File: rvm.h

package info (click to toggle)
mldemos 0.5.1%2Bgit.1.ee5d11f-4
  • links: PTS, VCS
  • area: main
  • in suites: buster, sid
  • size: 32,980 kB
  • sloc: cpp: 311,848; ansic: 167,718; ml: 126; sh: 109; makefile: 6
file content (1002 lines) | stat: -rw-r--r-- 37,926 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
// Copyright (C) 2008  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_RVm_
#define DLIB_RVm_

#include "rvm_abstract.h"
#include <cmath>
#include <limits>
#include "../matrix.h"
#include "../algs.h"
#include "function.h"
#include "kernel.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------

    namespace rvm_helpers
    {

    // ------------------------------------------------------------------------------------

        template <typename scalar_vector_type, typename mem_manager_type>
        long find_next_best_alpha_to_update (
            const scalar_vector_type& S,
            const scalar_vector_type& Q,
            const scalar_vector_type& alpha,
            const matrix<long,0,1,mem_manager_type>& active_bases,
            const bool search_all_alphas,
            typename scalar_vector_type::type eps
        ) 
        /*!
            ensures
                - if (we can find another alpha to update) then
                    - returns the index of said alpha 
                - else
                    - returns -1
        !*/
        {
            typedef typename scalar_vector_type::type scalar_type;
            // now use S and Q to find next alpha to update.  What
            // we want to do here is select the alpha to update that gives us
            // the greatest improvement in marginal likelihood.
            long selected_idx = -1;
            scalar_type greatest_improvement = -1;
            for (long i = 0; i < S.nr(); ++i)
            {
                scalar_type value = -1;

                // if i is currently in the active set
                if (active_bases(i) >= 0)
                {
                    const long idx = active_bases(i);
                    const scalar_type s = alpha(idx)*S(i)/(alpha(idx) - S(i));
                    const scalar_type q = alpha(idx)*Q(i)/(alpha(idx) - S(i));

                    if (q*q-s > 0)
                    {
                        // only update an existing alpha if this is a narrow search
                        if (search_all_alphas == false)
                        {
                            // choosing this sample would mean doing an update of an 
                            // existing alpha value.
                            scalar_type new_alpha = s*s/(q*q-s);
                            scalar_type cur_alpha = alpha(idx);
                            new_alpha = 1/new_alpha;
                            cur_alpha = 1/cur_alpha;

                            // from equation 32 in the Tipping paper 
                            value = Q(i)*Q(i)/(S(i) +  1/(new_alpha - cur_alpha) ) - 
                                std::log(1 + S(i)*(new_alpha - cur_alpha));
                        }

                    }
                    // we only pick an alpha to remove if this is a wide search and it wasn't one of the recently added ones 
                    else if (search_all_alphas && idx+2 < alpha.size() )  
                    {
                        // choosing this sample would mean the alpha value is infinite 
                        // so we would remove the selected sample from our model.

                        // from equation 37 in the Tipping paper 
                        value = Q(i)*Q(i)/(S(i) - alpha(idx)) - 
                            std::log(1-S(i)/alpha(idx));

                    }
                }
                else if (search_all_alphas)
                {
                    const scalar_type s = S(i);
                    const scalar_type q = Q(i);

                    if (q*q-s > 0)
                    {
                        // choosing this sample would mean we would add the selected 
                        // sample to our model.

                        // from equation 27 in the Tipping paper 
                        value = (Q(i)*Q(i)-S(i))/S(i) + std::log(S(i)/(Q(i)*Q(i)));
                    }
                }

                if (value > greatest_improvement)
                {
                    greatest_improvement = value;
                    selected_idx = i;
                }
            }

            // If the greatest_improvement in marginal likelihood we would get is less
            // than our epsilon then report that there isn't anything else to do.  But
            // if it is big enough then return the selected_idx.
            if (greatest_improvement > eps)
                return selected_idx;
            else
                return -1;
        }

    } // end namespace rvm_helpers

    // ------------------------------------------------------------------------------------


    template <
        typename kern_type 
        >
    class rvm_trainer 
    {
        /*!
            This is an implementation of the binary classifier version of the
            relevance vector machine algorithm described in the paper:
                Tipping, M. E. and A. C. Faul (2003). Fast marginal likelihood maximisation 
                for sparse Bayesian models. In C. M. Bishop and B. J. Frey (Eds.), Proceedings 
                of the Ninth International Workshop on Artificial Intelligence and Statistics, 
                Key West, FL, Jan 3-6.

