1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
|
/* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef ML_DTYPES_FLOAT8_H_
#define ML_DTYPES_FLOAT8_H_
// 8-bit Floating Point Interchange Format, as described by
// https://arxiv.org/abs/2209.05433
// https://www.opencompute.org/documents/ocp-8-bit-floating-point-specification-ofp8-revision-1-0-2023-12-01-pdf-1
// https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
#include <algorithm>
#include <climits>
#include <cmath>
#include <cstdint>
#include <limits>
#include <ostream>
#include <type_traits>
#include <utility>
#ifdef __has_include
#if __has_include(<version>)
#include <version>
#endif
#endif
#if (defined(__cpp_lib_bitops) && __cpp_lib_bitops >= 201907L)
#include <bit>
#endif
#include "Eigen/Core"
namespace ml_dtypes {
namespace float8_internal {
// Forward-declarations of classes.
class float8_e3m4;
class float8_e4m3;
class float8_e4m3fn;
class float8_e4m3fnuz;
class float8_e4m3b11fnuz;
class float8_e5m2;
class float8_e5m2fnuz;
class float8_e8m0fnu;
template <typename Derived>
class float8_base {
protected:
// Constructor tag to allow constexpr construction from bit representation.
struct ConstructFromRepTag {};
constexpr float8_base(uint8_t rep, ConstructFromRepTag) : rep_{rep} {}
public:
static constexpr int kBits = 8;
constexpr float8_base() : rep_(0) {}
template <typename T>
explicit EIGEN_DEVICE_FUNC float8_base(
T i, std::enable_if_t<std::is_integral_v<T>, int> = 0)
: float8_base(ConvertFrom(static_cast<float>(i)).rep(),
ConstructFromRepTag{}) {}
template <typename T>
explicit EIGEN_DEVICE_FUNC float8_base(
T f, std::enable_if_t<std::is_floating_point_v<T>, int> = 0)
: float8_base(ConvertFrom(f).rep(), ConstructFromRepTag{}) {}
explicit EIGEN_DEVICE_FUNC float8_base(Eigen::bfloat16 bf16)
: float8_base(ConvertFrom(bf16).rep(), ConstructFromRepTag{}) {}
explicit EIGEN_DEVICE_FUNC float8_base(Eigen::half f16)
: float8_base(ConvertFrom(f16).rep(), ConstructFromRepTag{}) {}
constexpr uint8_t rep() const { return rep_; }
template <typename T,
typename EnableIf = std::enable_if<std::is_arithmetic_v<T>>>
explicit EIGEN_DEVICE_FUNC operator T() const {
return static_cast<T>(static_cast<float>(derived()));
}
explicit EIGEN_DEVICE_FUNC operator double() const {
return ConvertTo<double>(derived());
}
EIGEN_DEVICE_FUNC operator float() const {
return ConvertTo<float>(derived());
}
EIGEN_DEVICE_FUNC operator Eigen::bfloat16() const {
return ConvertTo<Eigen::bfloat16>(derived());
}
EIGEN_DEVICE_FUNC operator Eigen::half() const {
return ConvertTo<Eigen::half>(derived());
}
explicit EIGEN_DEVICE_FUNC operator bool() const {
return (rep() & 0x7F) != 0;
}
constexpr Derived operator-() const {
return Derived(static_cast<uint8_t>(rep() ^ 0x80), ConstructFromRepTag{});
}
constexpr const Derived& derived() const {
return *static_cast<const Derived*>(this);
}
constexpr Derived& derived() { return *static_cast<Derived*>(this); }
static constexpr Derived FromRep(uint8_t rep) {
return Derived(rep, ConstructFromRepTag{});
}
// Conversions allowing saturation and truncation.
template <bool kSaturate = false, bool kTruncate = false, typename From>
static inline EIGEN_DEVICE_FUNC Derived ConvertFrom(From from);
template <typename To, bool kSaturate = false, bool kTruncate = false>
static inline EIGEN_DEVICE_FUNC To ConvertTo(Derived from);
// Operators via float32.
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Derived
operator+(const Derived& other) const {
return Derived{float{derived()} + float{other}};
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Derived
operator-(const Derived& other) const {
return Derived{float{derived()} - float{other}};
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Derived
operator*(const Derived& other) const {
return Derived{float{derived()} * float{other}};
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Derived
operator/(const Derived& other) const {
return Derived{float{derived()} / float{other}};
}
constexpr bool operator==(const Derived& other) const {
return Compare(derived(), other) == Ordering::kEquivalent;
}
constexpr bool operator!=(const Derived& other) const {
return Compare(derived(), other) != Ordering::kEquivalent;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<(
const Derived& other) const {
return Compare(derived(), other) == Ordering::kLess;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<=(
const Derived& other) const {
return Compare(derived(), other) <= Ordering::kEquivalent;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>(
const Derived& other) const {
return Compare(derived(), other) == Ordering::kGreater;
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>=(
const Derived& other) const {
Ordering ordering = Compare(derived(), other);
return ordering == Ordering::kGreater || ordering == Ordering::kEquivalent;
}
// Compound assignment.
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Derived& operator+=(
const Derived& other) {
derived() = derived() + other;
return derived();
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Derived& operator-=(
const Derived& other) {
derived() = derived() - other;
return derived();
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Derived& operator*=(
const Derived& other) {
derived() = derived() * other;
return derived();
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Derived& operator/=(
const Derived& other) {
derived() = derived() / other;
return derived();
}
private:
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC std::pair<uint8_t, uint8_t>
SignAndMagnitude(Derived x) {
const uint8_t x_abs_bits =
Eigen::numext::bit_cast<uint8_t>(Eigen::numext::abs(x));
const uint8_t x_bits = Eigen::numext::bit_cast<uint8_t>(x);
const uint8_t x_sign = (x_bits ^ x_abs_bits) << (CHAR_BIT - Derived::kBits);
return {x_sign, x_abs_bits};
}
static EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC int8_t
SignAndMagnitudeToTwosComplement(uint8_t sign, uint8_t magnitude) {
return magnitude ^ (static_cast<int8_t>(sign) < 0 ? -1 : 0);
}
enum Ordering : int8_t {
kLess = -1,
kEquivalent = 0,
kGreater = 1,
kUnordered = 2,
};
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC friend Ordering Compare(
const Derived& lhs, const Derived& rhs) {
if (Eigen::numext::isnan(lhs) || Eigen::numext::isnan(rhs)) {
return Ordering::kUnordered;
}
auto [lhs_sign, lhs_mag] = SignAndMagnitude(lhs);
auto [rhs_sign, rhs_mag] = SignAndMagnitude(rhs);
if (lhs_mag == 0 && rhs_mag == 0) {
return Ordering::kEquivalent;
}
int8_t lhs_twos_complement =
SignAndMagnitudeToTwosComplement(lhs_sign, lhs_mag);
int8_t rhs_twos_complement =
SignAndMagnitudeToTwosComplement(rhs_sign, rhs_mag);
if (lhs_twos_complement < rhs_twos_complement) {
return Ordering::kLess;
}
if (lhs_twos_complement > rhs_twos_complement) {
return Ordering::kGreater;
}
return Ordering::kEquivalent;
}
uint8_t rep_;
};
template <typename T>
using RequiresIsDerivedFromFloat8Base =
std::enable_if_t<std::is_base_of_v<float8_base<T>, T>, int>;
class float8_e3m4 : public float8_base<float8_e3m4> {
// Exponent: 3, Mantissa: 4, bias: 3.
// IEEE 754.
private:
using Base = float8_base<float8_e3m4>;
friend class float8_base<float8_e3m4>;
using Base::Base;
public:
template <typename T, RequiresIsDerivedFromFloat8Base<T> = 0>
explicit EIGEN_DEVICE_FUNC float8_e3m4(T f8) : float8_e3m4(ConvertFrom(f8)) {}
};
class float8_e4m3 : public float8_base<float8_e4m3> {
// Exponent: 4, Mantissa: 3, bias: 7.
// IEEE 754.
private:
using Base = float8_base<float8_e4m3>;
friend class float8_base<float8_e4m3>;
using Base::Base;
public:
template <typename T, RequiresIsDerivedFromFloat8Base<T> = 0>
explicit EIGEN_DEVICE_FUNC float8_e4m3(T f8) : float8_e4m3(ConvertFrom(f8)) {}
};
class float8_e4m3fn : public float8_base<float8_e4m3fn> {
// Exponent: 4, Mantissa: 3, bias: 7.
// Extended range: no inf, NaN represented by 0bS111'1111.
// The "fn" suffix is for consistency with the corresponding LLVM/MLIR type,
// signaling this type is not consistent with IEEE-754. The "f" indicates
// it is finite values only. The "n" indicates it includes NaNs, but only
// at the outer range.
private:
using Base = float8_base<float8_e4m3fn>;
friend class float8_base<float8_e4m3fn>;
using Base::Base;
public:
template <typename T, RequiresIsDerivedFromFloat8Base<T> = 0>
explicit EIGEN_DEVICE_FUNC float8_e4m3fn(T f8)
: float8_e4m3fn(ConvertFrom(f8)) {}
};
class float8_e4m3b11fnuz : public float8_base<float8_e4m3b11fnuz> {
// Exponent: 4, Mantissa: 3, bias: 11.
