p[in_line] = u_c_p;
		  u_c_p += 2 * local_input_width;
		}
	      u_c_p =
		output +
		((out_line_slice & ~(unsigned int) 1) *
		 output_height_slice +
		 (out_line_slice % 2)) * local_output_width;
	      for (out_line = 0; out_line < output_height_slice; out_line++)
		{
		  output_line_p[out_line] = u_c_p;
		  u_c_p += 2 * local_output_width;
		}

	      for (out_col = 0; out_col < local_output_active_width;
		   out_col++)
		{
		  *(output_line_p[0]++) =
		    divide[3 * (*input_line_p[0]++) + (*input_line_p[1])];
		  *(output_line_p[1]++) =
		    divide[2 * (*input_line_p[1]++) + 2 * (*input_line_p[2])];
		  *(output_line_p[2]++) =
		    divide[(*input_line_p[2]++) + 3 * (*input_line_p[3]++)];
		}
	    }
	}
    }


  if (specific == 8)
    {
      // Special FASTWIDE2VCD mode: 2 to 1 for width, and 8 to 3 for height
      // *8 is replaced by <<3 and 2* by <<1
      // Drawback: slight distortion on width
      // Coefficient for horizontal downscaling : (3,3,2), (1,3,3,1), (2,3,3)
      treatment = 8;
      if (interlaced == Y4M_ILACE_NONE)
	{
	  mjpeg_debug ("Non-interlaced downscaling");
	  for (out_line_slice = 0; out_line_slice < local_out_nb_line_slice;
	       out_line_slice++)
	    {
	      input_line_p[0] =
		input + (8 * out_line_slice + 0) * local_input_width;
	      input_line_p[1] =
		input + (8 * out_line_slice + 1) * local_input_width;
	      input_line_p[2] =
		input + (8 * out_line_slice + 2) * local_input_width;
	      input_line_p[3] =
		input + (8 * out_line_slice + 3) * local_input_width;
	      input_line_p[4] =
		input + (8 * out_line_slice + 4) * local_input_width;
	      input_line_p[5] =
		input + (8 * out_line_slice + 5) * local_input_width;
	      input_line_p[6] =
		input + (8 * out_line_slice + 6) * local_input_width;
	      input_line_p[7] =
		input + (8 * out_line_slice + 7) * local_input_width;
	      output_line_p[0] =
		output + out_line_slice * 3 * local_output_width;
	      output_line_p[1] = output_line_p[0] + local_output_width;
	      output_line_p[2] = output_line_p[1] + local_output_width;
	      for (out_col = 0; out_col < local_output_active_width;
		   out_col++)
		{
		  *(output_line_p[0]++) =
		    divide[3 * (*input_line_p[0] + (*input_line_p[0] + 1)) +
			   3 * (*input_line_p[1] + (*input_line_p[1] + 1)) +
			   2 * (*input_line_p[2] + (*input_line_p[2] + 1))];
		  input_line_p[0] += 2;
		  input_line_p[1] += 2;
		  *(output_line_p[1]++) = divide[(*input_line_p[2] +
						  (*input_line_p[2] + 1)) +
						 3 * (*input_line_p[3] +
						      (*input_line_p[3] +
						       1)) +
						 3 * (*input_line_p[4] +
						      (*input_line_p[4] +
						       1)) +
						 (*input_line_p[5] +
						  (*input_line_p[5] + 1))];
		  input_line_p[2] += 2;
		  input_line_p[3] += 2;
		  input_line_p[4] += 2;
		  *(output_line_p[2]++) =
		    divide[2 * (*input_line_p[5] + (*input_line_p[5] + 1)) +
			   3 * (*input_line_p[6] + (*input_line_p[6] + 1)) +
			   3 * (*input_line_p[7] + (*input_line_p[7] + 1))];
		  input_line_p[5] += 2;
		  input_line_p[6] += 2;
		  input_line_p[7] += 2;
		}
	    }
	}
      else
	{
	  mjpeg_debug ("Interlaced downscaling");
	  for (out_line_slice = 0; out_line_slice < local_out_nb_line_slice;
	       out_line_slice++)
	    {
	      input_line_p[0] =
		input + (((out_line_slice & ~(unsigned int) 1) << 3) +
			 (out_line_slice % 2)) * local_input_width;
	      input_line_p[1] = input_line_p[0] + (local_input_width << 1);
	      input_line_p[2] = input_line_p[1] + (local_input_width << 1);
	      input_line_p[3] = input_line_p[2] + (local_input_width << 1);
	      input_line_p[4] = input_line_p[3] + (local_input_width << 1);
	      input_line_p[5] = input_line_p[4] + (local_input_width << 1);
	      input_line_p[6] = input_line_p[5] + (local_input_width << 1);
	      input_line_p[7] = input_line_p[6] + (local_input_width << 1);
	      output_line_p[0] =
		output + ((out_line_slice & ~(unsigned int) 1) * 3 +
			  (out_line_slice % 2)) * local_output_width;
	      output_line_p[1] = output_line_p[0] + (local_output_width << 1);
	      output_line_p[2] = output_line_p[1] + (local_output_width << 1);
	      for (out_col = 0; out_col < local_output_active_width;
		   out_col++)
		{
		  *(output_line_p[0]++) =
		    divide[3 * (*input_line_p[0] + (*input_line_p[0] + 1)) +
			   3 * (*input_line_p[1] + (*input_line_p[1] + 1)) +
			   2 * (*input_line_p[2] + (*input_line_p[2] + 1))];
		  input_line_p[0] += 2;
		  input_line_p[1] += 2;
		  *(output_line_p[1]++) = divide[(*input_line_p[2] +
						  (*input_line_p[2] + 1)) +
						 3 * (*input_line_p[3] +
						      (*input_line_p[3] +
						       1)) +
						 3 * (*input_line_p[4] +
						      (*input_line_p[4] +
						       1)) +
						 (*input_line_p[5] +
						  (*input_line_p[5] + 1))];
		  input_line_p[2] += 2;
		  input_line_p[3] += 2;
		  input_line_p[4] += 2;
		  *(output_line_p[2]++) =
		    divide[2 * (*input_line_p[5] + (*input_line_p[5] + 1)) +
			   3 * (*input_line_p[6] + (*input_line_p[6] + 1)) +
			   3 * (*input_line_p[7] + (*input_line_p[7] + 1))];
		  input_line_p[5] += 2;
		  input_line_p[6] += 2;
		  input_line_p[7] += 2;
		}
	    }
	}
    }