            This code mostly does what is described in the above paper with the exception 
            that here we use a different stopping condition as well as a modified alpha
            selection rule.  See the code for the exact details.
        !*/

    public:
        typedef kern_type kernel_type;
        typedef typename kernel_type::scalar_type scalar_type;
        typedef typename kernel_type::sample_type sample_type;
        typedef typename kernel_type::mem_manager_type mem_manager_type;
        typedef decision_function<kernel_type> trained_function_type;

        rvm_trainer (
        ) : eps(0.001)
        {
        }

        void set_epsilon (
            scalar_type eps_
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(eps_ > 0,
                "\tvoid rvm_trainer::set_epsilon(eps_)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t eps: " << eps_ 
                );
            eps = eps_;
        }

        const scalar_type get_epsilon (
        ) const
        { 
            return eps;
        }

        void set_kernel (
            const kernel_type& k
        )
        {
            kernel = k;
        }

        const kernel_type& get_kernel (
        ) const
        {
            return kernel;
        }

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y
        ) const
        {
            return do_train(vector_to_matrix(x), vector_to_matrix(y));
        }

        void swap (
            rvm_trainer& item
        )
        {
            exchange(kernel, item.kernel);
            exchange(eps, item.eps);
        }

    private:

    // ------------------------------------------------------------------------------------

        typedef matrix<scalar_type,0,1,mem_manager_type> scalar_vector_type;
        typedef matrix<scalar_type,0,0,mem_manager_type> scalar_matrix_type;

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> do_train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& y
        ) const
        {

            // make sure requires clause is not broken
            DLIB_ASSERT(is_binary_classification_problem(x,y) == true,
                "\tdecision_function rvm_trainer::train(x,y)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t x.nr(): " << x.nr() 
                << "\n\t y.nr(): " << y.nr() 
                << "\n\t x.nc(): " << x.nc() 
                << "\n\t y.nc(): " << y.nc() 
                << "\n\t is_binary_classification_problem(x,y): " << ((is_binary_classification_problem(x,y))? "true":"false")
                );

            // make a target vector where +1 examples have value 1 and -1 examples
            // have a value of 0.
            scalar_vector_type t(y.size());
            for (long i = 0; i < y.size(); ++i)
            {
                if (y(i) == 1)
                    t(i) = 1;
                else
                    t(i) = 0;
            }

            /*! This is the convention for the active_bases variable in the function:
                - if (active_bases(i) >= 0) then
                    - alpha(active_bases(i)) == the alpha value associated with sample x(i)
                    - weights(active_bases(i)) == the weight value associated with sample x(i)
                    - colm(phi, active_bases(i)) == the column of phi associated with sample x(i)
                    - colm(phi, active_bases(i)) == kernel column i (from get_kernel_column()) 
                - else
                    - the i'th sample isn't in the model and notionally has an alpha of infinity and
                      a weight of 0.
            !*/
            matrix<long,0,1,mem_manager_type> active_bases(x.nr());
            scalar_matrix_type phi(x.nr(),1);
            scalar_vector_type alpha(1), prev_alpha;
            scalar_vector_type weights(1), prev_weights;

            scalar_vector_type tempv, K_col; 

            // set the initial values of these guys
            set_all_elements(active_bases, -1);
            long first_basis = pick_initial_vector(x,t);
            get_kernel_column(first_basis, x, K_col);
            active_bases(first_basis) = 0;
            set_colm(phi,0) = K_col;
            alpha(0) = compute_initial_alpha(phi, t);
            weights(0) = 1;


            // now declare a bunch of other variables we will be using below
            scalar_vector_type mu, t_hat, Q, S; 
            scalar_matrix_type sigma;
            
            matrix<scalar_type,1,0,mem_manager_type> tempv2, tempv3;
            scalar_matrix_type tempm;

            scalar_vector_type t_estimate;
            scalar_vector_type beta;


            Q.set_size(x.nr());
            S.set_size(x.nr());

            bool recompute_beta = true;

            bool search_all_alphas = false;
            unsigned long ticker = 0;
            const unsigned long rounds_of_narrow_search = 100;

            while (true)
            {
                if (recompute_beta)
                {
                    // calculate the current t_estimate. (this is the predicted t value for each sample according to the
                    // current state of the classifier)
                    t_estimate = phi*weights;

                    // calculate the current beta
                    beta = sigmoid(t_estimate);
                    beta = pointwise_multiply(beta,(uniform_matrix<scalar_type>(beta.nr(),beta.nc(),1)-beta));
                    recompute_beta = false;
                }