// Extended range: no inf, NaN represented by 0b1000'0000.
private:
using Base = float8_base<float8_e4m3b11fnuz>;
friend class float8_base<float8_e4m3b11fnuz>;
using Base::Base;
public:
template <typename T, RequiresIsDerivedFromFloat8Base<T> = 0>
explicit EIGEN_DEVICE_FUNC float8_e4m3b11fnuz(T f8)
: float8_e4m3b11fnuz(ConvertFrom(f8)) {}
constexpr float8_e4m3b11fnuz operator-() const {
if ((rep() & 0x7f) == 0x00) {
return *this;
}
return Base::operator-();
}
float8_e4m3b11fnuz operator-(const float8_e4m3b11fnuz& other) const {
return Base::operator-(other);
}
explicit EIGEN_DEVICE_FUNC operator bool() const { return rep() != 0; }
};
// Legacy name used in XLA (TODO(jewillco): remove).
using float8_e4m3b11 = float8_e4m3b11fnuz;
class float8_e4m3fnuz : public float8_base<float8_e4m3fnuz> {
// 8-bit floating point with 3 bit mantissa.
//
// An 8-bit floating point type with 1 sign bit, 4 bits exponent and 3 bits
// mantissa. The suffix "fnuz" is consistent with LLVM/MLIR naming and is
// derived from the differences to IEEE floating point conventions. `F` is
// for "finite" (no infinities), `N` for with special NaN encoding, `UZ` for
// unsigned zero.
//
// This type has the following characteristics:
// * bit encoding: S1E4M3 - `0bSEEEEMMM`
// * exponent bias: 8
// * infinities: Not supported
// * NaNs: Supported with sign bit set to 1, exponent bits and mantissa bits
// set to all 0s - `0b10000000`
// * denormals when exponent is 0
private:
using Base = float8_base<float8_e4m3fnuz>;
friend class float8_base<float8_e4m3fnuz>;
using Base::Base;
public:
template <typename T, RequiresIsDerivedFromFloat8Base<T> = 0>
explicit EIGEN_DEVICE_FUNC float8_e4m3fnuz(T f8)
: float8_e4m3fnuz(ConvertFrom(f8)) {}
constexpr float8_e4m3fnuz operator-() const {
if ((rep() & 0x7f) == 0x00) {
return *this;
}
return Base::operator-();
}
float8_e4m3fnuz operator-(const float8_e4m3fnuz& other) const {
return Base::operator-(other);
}
explicit EIGEN_DEVICE_FUNC operator bool() const { return rep() != 0; }
};
class float8_e5m2 : public float8_base<float8_e5m2> {
// Exponent: 5, Mantissa: 2, bias: 15.
// IEEE 754.
private:
using Base = float8_base<float8_e5m2>;
friend class float8_base<float8_e5m2>;
using Base::Base;
public:
template <typename T, RequiresIsDerivedFromFloat8Base<T> = 0>
explicit EIGEN_DEVICE_FUNC float8_e5m2(T f8) : float8_e5m2(ConvertFrom(f8)) {}
};
class float8_e5m2fnuz : public float8_base<float8_e5m2fnuz> {
// 8-bit floating point with 2 bit mantissa.
//
// An 8-bit floating point type with 1 sign bit, 5 bits exponent and 2 bits
// mantissa. The suffix "fnuz" is consistent with LLVM/MLIR naming and is
// derived from the differences to IEEE floating point conventions. `F` is
// for "finite" (no infinities), `N` for with special NaN encoding, `UZ` for
// unsigned zero.
//
// This type has the following characteristics:
// * bit encoding: S1E5M2 - `0bSEEEEEMM`
// * exponent bias: 16
// * infinities: Not supported
// * NaNs: Supported with sign bit set to 1, exponent bits and mantissa bits
// set to all 0s - `0b10000000`
// * denormals when exponent is 0
private:
using Base = float8_base<float8_e5m2fnuz>;
friend class float8_base<float8_e5m2fnuz>;
using Base::Base;
public:
template <typename T, RequiresIsDerivedFromFloat8Base<T> = 0>
explicit EIGEN_DEVICE_FUNC float8_e5m2fnuz(T f8)
: float8_e5m2fnuz(ConvertFrom(f8)) {}
constexpr float8_e5m2fnuz operator-() const {
if ((rep() & 0x7f) == 0x00) {
return *this;
}
return Base::operator-();
}
float8_e5m2fnuz operator-(const float8_e5m2fnuz& other) const {
return Base::operator-(other);
}
explicit EIGEN_DEVICE_FUNC operator bool() const { return rep() != 0; }
};
class float8_e8m0fnu : public float8_base<float8_e8m0fnu> {
// 8-bit floating point with 8 bit exponent, no sign and zero mantissa.
//
// See:
// https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
//
// An 8-bit floating point type with no sign bit, 8 bits exponent and 0 bits
// mantissa. The suffix "fnuz" is consistent with LLVM/MLIR naming and is
// derived from the differences to IEEE floating point conventions. `F` is
// for "finite" (no infinities), `N` for with special NaN encoding, `U` for
// unsigned.
//
// This type has the following characteristics:
// * bit encoding: S0E8M0 - `0bEEEEEEEE`
// * exponent bias: 127
// * infinities: Not supported
// * NaNs: Supported with exponent bits set to 1s - `0b11111111`
private:
using Base = float8_base<float8_e8m0fnu>;
friend class float8_base<float8_e8m0fnu>;
using Base::Base;
public:
template <typename T, RequiresIsDerivedFromFloat8Base<T> = 0>
explicit EIGEN_DEVICE_FUNC float8_e8m0fnu(T f8)
: float8_e8m0fnu(ConvertFrom(f8)) {}
constexpr float8_e8m0fnu operator-() const {
// No negative numbers supported in E8M0 => NaN
return float8_e8m0fnu::FromRep(0xFF);
}
float8_e8m0fnu operator-(const float8_e8m0fnu& other) const {
return Base::operator-(other);
}
explicit EIGEN_DEVICE_FUNC operator bool() const {
// No zero supported in E8M0 format.
return true;
}
// Comparison simplified to uint8_t compare.
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<(
const float8_e8m0fnu& other) const {
if (Eigen::numext::isnan(*this) || Eigen::numext::isnan(other)) {
return false;
}
return rep() < other.rep();
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator<=(
const float8_e8m0fnu& other) const {
if (Eigen::numext::isnan(*this) || Eigen::numext::isnan(other)) {
return false;
}
return rep() <= other.rep();
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>(
const float8_e8m0fnu& other) const {
if (Eigen::numext::isnan(*this) || Eigen::numext::isnan(other)) {
return false;
}
return rep() > other.rep();
}
EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator>=(
const float8_e8m0fnu& other) const {
if (Eigen::numext::isnan(*this) || Eigen::numext::isnan(other)) {
return false;
}
return rep() >= other.rep();
}
};
constexpr double ConstexprAbs(double x) { return x < 0.0 ? -x : x; }
constexpr double ConstexprCeil(double x) {
constexpr double kIntegerThreshold =
uint64_t{1} << (std::numeric_limits<double>::digits - 1);
// Too big or NaN inputs get returned unchanged.
if (!(ConstexprAbs(x) < kIntegerThreshold)) {
return x;
}
const double x_trunc = static_cast<double>(static_cast<int64_t>(x));
return x_trunc < x ? x_trunc + 1.0 : x_trunc;
}
constexpr double ConstexprFloor(double x) { return -ConstexprCeil(-x); }
constexpr double kLog10Of2 = 0.3010299956639812;
// C17 5.2.4.2.2p11:
// "number of decimal digits, q, such that any floating-point number with q
// decimal digits can be rounded into a floating-point number with p radix b
// digits and back again without change to the q decimal digits"
// floor((p - 1) * log10(2));
constexpr int Digits10FromDigits(int digits) {
return static_cast<int>(ConstexprFloor((digits - 1) * kLog10Of2));
}
// C17 5.2.4.2.2p11:
// "number of decimal digits, n, such that any floating-point number with p
// radix b digits can be rounded to a floating-point number with n decimal
// digits and back again without change to the value"
// ceil(1 + p * log10(2));
constexpr int MaxDigits10FromDigits(int digits) {
return static_cast<int>(ConstexprCeil(1.0 + (digits * kLog10Of2)));
}
// C17 5.2.4.2.2p11:
// "minimum negative integer such that 10 raised to that power is in the range
// of normalized floating-point numbers"
// ceil(log10(2**(emin - 1))) == ceil((emin - 1) * log10(2));
constexpr int MinExponent10FromMinExponent(int min_exponent) {
return static_cast<int>(ConstexprCeil((min_exponent - 1) * kLog10Of2));
}
// C17 5.2.4.2.2p11:
// "maximum integer such that 10 raised to that power is in the range of
// representable finite floating-point numbers"
// floor(log10((1 - 2**-p) * 2**emax)) == floor(log10(1 - 2**-p) +
// emax * log10(2))
constexpr int MaxExponent10FromMaxExponentAndDigits(int max_exponent,
int digits) {
// We only support digits in {1,2,3,4,5}. This table would grow if we wanted
// to handle more values.
constexpr double kLog10OfOnePredecessor[] = {
// log10(1 - 2**-1)
-0.3010299956639812,
// log10(1 - 2**-2)
-0.12493873660829993,
// log10(1 - 2**-3)
-0.057991946977686754,
// log10(1 - 2**-4)
-0.028028723600243537,
// log10(1 - 2**-5)
-0.013788284485633295,
};
return static_cast<int>(ConstexprFloor(kLog10OfOnePredecessor[digits - 1] +
max_exponent * kLog10Of2));
}
// Structures for use in specializing std::numeric_limits.
struct numeric_limits_float8_base {
// NOLINTBEGIN: these names must match std::numeric_limits.
static inline constexpr const bool is_specialized = true;
static inline constexpr const bool is_signed = true;
static inline constexpr const bool is_integer = false;
static inline constexpr const bool is_exact = false;
static inline constexpr const bool has_quiet_NaN = true;
// has_denorm and has_denorm_loss are deprecated in C++23.