  if (specific == 9)
    {
      // Special WIDE2VCD, on height : 8->3
      treatment = 9;
      if (interlaced == Y4M_ILACE_NONE)
	{
	  mjpeg_debug ("Non-interlaced downscaling");
	  // input frames are not interlaced, as are output frames.
	  // So, we average input_height_slice following lines into output_height_slice lines
	  for (out_line_slice = 0; out_line_slice < local_out_nb_line_slice;
	       out_line_slice++)
	    {
	      for (in_line = 0; in_line < input_height_slice; in_line++)
		{
		  number = out_line_slice * input_height_slice + in_line;
		  input_line_p[in_line] = input + number * local_input_width;
		}
	      u_c_p =
		output +
		out_line_slice * output_height_slice * local_output_width;
	      for (out_line = 0; out_line < output_height_slice; out_line++)
		{
		  output_line_p[out_line] = u_c_p;
		  u_c_p += local_output_width;
		}
	      for (out_col_slice = 0;
		   out_col_slice < local_out_nb_col_slice; out_col_slice++)
		{
		  W = width_coeff;
		  for (out_col = 0; out_col < output_width_slice; out_col++)
		    {
		      nb_W = *W;
		      value1 = value2 = value3 = 0;
		      W_var = W + 1;
		      for (j = 0; j < nb_W - 1; j++)
			{
			  value1 +=
			    (*W_var) * (3 * (*input_line_p[0]++) +
					3 * (*input_line_p[1]++) +
					2 * (*input_line_p[2]));
			  value2 +=
			    (*W_var) * ((*input_line_p[2]++) +
					3 * (*input_line_p[3]++) +
					3 * (*input_line_p[4]++) +
					(*input_line_p[5]));
			  value3 +=
			    (*W_var++) * (2 * (*input_line_p[5]++) +
					  3 * (*input_line_p[6]++) +
					  3 * (*input_line_p[7]++));
			}
		      value1 +=
			(*W_var) * (3 * (*input_line_p[0]) +
				    3 * (*input_line_p[1]) +
				    2 * (*input_line_p[2]));
		      value2 +=
			(*W_var) * ((*input_line_p[2]) +
				    3 * (*input_line_p[3]) +
				    3 * (*input_line_p[4]) +
				    (*input_line_p[5]));
		      value3 +=
			(*W_var) * (2 * (*input_line_p[5]) +
				    3 * (*input_line_p[6]) +
				    3 * (*input_line_p[7]));
		      *(output_line_p[0]++) = divide[value1];
		      *(output_line_p[1]++) = divide[value2];
		      *(output_line_p[2]++) = divide[value3];
		      W += nb_W + 1;
		    }
		  input_line_p[0]++;
		  input_line_p[1]++;
		  input_line_p[2]++;
		  input_line_p[3]++;
		  input_line_p[4]++;
		  input_line_p[5]++;
		  input_line_p[6]++;
		  input_line_p[7]++;
		}
	    }