                // Compute optimal weights and sigma for current alpha using IRLS.  This is the same
                // technique documented in the paper by equations 12-14. 
                scalar_type weight_delta = std::numeric_limits<scalar_type>::max();
                int count = 0;
                while (weight_delta > 0.0001)
                {
                    // This is a sanity check to make sure we never get stuck in this
                    // loop to do some degenerate numerical condition 
                    ++count;
                    if (count > 100)
                    {
                        // jump us to where search_all_alphas will be set to true 
                        ticker = rounds_of_narrow_search;
                        break;
                    }

                    // compute the updated sigma matrix
                    sigma = scale_columns(trans(phi),beta)*phi;
                    for (long r = 0; r < alpha.nr(); ++r)
                        sigma(r,r) += alpha(r);
                    sigma = inv(sigma);


                    // compute the updated weights vector (t_hat = phi*mu_mp + inv(B)*(t-y))
                    t_hat = t_estimate + trans(scale_columns(trans(t-sigmoid(t_estimate)),reciprocal(beta))); 

                    // mu = sigma*trans(phi)*b*t_hat
                    mu = sigma*tmp(trans(phi)* trans(scale_columns(trans(t_hat), beta)));  

                    // now compute how much the weights vector changed during this iteration
                    // through this loop.
                    weight_delta = max(abs(mu-weights));

                    // put mu into the weights vector
                    mu.swap(weights);

                    // calculate the current t_estimate
                    t_estimate = phi*weights;

                    // calculate the current beta
                    beta = sigmoid(t_estimate);
                    beta = pointwise_multiply(beta, uniform_matrix<scalar_type>(beta.nr(),beta.nc(),1)-beta);

                }

                // check if we should do a full search for the best alpha to optimize
                if (ticker >= rounds_of_narrow_search)
                {
                    // if the current alpha and weights are equal to what they were
                    // at the last time we were about to start a wide search then
                    // we are done.
                    if (equal(prev_alpha, alpha, eps) && equal(prev_weights, weights, eps))
                        break;


                    prev_alpha = alpha;
                    prev_weights = weights;
                    search_all_alphas = true;
                    ticker = 0;
                }
                else
                {
                    search_all_alphas = false;
                }
                ++ticker;

                // compute S and Q using equations 24 and 25 (tempv = phi*sigma*trans(phi)*B*t_hat)
                tempv = phi*tmp(sigma*tmp(trans(phi)*trans(scale_columns(trans(t_hat),beta)))); 
                for (long i = 0; i < S.size(); ++i)
                {
                    // if we are currently limiting the search for the next alpha to update
                    // to the set in the active set then skip a non-active vector.
                    if (search_all_alphas == false && active_bases(i) == -1)
                        continue;

                    // get the column for this sample out of the kernel matrix.  If it is 
                    // something in the active set then just get it right out of phi, otherwise 
                    // we have to calculate it.
                    if (active_bases(i) != -1)
                        K_col = colm(phi,active_bases(i));
                    else
                        get_kernel_column(i, x, K_col);

                    // tempv2 = trans(phi_m)*B
                    tempv2 = scale_columns(trans(K_col), beta);  
                    tempv3 = tempv2*phi;
                    S(i) = tempv2*K_col - tempv3*sigma*trans(tempv3);
                    Q(i) = tempv2*t_hat - tempv2*tempv; 
                }

                const long selected_idx = rvm_helpers::find_next_best_alpha_to_update(S,Q,alpha,active_bases, search_all_alphas, eps);


                // if find_next_best_alpha_to_update didn't find any good alpha to update
                if (selected_idx == -1)
                {
                    if (search_all_alphas == false)
                    {
                        // jump us to where search_all_alphas will be set to true and try again
                        ticker = rounds_of_narrow_search;
                        continue;
                    }
                    else
                    {
                        // we are really done so quit the main loop
                        break;
                    }
                }


                // next we update the selected alpha.

                // if the selected alpha is in the active set
                if (active_bases(selected_idx) >= 0)
                {
                    const long idx = active_bases(selected_idx);
                    const scalar_type s = alpha(idx)*S(selected_idx)/(alpha(idx) - S(selected_idx));
                    const scalar_type q = alpha(idx)*Q(selected_idx)/(alpha(idx) - S(selected_idx));

                    if (q*q-s > 0)
                    {
                        // reestimate the value of alpha
                        alpha(idx) = s*s/(q*q-s);

                    }
                    else 
                    {
                        // the new alpha value is infinite so remove the selected alpha from our model
                        active_bases(selected_idx) = -1; 
                        phi = remove_col(phi, idx);
                        weights = remove_row(weights, idx);
                        alpha = remove_row(alpha, idx);