#if !defined(__cplusplus) || __cplusplus < 202302L
static inline constexpr const std::float_denorm_style has_denorm =
std::denorm_present;
static inline constexpr const bool has_denorm_loss = false;
#endif
static inline constexpr const std::float_round_style round_style =
std::round_to_nearest;
static inline constexpr const bool is_bounded = true;
static inline constexpr const bool is_modulo = false;
static inline constexpr const int radix = std::numeric_limits<float>::radix;
static inline constexpr const bool traps = std::numeric_limits<float>::traps;
static inline constexpr const bool tinyness_before =
std::numeric_limits<float>::tinyness_before;
// NOLINTEND
};
struct numeric_limits_float8_e3m4 : public numeric_limits_float8_base {
private:
static inline constexpr const int kExponentBias = 3;
static inline constexpr const int kMantissaBits = 4;
public:
// NOLINTBEGIN: these names must match std::numeric_limits.
static inline constexpr const int digits = kMantissaBits + 1;
static inline constexpr const int digits10 = Digits10FromDigits(digits);
static inline constexpr const int max_digits10 =
MaxDigits10FromDigits(digits);
static inline constexpr const int min_exponent = (1 - kExponentBias) + 1;
static inline constexpr const int min_exponent10 =
MinExponent10FromMinExponent(min_exponent);
static inline constexpr const int max_exponent = 0b111 - kExponentBias;
static inline constexpr const int max_exponent10 =
MaxExponent10FromMaxExponentAndDigits(max_exponent, digits);
static inline constexpr const bool is_iec559 = true;
static inline constexpr const bool has_infinity = true;
static inline constexpr const bool has_signaling_NaN = true;
// NOLINTEND
// 1.0 * 2^(0b001 - 3) = 1.0 * 2^-2 = 1/4 (min normal)
static constexpr float8_e3m4 min() {
return float8_e3m4::FromRep(1 << kMantissaBits);
}
// -(1 + 0b1111 * 2^-2) * 2^(0b110 - 3) = -(1 + 15/16) * 2^3 = -15.5
static constexpr float8_e3m4 lowest() {
return float8_e3m4::FromRep(0b1'110'1111);
}
// (1 + 0b1111 * 2^-2) * 2^(0b110 - 3) = (1 + 15/16) * 2^3 = 15.5
static constexpr float8_e3m4 max() {
return float8_e3m4::FromRep(0b0'110'1111);
}
// (1 + 1/16) * 2^0 - 1.0 = 1.0 + 1/16 - 1.0 = 1/16
// Encoded as denormal number 2^-2 * 1/4
static constexpr float8_e3m4 epsilon() {
return float8_e3m4::FromRep(0b0'000'0100);
}
// 1.0 * 2^-1 = 0.5
static constexpr float8_e3m4 round_error() {
return float8_e3m4::FromRep((-1 + kExponentBias) << kMantissaBits);
}
static constexpr float8_e3m4 infinity() {
return float8_e3m4::FromRep(0b0'111'0000);
}
static constexpr float8_e3m4 quiet_NaN() {
// IEEE 754-2019 6.2.1: "All binary NaN bit strings have the sign bit S set
// to 0 or 1 and all the bits of the biased exponent field E set to 1
// (see 3.4). A quiet NaN bit string should be encoded with the first bit
// (d1) of the trailing significand field T being 1."
return float8_e3m4::FromRep(0b0'111'1000);
}
static constexpr float8_e3m4 signaling_NaN() {
// IEEE 754-2019 6.2.1: "A signaling NaN bit string should be encoded with
// the first bit of the trailing significand field being 0."
return float8_e3m4::FromRep(0b0'111'0100);
}
// 2^(-2) * 2^(-4) = 2^-6 = 1/64 (min denormal)
static constexpr float8_e3m4 denorm_min() {
return float8_e3m4::FromRep(0b0'000'0001);
}
};
struct numeric_limits_float8_e4m3 : public numeric_limits_float8_base {
private:
static inline constexpr const int kExponentBias = 7;
static inline constexpr const int kMantissaBits = 3;
public:
// NOLINTBEGIN: these names must match std::numeric_limits.
static inline constexpr const int digits = kMantissaBits + 1;
static inline constexpr const int digits10 = Digits10FromDigits(digits);
static inline constexpr const int max_digits10 =
MaxDigits10FromDigits(digits);
static inline constexpr const int min_exponent = (1 - kExponentBias) + 1;
static inline constexpr const int min_exponent10 =
MinExponent10FromMinExponent(min_exponent);
static inline constexpr const int max_exponent = 0b1111 - kExponentBias;
static inline constexpr const int max_exponent10 =
MaxExponent10FromMaxExponentAndDigits(max_exponent, digits);
static inline constexpr const bool is_iec559 = true;
static inline constexpr const bool has_infinity = true;
static inline constexpr const bool has_signaling_NaN = true;
// NOLINTEND
// 1.0 * 2^(0b0001 - 7) = 1.0 * 2^-6 = 1/64 (min normal)
static constexpr float8_e4m3 min() {
return float8_e4m3::FromRep(1 << kMantissaBits);
}
// -(1 + 0b111 * 2^-2) * 2^(0b1110 - 7) = -(1 + 7/8) * 2^7 = -240
static constexpr float8_e4m3 lowest() {
return float8_e4m3::FromRep(0b1'1110'111);
}
// (1 + 0b111 * 2^-2) * 2^(0b1110 - 7) = (1 + 7/8) * 2^7 = 240
static constexpr float8_e4m3 max() {
return float8_e4m3::FromRep(0b0'1110'111);
}
// 1.0 * 2^-3 = 0.125
static constexpr float8_e4m3 epsilon() {
return float8_e4m3::FromRep((-kMantissaBits + kExponentBias)
<< kMantissaBits);
}
// 1.0 * 2^-1 = 0.5
static constexpr float8_e4m3 round_error() {
return float8_e4m3::FromRep((-1 + kExponentBias) << kMantissaBits);
}
static constexpr float8_e4m3 infinity() {
return float8_e4m3::FromRep(0b0'1111'000);
}
static constexpr float8_e4m3 quiet_NaN() {
// IEEE 754-2019 6.2.1: "All binary NaN bit strings have the sign bit S set
// to 0 or 1 and all the bits of the biased exponent field E set to 1
// (see 3.4). A quiet NaN bit string should be encoded with the first bit
// (d1) of the trailing significand field T being 1."
return float8_e4m3::FromRep(0b0'1111'100);
}
static constexpr float8_e4m3 signaling_NaN() {
// IEEE 754-2019 6.2.1: "A signaling NaN bit string should be encoded with
// the first bit of the trailing significand field being 0."
return float8_e4m3::FromRep(0b0'1111'001);
}
// 2^(-6) * 2^(-3) = 2^-9 = 1/512 (min denormal)
static constexpr float8_e4m3 denorm_min() {
return float8_e4m3::FromRep(0b0'0000'001);
}
};
struct numeric_limits_float8_e4m3fn : public numeric_limits_float8_base {
private:
static inline constexpr const int kExponentBias = 7;
static inline constexpr const int kMantissaBits = 3;
public:
// NOLINTBEGIN: these names must match std::numeric_limits.
static inline constexpr const int digits = kMantissaBits + 1;
static inline constexpr const int digits10 = Digits10FromDigits(digits);
static inline constexpr const int max_digits10 =
MaxDigits10FromDigits(digits);
static inline constexpr const int min_exponent = (1 - kExponentBias) + 1;
static inline constexpr const int min_exponent10 =
MinExponent10FromMinExponent(min_exponent);
static inline constexpr const int max_exponent =
(0b1111 - kExponentBias) + 1; // Extended format.