	}
      else
	{
	  mjpeg_debug ("Interlaced downscaling");
	  for (out_line_slice = 0; out_line_slice < local_out_nb_line_slice;
	       out_line_slice++)
	    {
	      u_c_p =
		input +
		((out_line_slice & ~(unsigned int) 1) * input_height_slice +
		 (out_line_slice % 2)) * local_input_width;
	      for (in_line = 0; in_line < input_height_slice; in_line++)
		{
		  input_line_p[in_line] = u_c_p;
		  u_c_p += 2 * local_input_width;
		}
	      u_c_p =
		output +
		((out_line_slice & ~(unsigned int) 1) *
		 output_height_slice +
		 (out_line_slice % 2)) * local_output_width;
	      for (out_line = 0; out_line < output_height_slice; out_line++)
		{
		  output_line_p[out_line] = u_c_p;
		  u_c_p += 2 * local_output_width;
		}

	      for (out_col_slice = 0;
		   out_col_slice < local_out_nb_col_slice; out_col_slice++)
		{
		  H = height_coeff;
		  first_line = 0;
		  for (out_line = 0; out_line < output_height_slice;
		       out_line++)
		    {
		      nb_H = *H;
		      W = width_coeff;
		      for (out_col = 0; out_col < output_width_slice;
			   out_col++)
			{
			  H_var = H + 1;
			  nb_W = *W;
			  value = 0;
			  last_line = first_line + nb_H;
			  for (current_line = first_line;
			       current_line < last_line; current_line++)
			    {
			      W_var = W + 1;
			      // we average nb_W columns of input : we increment input_line_p[current_line] and W_var each time, except for the last value where 
			      // input_line_p[current_line] and W_var do not need to be incremented, but H_var does
			      for (j = 0; j < nb_W - 1; j++)
				value +=
				  (*H_var) * (*W_var++) *
				  (*input_line_p[current_line]++);
			      value +=
				(*H_var++) * (*W_var) *
				(*input_line_p[current_line]);
			    }
			  //                Straiforward implementation is 
			  //                *(output_line_p[out_line]++)=value/diviseur;
			  //                round_off_error=value%diviseur;
			  //                Here, we speed up things but using the pretabulated integral parts
			  *(output_line_p[out_line]++) = divide[value];
			  W += nb_W + 1;
			}
		      H += nb_H + 1;
		      first_line += nb_H - 1;
		      input_line_p[first_line] -= input_width_slice - 1;
		      // If last line of input is to be reused in next loop, 
		      // make the pointer points at the correct place
		    }
		  input_line_p[first_line] += input_width_slice - 1;
		  for (in_line = 0; in_line < input_height_slice; in_line++)
		    input_line_p[in_line]++;
		}
	    }
	}
    }



  if (treatment == 0)
    mjpeg_error_exit1 ("Unknown specific downscaling treatment %u",
		       specific);

  mjpeg_debug ("End of average_specific");
  return (0);
}