static inline constexpr const int max_exponent10 =
MaxExponent10FromMaxExponentAndDigits(max_exponent, digits);
static inline constexpr const bool is_iec559 = false;
static inline constexpr const bool has_infinity = false;
static inline constexpr const bool has_signaling_NaN = false;
// NOLINTEND
// 1.0 * 2^(0b0001 - 7) = 1.0 * 2^-6 = 0.015625
static constexpr float8_e4m3fn min() {
return float8_e4m3fn::FromRep(0b0'0001 << kMantissaBits);
}
// -(1 + 0b110 * 2^-3) * 2^(0b1111 - 7) = -1.75 * 2^8 = -448
static constexpr float8_e4m3fn lowest() {
return float8_e4m3fn::FromRep(0b1'1111'110);
}
// (1 + 0b110 * 2^-3) * 2**(0b1111 - 7) = 1.75 * 2^8 = 448
static constexpr float8_e4m3fn max() {
return float8_e4m3fn::FromRep(0b0'1111'110);
}
// 1.0 * 2^-3 = 0.125
static constexpr float8_e4m3fn epsilon() {
return float8_e4m3fn::FromRep((-kMantissaBits + kExponentBias)
<< kMantissaBits);
}
// 1.0 * 2^-1 = 0.5
static constexpr float8_e4m3fn round_error() {
return float8_e4m3fn::FromRep((-1 + kExponentBias) << kMantissaBits);
}
static constexpr float8_e4m3fn infinity() {
return float8_e4m3fn::FromRep(0b0'1111'111);
}
// NaN.
static constexpr float8_e4m3fn quiet_NaN() {
return float8_e4m3fn::FromRep(0b0'1111'111);
}
static constexpr float8_e4m3fn signaling_NaN() {
return float8_e4m3fn::FromRep(0b0'1111'111);
}
// 1.0 * 2^(-7 - 3 + 1) = 1.0 * 2^-9 = 0.001953125
static constexpr float8_e4m3fn denorm_min() {
return float8_e4m3fn::FromRep(0b0'0000'001);
}
};
struct numeric_limits_float8_e4m3b11fnuz : public numeric_limits_float8_base {
private:
static inline constexpr const int kExponentBias = 11;
static inline constexpr const int kMantissaBits = 3;
public:
// NOLINTBEGIN: these names must match std::numeric_limits.
static inline constexpr const int digits = kMantissaBits + 1;
static inline constexpr const int digits10 = Digits10FromDigits(digits);
static inline constexpr const int max_digits10 =
MaxDigits10FromDigits(digits);
static inline constexpr const int min_exponent = (1 - kExponentBias) + 1;
static inline constexpr const int min_exponent10 =
MinExponent10FromMinExponent(min_exponent);
static inline constexpr const int max_exponent =
(0b1111 - kExponentBias) + 1; // Extended format.
static inline constexpr const int max_exponent10 =
MaxExponent10FromMaxExponentAndDigits(max_exponent, digits);
static inline constexpr const bool is_iec559 = false;
static inline constexpr const bool has_infinity = false;
static inline constexpr const bool has_signaling_NaN = false;
// NOLINTEND
// 1.0 * 2^(0b0001 - 11) = 1.0 * 2^-10 = 0.0009765625
static constexpr float8_e4m3b11fnuz min() {
return float8_e4m3b11fnuz::FromRep(1 << kMantissaBits);
}
// -(1 + 0b111 * 2^-3) * 2^(0b1111 - 11) = -1.875 * 2^4 = -30
static constexpr float8_e4m3b11fnuz lowest() {
return float8_e4m3b11fnuz::FromRep(0b1'1111'111);
}
// (1 + 0b111 * 2^-3) * 2^(0b1111 - 11) = 1.875 * 2^4 = 30
static constexpr float8_e4m3b11fnuz max() {
return float8_e4m3b11fnuz::FromRep(0b0'1111'111);
}
// 1.0 * 2^-3 = 0.125
static constexpr float8_e4m3b11fnuz epsilon() {
return float8_e4m3b11fnuz::FromRep((-kMantissaBits + kExponentBias)
<< kMantissaBits);
}
// 1.0 * 2^-1 = 0.5
static constexpr float8_e4m3b11fnuz round_error() {
return float8_e4m3b11fnuz::FromRep((-1 + kExponentBias) << kMantissaBits);
}
static constexpr float8_e4m3b11fnuz infinity() {
return float8_e4m3b11fnuz::FromRep(0b1'0000'000);
}
// NaN.
static constexpr float8_e4m3b11fnuz quiet_NaN() {
return float8_e4m3b11fnuz::FromRep(0b1'0000'000);
}
static constexpr float8_e4m3b11fnuz signaling_NaN() {
return float8_e4m3b11fnuz::FromRep(0b1'0000'000);
}
// 1.0 * 2^(-11 - 3 + 1) = 1.0 * 2^-13 = 0.0001220703125
static constexpr float8_e4m3b11fnuz denorm_min() {
return float8_e4m3b11fnuz::FromRep(0b0'0000'001);
}
};
struct numeric_limits_float8_e4m3fnuz : public numeric_limits_float8_base {
private:
static inline constexpr const int kExponentBias = 8;
static inline constexpr const int kMantissaBits = 3;
public:
// NOLINTBEGIN: these names must match std::numeric_limits.
static inline constexpr const int digits = kMantissaBits + 1;
static inline constexpr const int digits10 = Digits10FromDigits(digits);
static inline constexpr const int max_digits10 =
MaxDigits10FromDigits(digits);
static inline constexpr const int min_exponent = (1 - kExponentBias) + 1;
static inline constexpr const int min_exponent10 =
MinExponent10FromMinExponent(min_exponent);
static inline constexpr const int max_exponent =
(0b1111 - kExponentBias) + 1; // Extended format.
static inline constexpr const int max_exponent10 =
MaxExponent10FromMaxExponentAndDigits(max_exponent, digits);
static inline constexpr const bool is_iec559 = false;
static inline constexpr const bool has_infinity = false;
static inline constexpr const bool has_signaling_NaN = false;
// NOLINTEND
static constexpr float8_e4m3fnuz min() {
return float8_e4m3fnuz::FromRep(0x08);
}
static constexpr float8_e4m3fnuz lowest() {
return float8_e4m3fnuz::FromRep(0xFF);
}
static constexpr float8_e4m3fnuz max() {
return float8_e4m3fnuz::FromRep(0x7F);
}
static constexpr float8_e4m3fnuz epsilon() {
return float8_e4m3fnuz::FromRep((-kMantissaBits + kExponentBias)
<< kMantissaBits);
}
static constexpr float8_e4m3fnuz round_error() {
return float8_e4m3fnuz::FromRep((-1 + kExponentBias) << kMantissaBits);
}
static constexpr float8_e4m3fnuz infinity() {
return float8_e4m3fnuz::FromRep(0x80);
}
// NaN.
static constexpr float8_e4m3fnuz quiet_NaN() {
return float8_e4m3fnuz::FromRep(0x80);
}
static constexpr float8_e4m3fnuz signaling_NaN() {
return float8_e4m3fnuz::FromRep(0x80);
}
static constexpr float8_e4m3fnuz denorm_min() {
return float8_e4m3fnuz::FromRep(0x01);
}
};
struct numeric_limits_float8_e5m2 : public numeric_limits_float8_base {
private:
static inline constexpr const int kExponentBias = 15;
static inline constexpr const int kMantissaBits = 2;
public:
// NOLINTBEGIN: these names must match std::numeric_limits.
static inline constexpr const int digits = kMantissaBits + 1;
static inline constexpr const int digits10 = Digits10FromDigits(digits);
static inline constexpr const int max_digits10 =
MaxDigits10FromDigits(digits);
static inline constexpr const int min_exponent = (1 - kExponentBias) + 1;
static inline constexpr const int min_exponent10 =
MinExponent10FromMinExponent(min_exponent);
static inline constexpr const int max_exponent = 0b11111 - kExponentBias;
static inline constexpr const int max_exponent10 =
MaxExponent10FromMaxExponentAndDigits(max_exponent, digits);
static inline constexpr const bool is_iec559 = true;
static inline constexpr const bool has_infinity = true;
static inline constexpr const bool has_signaling_NaN = true;
// NOLINTEND
// 1.0 * 2^(0b00001 - 15) = 1.0 * 2^-14 = 0.00006103515625
static constexpr float8_e5m2 min() {
return float8_e5m2::FromRep(1 << kMantissaBits);
}
// -(1 + 0b11 * 2^-2) * 2^(0b11110 - 15) = -1.75 * 2^15 = -57344
static constexpr float8_e5m2 lowest() {
return float8_e5m2::FromRep(0b1'11110'11);
}
// (1 + 0b11 * 2^-2) * 2^(0b11110 - 15) = 1.75 * 2^15 = 57344
static constexpr float8_e5m2 max() {
return float8_e5m2::FromRep(0b0'11110'11);
}
// 1.0 * 2^-2 = 0.25
static constexpr float8_e5m2 epsilon() {
return float8_e5m2::FromRep((-kMantissaBits + kExponentBias)
<< kMantissaBits);
}
// 1.0 * 2^-1 = 0.5
static constexpr float8_e5m2 round_error() {
return float8_e5m2::FromRep((-1 + kExponentBias) << kMantissaBits);
}
static constexpr float8_e5m2 infinity() {
return float8_e5m2::FromRep(0b0'11111'00);
}
static constexpr float8_e5m2 quiet_NaN() {
// IEEE 754-2019 6.2.1: "All binary NaN bit strings have the sign bit S set
// to 0 or 1 and all the bits of the biased exponent field E set to 1
// (see 3.4). A quiet NaN bit string should be encoded with the first bit
// (d1) of the trailing significand field T being 1."
return float8_e5m2::FromRep(0b0'11111'10);
}
static constexpr float8_e5m2 signaling_NaN() {
// IEEE 754-2019 6.2.1: "A signaling NaN bit string should be encoded with
// the first bit of the trailing significand field being 0."
return float8_e5m2::FromRep(0b0'11111'01);
}
// 1.0 * 2^(-15 - 2 + 1) = 1.0 * 2^-16 = 0.0000152587890625
static constexpr float8_e5m2 denorm_min() {
return float8_e5m2::FromRep(0b0'00000'01);
}
};
struct numeric_limits_float8_e5m2fnuz : public numeric_limits_float8_base {
private:
static inline constexpr const int kExponentBias = 16;
static inline constexpr const int kMantissaBits = 2;
public:
// NOLINTBEGIN: these names must match std::numeric_limits.
static inline constexpr const int digits = kMantissaBits + 1;
static inline constexpr const int digits10 = Digits10FromDigits(digits);
static inline constexpr const int max_digits10 =
MaxDigits10FromDigits(digits);
static inline constexpr const int min_exponent = (1 - kExponentBias) + 1;
static inline constexpr const int min_exponent10 =
MinExponent10FromMinExponent(min_exponent);
static inline constexpr const int max_exponent =
(0b11111 - kExponentBias) + 1;
static inline constexpr const int max_exponent10 =
MaxExponent10FromMaxExponentAndDigits(max_exponent, digits);
static inline constexpr const bool is_iec559 = false;
static inline constexpr const bool has_infinity = false;
static inline constexpr const bool has_signaling_NaN = false;
// NOLINTEND
static constexpr float8_e5m2fnuz min() {
return float8_e5m2fnuz::FromRep(0x04);
}
static constexpr float8_e5m2fnuz lowest() {
return float8_e5m2fnuz::FromRep(0xFF);
}
static constexpr float8_e5m2fnuz max() {
return float8_e5m2fnuz::FromRep(0x7F);
}
static constexpr float8_e5m2fnuz epsilon() {
return float8_e5m2fnuz::FromRep((-kMantissaBits + kExponentBias)
<< kMantissaBits);
}
static constexpr float8_e5m2fnuz round_error() {
return float8_e5m2fnuz::FromRep((-1 + kExponentBias) << kMantissaBits);
}
static constexpr float8_e5m2fnuz infinity() {
return float8_e5m2fnuz::FromRep(0x80);
} // NaN.
static constexpr float8_e5m2fnuz quiet_NaN() {
return float8_e5m2fnuz::FromRep(0x80);
}
static constexpr float8_e5m2fnuz signaling_NaN() {
return float8_e5m2fnuz::FromRep(0x80);
}
static constexpr float8_e5m2fnuz denorm_min() {
return float8_e5m2fnuz::FromRep(0x01);
}
};
struct numeric_limits_float8_e8m0fnu : public numeric_limits_float8_base {
private:
static inline constexpr const int kExponentBias = 127;
static inline constexpr const int kMantissaBits = 0;
public:
// NOLINTBEGIN: these names must match std::numeric_limits.
static inline constexpr const bool is_signed = false;
// has_denorm and has_denorm_loss are deprecated in C++23.
#if !defined(__cplusplus) || __cplusplus < 202302L
static inline constexpr const std::float_denorm_style has_denorm =
std::denorm_absent;
#endif
static inline constexpr const int digits = kMantissaBits + 1;
static inline constexpr const int digits10 = Digits10FromDigits(digits);
static inline constexpr const int max_digits10 =
MaxDigits10FromDigits(digits);
// 2**-127 smallest valid normalized value..
static inline constexpr const int min_exponent = -kExponentBias + 1;
static inline constexpr const int min_exponent10 =
MinExponent10FromMinExponent(min_exponent);
// 128 encoding using for NaN
static inline constexpr const int max_exponent = kExponentBias + 1;
static inline constexpr const int max_exponent10 =
MaxExponent10FromMaxExponentAndDigits(max_exponent, digits);
static inline constexpr const bool is_iec559 = false;
static inline constexpr const bool has_infinity = false;
static inline constexpr const bool has_signaling_NaN = false;
// NOLINTEND
static constexpr float8_e8m0fnu min() {
return float8_e8m0fnu::FromRep(0x00);
}
static constexpr float8_e8m0fnu lowest() {
return float8_e8m0fnu::FromRep(0x00);
}
static constexpr float8_e8m0fnu max() {
return float8_e8m0fnu::FromRep(0xfe);
}
static constexpr float8_e8m0fnu epsilon() {
return float8_e8m0fnu::FromRep((-kMantissaBits + kExponentBias)
<< kMantissaBits);
}
static constexpr float8_e8m0fnu round_error() {
return float8_e8m0fnu::FromRep((-1 + kExponentBias) << kMantissaBits);
}
static constexpr float8_e8m0fnu infinity() {
return float8_e8m0fnu::FromRep(0xFF);
} // NaN.
static constexpr float8_e8m0fnu quiet_NaN() {
return float8_e8m0fnu::FromRep(0xFF);
}
static constexpr float8_e8m0fnu signaling_NaN() {
return float8_e8m0fnu::FromRep(0xFF);
}
static constexpr float8_e8m0fnu denorm_min() {
// No denorm => smallest value.
return float8_e8m0fnu::FromRep(0x00);
}
};
} // namespace float8_internal
} // namespace ml_dtypes
namespace std {
// Standard-library overrides. Note that these are picked up by Eigen as well.
template <>
struct numeric_limits<ml_dtypes::float8_internal::float8_e3m4>
: public ml_dtypes::float8_internal::numeric_limits_float8_e3m4 {};
template <>
struct numeric_limits<ml_dtypes::float8_internal::float8_e4m3>
: public ml_dtypes::float8_internal::numeric_limits_float8_e4m3 {};
template <>
struct numeric_limits<ml_dtypes::float8_internal::float8_e4m3fn>
: public ml_dtypes::float8_internal::numeric_limits_float8_e4m3fn {};
template <>
struct numeric_limits<ml_dtypes::float8_internal::float8_e4m3b11fnuz>
: public ml_dtypes::float8_internal::numeric_limits_float8_e4m3b11fnuz {};
template <>
struct numeric_limits<ml_dtypes::float8_internal::float8_e4m3fnuz>
: public ml_dtypes::float8_internal::numeric_limits_float8_e4m3fnuz {};
template <>
struct numeric_limits<ml_dtypes::float8_internal::float8_e5m2>
: public ml_dtypes::float8_internal::numeric_limits_float8_e5m2 {};
template <>
struct numeric_limits<ml_dtypes::float8_internal::float8_e5m2fnuz>
: public ml_dtypes::float8_internal::numeric_limits_float8_e5m2fnuz {};
template <>
struct numeric_limits<ml_dtypes::float8_internal::float8_e8m0fnu>
: public ml_dtypes::float8_internal::numeric_limits_float8_e8m0fnu {};
} // namespace std
namespace ml_dtypes {
namespace float8_internal {
constexpr inline float8_e3m4 abs(const float8_e3m4& a) {
return float8_e3m4::FromRep(a.rep() & 0b0'111'1111);
}
constexpr inline bool(isnan)(const float8_e3m4& a) {
return abs(a).rep() > std::numeric_limits<float8_e3m4>::infinity().rep();
}
constexpr inline float8_e4m3 abs(const float8_e4m3& a) {
return float8_e4m3::FromRep(a.rep() & 0b0'1111'111);
}
constexpr inline bool(isnan)(const float8_e4m3& a) {
return abs(a).rep() > std::numeric_limits<float8_e4m3>::infinity().rep();
}
// Free-functions for use with ADL and in Eigen.
constexpr inline float8_e4m3fn abs(const float8_e4m3fn& a) {
return float8_e4m3fn::FromRep(a.rep() & 0b0'1111'111);
}
constexpr inline bool(isnan)(const float8_e4m3fn& a) {
return abs(a).rep() == std::numeric_limits<float8_e4m3fn>::quiet_NaN().rep();
}
constexpr inline float8_e4m3b11fnuz abs(const float8_e4m3b11fnuz& a) {
return (a.rep() & 0b0'1111'111) == 0
? float8_e4m3b11fnuz::FromRep(a.rep())
: float8_e4m3b11fnuz::FromRep(a.rep() & 0b0'1111'111);
}
constexpr inline bool(isnan)(const float8_e4m3b11fnuz& a) {
return a.rep() == std::numeric_limits<float8_e4m3b11fnuz>::quiet_NaN().rep();
}
constexpr inline float8_e4m3fnuz abs(const float8_e4m3fnuz& a) {
return (a.rep() & 0x7F) == 0 ? float8_e4m3fnuz::FromRep(a.rep())
: float8_e4m3fnuz::FromRep(a.rep() & 0x7F);
}
constexpr inline bool(isnan)(const float8_e4m3fnuz& a) {
return abs(a).rep() ==
std::numeric_limits<float8_e4m3fnuz>::quiet_NaN().rep();
}
constexpr inline float8_e5m2 abs(const float8_e5m2& a) {
return float8_e5m2::FromRep(a.rep() & 0b0'11111'11);
}
constexpr inline bool(isnan)(const float8_e5m2& a) {
return abs(a).rep() > std::numeric_limits<float8_e5m2>::infinity().rep();
}
constexpr inline float8_e5m2fnuz abs(const float8_e5m2fnuz& a) {
return (a.rep() & 0x7F) == 0 ? float8_e5m2fnuz::FromRep(a.rep())
: float8_e5m2fnuz::FromRep(a.rep() & 0x7F);
}
constexpr inline bool(isnan)(const float8_e5m2fnuz& a) {
return a.rep() == 0x80;
}
constexpr inline float8_e8m0fnu abs(const float8_e8m0fnu& a) { return a; }
constexpr inline bool(isnan)(const float8_e8m0fnu& a) {
return a.rep() == 0xff;
}
template <typename Float8>
constexpr inline bool(isinf)(const float8_base<Float8>& a) {
if constexpr (std::numeric_limits<Float8>::has_infinity) {
return abs(a.derived()).rep() ==
std::numeric_limits<Float8>::infinity().rep();
} else {
// No inf representation.
return false;
}
}
template <typename Float8>
constexpr inline bool(isfinite)(const float8_base<Float8>& a) {
return !isnan(a.derived()) && !isinf(a.derived());
}
template <typename Float8>
std::ostream& operator<<(std::ostream& os, const float8_base<Float8>& f8) {
os << static_cast<float>(f8.derived());
return os;
}
//==============================================================================
// Inline conversion routines between float8 and other types.
//==============================================================================
template <typename T>
bool constexpr IsPowerOfTwo(T x) {
return (x != 0) && ((x & (x - 1)) == 0);
}
// Helper for getting a bytes size which is a power of two.
template <int Size>
struct NextPowerOfTwo {
static constexpr int value = Size;
};
template <>
struct NextPowerOfTwo<3> {
static constexpr int value = 4;
};
template <>
struct NextPowerOfTwo<5> {
static constexpr int value = 8;
};
template <>
struct NextPowerOfTwo<6> {
static constexpr int value = 8;
};
template <>
struct NextPowerOfTwo<7> {
static constexpr int value = 8;
};
// Helper for getting a bit representation provided a byte size.
template <int kNumBytes>
using GetUnsignedInteger =
typename Eigen::numext::get_integer_by_size<kNumBytes>::unsigned_type;
// Converts between two floating-point types.
template <typename From, typename To, bool kSaturate, bool kTruncate,
typename EnableIf = void>
struct ConvertImpl;
// Convert to same type. We need explicit specializations for all combinations
// of template parameters to avoid ambiguities.
template <typename Scalar>
struct IdentityConversion {
static EIGEN_DEVICE_FUNC inline Scalar run(Scalar from) { return from; }
};
template <typename Scalar, bool kSaturate, bool kTruncate>
struct ConvertImpl<Scalar, Scalar, /*kSaturate=*/kSaturate,
/*kTruncate=*/kTruncate>
: public IdentityConversion<Scalar> {};
template <typename Float>
struct TraitsBase {
using BitsType = GetUnsignedInteger<sizeof(Float)>;
static constexpr bool kIsSigned = std::numeric_limits<Float>::is_signed;
static constexpr bool kHasZero = true;
static constexpr int kBits = sizeof(Float) * CHAR_BIT;
static constexpr int kMantissaBits = Eigen::NumTraits<Float>::digits() - 1;
// Extra bit used in exponent for unsigned float.
static constexpr int kExponentBits =
kBits - kMantissaBits - static_cast<int>(kIsSigned);
static constexpr BitsType kExponentMask = ((BitsType{1} << kExponentBits) - 1)
<< kMantissaBits;
static constexpr BitsType kMantissaMask = (BitsType{1} << kMantissaBits) - 1;
static constexpr int kExponentBias = (1 << (kExponentBits - 1)) - 1;
};
template <typename Float>
struct Traits : public TraitsBase<Float> {};
template <>
struct Traits<float8_e4m3b11fnuz> : public TraitsBase<float8_e4m3b11fnuz> {
static constexpr int kExponentBias = 11;
};
template <>
struct Traits<float8_e4m3fnuz> : public TraitsBase<float8_e4m3fnuz> {
using Base = TraitsBase<float8_e4m3fnuz>;
static constexpr int kExponentBias = Base::kExponentBias + 1;
};
template <>
struct Traits<float8_e5m2fnuz> : public TraitsBase<float8_e5m2fnuz> {
using Base = TraitsBase<float8_e5m2fnuz>;
static constexpr int kExponentBias = Base::kExponentBias + 1;
};
template <>
struct Traits<float8_e8m0fnu> : public TraitsBase<float8_e8m0fnu> {
using Base = TraitsBase<float8_e8m0fnu>;
// No zero in E8MO OCP MX format description.
static constexpr bool kHasZero = false;
};
template <typename Bits>
constexpr inline Bits RoundBitsToNearestEven(Bits bits, int roundoff,
bool use_implicit_bit) {
// Round to nearest even by adding a bias term.
// Consider a bit pattern
// FFF...FLRTT...T,
// where bits RTT...T need to be rounded-off. We add a bias term to the
// bit pattern s.t. a carry is introduced to round up only if
// - L is 1, R is 1, OR
// - L is 0, R is 1, any T is one.
// We do this by adding L to a bit pattern consisting of all T = 1.
//
// When rounding to zero mantissa (E8M0 type), the L bit is implicitly 1 (do
// not use the exponent bits for rounding). Add only the R bit in this case.
Bits bias = !use_implicit_bit
? ((bits >> roundoff) & 1) + (Bits{1} << (roundoff - 1)) - 1
: Bits{1} << (roundoff - 1);
return bits + bias;
}
#if (defined(__cpp_lib_bitops) && __cpp_lib_bitops >= 201907L)
using std::countl_zero;
#else
static constexpr inline int countl_zero(uint64_t x) {
int zeroes = 60;
if (x >> 32) {
zeroes -= 32;
x >>= 32;
}
if (x >> 16) {
zeroes -= 16;
x >>= 16;
}
if (x >> 8) {
zeroes -= 8;
x >>= 8;
}
if (x >> 4) {
zeroes -= 4;
x >>= 4;
}
return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[x] + zeroes;
}
static constexpr inline int countl_zero(uint32_t x) {
int zeroes = 28;
if (x >> 16) {
zeroes -= 16;
x >>= 16;
}
if (x >> 8) {
zeroes -= 8;
x >>= 8;
}
if (x >> 4) {
zeroes -= 4;
x >>= 4;
}
return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[x] + zeroes;
}
static constexpr inline int countl_zero(uint16_t x) {
int zeroes = 12;
if (x >> 8) {
zeroes -= 8;
x >>= 8;
}
if (x >> 4) {
zeroes -= 4;
x >>= 4;
}
return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[x] + zeroes;
}
static constexpr inline int countl_zero(uint8_t x) {
int zeroes = 4;
if (x >> 4) {
zeroes -= 4;
x >>= 4;
}
return "\4\3\2\2\1\1\1\1\0\0\0\0\0\0\0"[x] + zeroes;
}
#endif
template <typename From, typename To, bool kSaturate, bool kTruncate>
struct ConvertImpl<From, To, kSaturate, kTruncate,
std::enable_if_t<!std::is_same_v<From, To>>> {
using FromTraits = Traits<From>;
using FromBits = typename FromTraits::BitsType;
static constexpr bool kFromIsSigned = FromTraits::kIsSigned;
static constexpr bool kFromHasZero = FromTraits::kHasZero;
static constexpr int kFromBits = FromTraits::kBits;
static constexpr int kFromMantissaBits = FromTraits::kMantissaBits;
static constexpr int kFromExponentBits = FromTraits::kExponentBits;
static constexpr int kFromExponentBias = FromTraits::kExponentBias;
static constexpr FromBits kFromExponentMask = FromTraits::kExponentMask;
using ToTraits = Traits<To>;
using ToBits = typename ToTraits::BitsType;
static constexpr bool kToIsSigned = ToTraits::kIsSigned;
static constexpr bool kToHasZero = ToTraits::kHasZero;
static constexpr int kToBits = ToTraits::kBits;
static constexpr int kToMantissaBits = ToTraits::kMantissaBits;
static constexpr int kToExponentBits = ToTraits::kExponentBits;
static constexpr int kToExponentBias = ToTraits::kExponentBias;
static constexpr ToBits kToExponentMask = ToTraits::kExponentMask;
// `WideBits` is wide enough to accommodate the largest exponent and mantissa
// in either `From` or `To`.
static constexpr int kWideBits =
(std::max(kToMantissaBits, kFromMantissaBits)) + // Max significand.
(std::max(kToExponentBits, kFromExponentBits)); // Max exponent.
static constexpr int kWideBytesRaw = (kWideBits + (CHAR_BIT - 1)) / CHAR_BIT;
// Need a power of two (i.e. not 3 bytes).
static constexpr int kWideBytes = NextPowerOfTwo<kWideBytesRaw>::value;
using WideBits = GetUnsignedInteger<kWideBytes>;
static_assert(!std::is_void_v<WideBits>,
"`WideBits` type can not be void type.");
static constexpr int kExponentOffset = kToExponentBias - kFromExponentBias;
static constexpr int kDigitShift = kToMantissaBits - kFromMantissaBits;
static EIGEN_DEVICE_FUNC inline To run(From from) {
// Shift bits to destination type, without sign bit.
const bool from_sign_bit =
Eigen::numext::bit_cast<FromBits>(from) >> (kFromBits - 1) &&
kFromIsSigned;
const FromBits from_bits =
Eigen::numext::bit_cast<FromBits>(Eigen::numext::abs(from));
// Special values, preserving sign.
if (Eigen::numext::isinf(from)) {
return from_sign_bit ? -Eigen::NumTraits<To>::infinity()
: Eigen::NumTraits<To>::infinity();
}
if (Eigen::numext::isnan(from)) {
return from_sign_bit ? -Eigen::NumTraits<To>::quiet_NaN()
: Eigen::NumTraits<To>::quiet_NaN();
}
// Dealing with zero, when `From` has one.
if (from_bits == 0 && kFromHasZero) {
if constexpr (kToHasZero) {
// Keep the sign, if `To` supports it.
return from_sign_bit && kToIsSigned ? -To{} : To{};
} else {
return kSaturate ? std::numeric_limits<To>::denorm_min()
: Eigen::NumTraits<To>::quiet_NaN();
}
}
// `To` unsigned floating format: NaN or saturate.
if constexpr (!kToIsSigned && kFromIsSigned) {
if (from_sign_bit) {
return kSaturate ? std::numeric_limits<To>::lowest()
: Eigen::NumTraits<To>::quiet_NaN();
}
}
const int biased_from_exponent = from_bits >> kFromMantissaBits;
const bool to_zero_mantissa = kToMantissaBits == 0;
// `To` supports more exponents near zero which means that some subnormal
// values in `From` may become normal.
if constexpr (std::numeric_limits<To>::min_exponent <
std::numeric_limits<From>::min_exponent) {
if (biased_from_exponent == 0) {
// Subnormals.
WideBits bits = from_bits;
// Determine exponent in target type.
const int msb =
sizeof(from_bits) * CHAR_BIT - countl_zero(from_bits) - 1;
const int normalization_factor = kFromMantissaBits - msb;
const int biased_exponent = kExponentOffset - normalization_factor + 1;
if (biased_exponent <= 0) {
// Result is subnormal. Adjust the subnormal bits to account for
// the difference in exponent bias.
if constexpr (kExponentOffset < sizeof(WideBits) * CHAR_BIT) {
bits <<= kExponentOffset;
}
} else {
// Result is normal. Shift the mantissa to account for the number of
// leading zero digits, and clear the hidden bit.
bits <<= normalization_factor;
bits &= ~(WideBits{1} << kFromMantissaBits);
// Insert the exponent bits.
bits |= static_cast<WideBits>(biased_exponent) << kFromMantissaBits;
}
// Truncate/round mantissa if necessary.
if constexpr (kDigitShift >= 0) {
bits <<= kDigitShift;
} else {
if constexpr (!kTruncate) {
// When converting float to e8m0, the bits represent a denormal,
// so don't use the implicit mantissa bit for rounding.
bits = RoundBitsToNearestEven(
bits, -kDigitShift, to_zero_mantissa && kExponentOffset != 0);
}
bits >>= -kDigitShift;
}
To to = Eigen::numext::bit_cast<To>(static_cast<ToBits>(bits));
return from_sign_bit ? -to : to;
}
}
// `To` supports fewer exponents near zero which means that some values in
// `From` may become subnormal.
if constexpr (std::numeric_limits<To>::min_exponent >
std::numeric_limits<From>::min_exponent) {
const int unbiased_exponent = biased_from_exponent - kFromExponentBias;
const int biased_to_exponent = unbiased_exponent + kToExponentBias;
// Subnormals and zero.
if (biased_to_exponent <= 0) {
// Round and shift mantissa down.
// Zero exponent valid if From has no zero representation.
FromBits from_has_leading_one =
(biased_from_exponent > 0 || !kFromHasZero ? 1 : 0);
int exponent_shift =
-kDigitShift - biased_to_exponent + from_has_leading_one;
// Insert the implicit leading 1 bit on the mantissa for normalized
// inputs.
FromBits rounded_from_bits =
(from_bits & FromTraits::kMantissaMask) |
(from_has_leading_one << kFromMantissaBits);
ToBits bits = 0;
if (exponent_shift > 0) {
// To avoid UB, limit rounding and shifting to the full mantissa plus
// leading 1.
if (exponent_shift <= kFromMantissaBits + 1) {
if constexpr (!kTruncate) {
// NOTE: we need to round again from the original from_bits,
// otherwise the lower precision bits may already be lost. There
// is an edge-case where rounding to a normalized value would
// normally round down, but for a subnormal, we need to round up.
rounded_from_bits = RoundBitsToNearestEven(rounded_from_bits,
exponent_shift, false);
}
bits = rounded_from_bits >> exponent_shift;
}
} else {
bits = rounded_from_bits << -exponent_shift;
}
// Insert sign and return.
To to = Eigen::numext::bit_cast<To>(bits);
return from_sign_bit ? -to : to;
}
}
// Round the mantissa if it is shrinking.
WideBits rounded_from_bits = from_bits;
if constexpr (kDigitShift < 0) {
if constexpr (!kTruncate) {
rounded_from_bits =
RoundBitsToNearestEven(from_bits, -kDigitShift, to_zero_mantissa);
}
// Zero-out tail bits.
rounded_from_bits &= ~((WideBits{1} << (-kDigitShift)) - 1);
}
// Re-bias the exponent.
rounded_from_bits += static_cast<WideBits>(kExponentOffset)
<< kFromMantissaBits;
ToBits bits;
// Check for overflows by aligning the significands. We always align the
// narrower significand to the wider significand.
const WideBits kToHighestRep =
Eigen::numext::bit_cast<ToBits>(Eigen::NumTraits<To>::highest());
WideBits aligned_highest{kToHighestRep};
if constexpr (kDigitShift < 0) {
aligned_highest <<= -kDigitShift;
// Shift down, all dropped bits should already be zero.
bits = static_cast<ToBits>(rounded_from_bits >> -kDigitShift);
} else if constexpr (kDigitShift >= 0) {
// Shift up, inserting zeros in the newly created digits.
rounded_from_bits <<= kDigitShift;
bits = static_cast<ToBits>(rounded_from_bits);
}
To to = Eigen::numext::bit_cast<To>(bits);
// `From` supports larger values than `To`, we may overflow.
if constexpr (std::make_pair(std::numeric_limits<To>::max_exponent,
std::numeric_limits<To>::digits) <
std::make_pair(std::numeric_limits<From>::max_exponent,
std::numeric_limits<From>::digits)) {
if (rounded_from_bits > aligned_highest) {
// Overflowed values map to highest or infinity depending on kSaturate.
to = kSaturate ? Eigen::NumTraits<To>::highest()
: Eigen::NumTraits<To>::infinity();
}
}
// Insert sign bit.
return from_sign_bit ? -to : to;
}
};
// Saturation has no impact when casting e4m3fn to e5m2.
template <bool kTruncate>
struct ConvertImpl<float8_e4m3fn, float8_e5m2, true, kTruncate> {
static EIGEN_DEVICE_FUNC inline float8_e5m2 run(float8_e4m3fn from) {
return ConvertImpl<float8_e4m3fn, float8_e5m2, false, kTruncate>::run(from);
}
};
template <bool kSaturate, bool kTruncate>
struct ConvertImpl<Eigen::half, float8_e5m2, kSaturate, kTruncate> {
static EIGEN_DEVICE_FUNC inline float8_e5m2 run(Eigen::half from) {
uint16_t from_bits = Eigen::numext::bit_cast<uint16_t>(from);
// Special values (Inf or NaN).
uint16_t abs_bits = from_bits & 0x7FFF;
if (abs_bits == 0x7C00) {
return float8_e5m2::FromRep(from_bits >> 8);
} else if (abs_bits > 0x7C00) {
// IEEE 754-2019 6.2.1: "A quiet NaN bit string should be encoded with the
// first bit (d1) of the trailing significand field T being 1."
// IEEE 754-2019 6.2.3: "Conversion of a quiet NaN to a floating-point
// format of the same or a different radix that does not allow the payload
// to be preserved, shall return a quiet NaN [...]"
return float8_e5m2::FromRep((from_bits >> 8) | 0b0'00000'10);
}
if constexpr (!kTruncate) {
from_bits = RoundBitsToNearestEven(from_bits, 8, false);
// Rounding can cause an overflow to infinity. Clamp to the largest finite
// value if saturation is requested.
if constexpr (kSaturate) {
const float8_e5m2 kHighest = Eigen::NumTraits<float8_e5m2>::highest();
if ((from_bits & 0x7F00) > static_cast<uint16_t>(kHighest.rep()) << 8) {
const bool from_sign_bit = from_bits >> 15;
return from_sign_bit ? -kHighest : kHighest;
}
}
}
return float8_e5m2::FromRep(from_bits >> 8);
}
};
// Direct casts of e5m2 to Eigen::half simply shifts bits over.
template <bool kSaturate, bool kTruncate>
struct ConvertImpl<float8_e5m2, Eigen::half, kSaturate, kTruncate> {
static EIGEN_DEVICE_FUNC inline Eigen::half run(float8_e5m2 from) {
return Eigen::numext::bit_cast<Eigen::half>(
static_cast<uint16_t>(static_cast<uint16_t>(from.rep()) << 8));
}
};
template <typename Derived>
template <bool kSaturate, bool kTruncate, typename From>
EIGEN_DEVICE_FUNC Derived float8_base<Derived>::ConvertFrom(const From from) {
// We are rounding long double -> float -> float8. This can induce
// double-rounding which may alter the results. We can correct for this using
// a trick explained in: Boldo, Sylvie, and Guillaume Melquiond. "When double
// rounding is odd." 17th IMACS World Congress. 2005.
if constexpr (std::is_floating_point_v<From> &&
sizeof(From) > sizeof(double)) {
// float80, binary128, etc. end up here.
static_assert(std::numeric_limits<From>::digits >=
std::numeric_limits<float>::digits + 2);
static_assert(std::numeric_limits<float>::min_exponent >=
std::numeric_limits<From>::min_exponent + 2);
static_assert(std::numeric_limits<float>::is_iec559);
static_assert(std::numeric_limits<float>::radix == 2);
const bool is_negative = std::signbit(from);
const From abs_wide = std::fabs(from);
float abs_narrow = static_cast<float>(abs_wide);
const From abs_narrow_as_wide = static_cast<From>(abs_narrow);
uint32_t narrow_bits = Eigen::numext::bit_cast<uint32_t>(abs_narrow);
// We can keep the narrow value as-is if narrowing was exact (no rounding
// error), the wide value was NaN (the narrow value is also NaN and should
// be preserved) or if we rounded to the odd value.
const bool keep_narrow = (abs_wide == abs_narrow_as_wide) ||
std::isnan(abs_narrow) || (narrow_bits & 1);
// We morally performed a round-down if `abs_narrow` is smaller than
// `abs_wide`.
const bool narrow_is_rd = abs_wide > abs_narrow_as_wide;
// If the narrow value is odd or exact, pick it.
// Otherwise, narrow is even and corresponds to either the rounded-up or
// rounded-down value. If narrow is the rounded-down value, we want the
// rounded-up value as it will be odd.
narrow_bits += keep_narrow ? 0 : narrow_is_rd ? 1 : -1;
abs_narrow = Eigen::numext::bit_cast<float>(narrow_bits);
return ConvertImpl<float, Derived, kSaturate, kTruncate>::run(
is_negative ? -abs_narrow : abs_narrow);
} else {
return ConvertImpl<From, Derived, kSaturate, kTruncate>::run(from);
}
}
template <typename Derived>
template <typename To, bool kSaturate, bool kTruncate>
EIGEN_DEVICE_FUNC To float8_base<Derived>::ConvertTo(Derived from) {
return ConvertImpl<Derived, To, kSaturate, kTruncate>::run(from);
}
} // namespace float8_internal
// Exported types.
using float8_e3m4 = float8_internal::float8_e3m4;
using float8_e4m3 = float8_internal::float8_e4m3;
using float8_e4m3fn = float8_internal::float8_e4m3fn;
using float8_e4m3fnuz = float8_internal::float8_e4m3fnuz;
using float8_e4m3b11fnuz = float8_internal::float8_e4m3b11fnuz;
using float8_e5m2 = float8_internal::float8_e5m2;
using float8_e5m2fnuz = float8_internal::float8_e5m2fnuz;
using float8_e8m0fnu = float8_internal::float8_e8m0fnu;
} // namespace ml_dtypes
// Work-around for isinf/isnan/isfinite issue on aarch64.
namespace Eigen {
namespace internal {
template <>
EIGEN_DEVICE_FUNC inline bool isinf_impl<ml_dtypes::float8_e3m4>(
const ml_dtypes::float8_e3m4& x) {
return ml_dtypes::float8_internal::isinf(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isinf_impl<ml_dtypes::float8_e4m3>(
const ml_dtypes::float8_e4m3& x) {
return ml_dtypes::float8_internal::isinf(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isinf_impl<ml_dtypes::float8_e4m3fn>(
const ml_dtypes::float8_e4m3fn& x) {
return ml_dtypes::float8_internal::isinf(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isinf_impl<ml_dtypes::float8_e4m3b11fnuz>(
const ml_dtypes::float8_e4m3b11fnuz& x) {
return ml_dtypes::float8_internal::isinf(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isinf_impl<ml_dtypes::float8_e4m3fnuz>(
const ml_dtypes::float8_e4m3fnuz& x) {
return ml_dtypes::float8_internal::isinf(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isinf_impl<ml_dtypes::float8_e5m2>(
const ml_dtypes::float8_e5m2& x) {
return ml_dtypes::float8_internal::isinf(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isinf_impl<ml_dtypes::float8_e5m2fnuz>(
const ml_dtypes::float8_e5m2fnuz& x) {
return ml_dtypes::float8_internal::isinf(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isinf_impl<ml_dtypes::float8_e8m0fnu>(
const ml_dtypes::float8_e8m0fnu& x) {
return ml_dtypes::float8_internal::isinf(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isnan_impl<ml_dtypes::float8_e3m4>(
const ml_dtypes::float8_e3m4& x) {
return ml_dtypes::float8_internal::isnan(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isnan_impl<ml_dtypes::float8_e4m3>(
const ml_dtypes::float8_e4m3& x) {
return ml_dtypes::float8_internal::isnan(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isnan_impl<ml_dtypes::float8_e4m3fn>(
const ml_dtypes::float8_e4m3fn& x) {
return ml_dtypes::float8_internal::isnan(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isnan_impl<ml_dtypes::float8_e4m3b11fnuz>(
const ml_dtypes::float8_e4m3b11fnuz& x) {
return ml_dtypes::float8_internal::isnan(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isnan_impl<ml_dtypes::float8_e4m3fnuz>(
const ml_dtypes::float8_e4m3fnuz& x) {
return ml_dtypes::float8_internal::isnan(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isnan_impl<ml_dtypes::float8_e5m2>(
const ml_dtypes::float8_e5m2& x) {
return ml_dtypes::float8_internal::isnan(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isnan_impl<ml_dtypes::float8_e5m2fnuz>(
const ml_dtypes::float8_e5m2fnuz& x) {
return ml_dtypes::float8_internal::isnan(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isnan_impl<ml_dtypes::float8_e8m0fnu>(
const ml_dtypes::float8_e8m0fnu& x) {
return ml_dtypes::float8_internal::isnan(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isfinite_impl<ml_dtypes::float8_e3m4>(
const ml_dtypes::float8_e3m4& x) {
return ml_dtypes::float8_internal::isfinite(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isfinite_impl<ml_dtypes::float8_e4m3>(
const ml_dtypes::float8_e4m3& x) {
return ml_dtypes::float8_internal::isfinite(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isfinite_impl<ml_dtypes::float8_e4m3fn>(
const ml_dtypes::float8_e4m3fn& x) {
return ml_dtypes::float8_internal::isfinite(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isfinite_impl<ml_dtypes::float8_e4m3b11fnuz>(
const ml_dtypes::float8_e4m3b11fnuz& x) {
return ml_dtypes::float8_internal::isfinite(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isfinite_impl<ml_dtypes::float8_e4m3fnuz>(
const ml_dtypes::float8_e4m3fnuz& x) {
return ml_dtypes::float8_internal::isfinite(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isfinite_impl<ml_dtypes::float8_e5m2>(
const ml_dtypes::float8_e5m2& x) {
return ml_dtypes::float8_internal::isfinite(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isfinite_impl<ml_dtypes::float8_e5m2fnuz>(
const ml_dtypes::float8_e5m2fnuz& x) {
return ml_dtypes::float8_internal::isfinite(x);
}
template <>
EIGEN_DEVICE_FUNC inline bool isfinite_impl<ml_dtypes::float8_e8m0fnu>(
const ml_dtypes::float8_e8m0fnu& x) {
return ml_dtypes::float8_internal::isfinite(x);
}
} // namespace internal
} // namespace Eigen
#endif // ML_DTYPES_FLOAT8_H_
|