                        // fix the index values in active_bases
                        for (long i = 0; i < active_bases.size(); ++i)
                        {
                            if (active_bases(i) > idx)
                            {
                                active_bases(i) -= 1;
                            }
                        }

                        // we changed the number of weights so we need to remember to 
                        // recompute the beta vector next time around the main loop.
                        recompute_beta = true;
                    }
                }
                else
                {
                    const scalar_type s = S(selected_idx);
                    const scalar_type q = Q(selected_idx);

                    if (q*q-s > 0)
                    {
                        // add the selected alpha to our model
                        
                        active_bases(selected_idx) = phi.nc();
                        
                        // update alpha
                        tempv.set_size(alpha.size()+1);
                        set_subm(tempv, get_rect(alpha)) = alpha;
                        tempv(phi.nc()) = s*s/(q*q-s);
                        tempv.swap(alpha);

                        // update weights 
                        tempv.set_size(weights.size()+1);
                        set_subm(tempv, get_rect(weights)) = weights;
                        tempv(phi.nc()) = 0;
                        tempv.swap(weights);

                        // update phi by adding the new sample's kernel matrix column in as one of phi's columns
                        tempm.set_size(phi.nr(), phi.nc()+1);
                        set_subm(tempm, get_rect(phi)) = phi;
                        get_kernel_column(selected_idx, x, K_col);
                        set_colm(tempm, phi.nc()) = K_col;
                        tempm.swap(phi);


                        // we changed the number of weights so we need to remember to 
                        // recompute the beta vector next time around the main loop.
                        recompute_beta = true;
                    }
                }

            } // end while(true).  So we have converged on the final answer.


            // now put everything into a decision_function object and return it
            std_vector_c<sample_type> dictionary;
            std_vector_c<scalar_type> final_weights;
            for (long i = 0; i < active_bases.size(); ++i)
            {
                if (active_bases(i) >= 0)
                {
                    dictionary.push_back(x(i));
                    final_weights.push_back(weights(active_bases(i)));
                }
            }

            return decision_function<kernel_type> ( vector_to_matrix(final_weights),
                                                    -sum(vector_to_matrix(final_weights))*tau, 
                                                    kernel,
                                                    vector_to_matrix(dictionary));

        }

    // ------------------------------------------------------------------------------------

        template <typename M1, typename M2>
        long pick_initial_vector (
            const M1& x,
            const M2& t
        ) const
        {
            scalar_vector_type K_col;
            double max_projection = -std::numeric_limits<scalar_type>::infinity();
            long max_idx = 0;
            // find the row in the kernel matrix that has the biggest normalized projection onto the t vector
            for (long r = 0; r < x.nr(); ++r)
            {
                get_kernel_column(r,x,K_col);
                double temp = trans(K_col)*t;
                temp = temp*temp/length_squared(K_col);

                if (temp > max_projection)
                {
                    max_projection = temp;
                    max_idx = r;
                }
            }

            return max_idx;
        }

    // ------------------------------------------------------------------------------------

        template <typename T>
        void get_kernel_column (
            long idx,
            const T& x,
            scalar_vector_type& col
        ) const
        {
            col.set_size(x.nr());
            for (long i = 0; i < col.size(); ++i)
            {
                col(i) = kernel(x(idx), x(i)) + tau;
            }
        }

    // ------------------------------------------------------------------------------------

        template <typename M1, typename M2>
        scalar_type compute_initial_alpha (
            const M1& phi,
            const M2& t
        ) const
        {
            const double temp = length_squared(phi);
            const double temp2 = trans(phi)*t;

            return temp/( temp2*temp2/temp + variance(t)*0.1);
        }

    // ------------------------------------------------------------------------------------

    // private member variables
        kernel_type kernel;
        scalar_type eps;

        const static scalar_type tau;

    }; // end of class rvm_trainer 

    template <typename kernel_type>
    const typename kernel_type::scalar_type rvm_trainer<kernel_type>::tau = static_cast<typename kernel_type::scalar_type>(0.001);

// ----------------------------------------------------------------------------------------

    template <typename K>
    void swap (
        rvm_trainer<K>& a,
        rvm_trainer<K>& b
    ) { a.swap(b); }

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <
        typename kern_type 
        >
    class rvm_regression_trainer 
    {
        /*!
            This is an implementation of the regression version of the
            relevance vector machine algorithm described in the paper:
                Tipping, M. E. and A. C. Faul (2003). Fast marginal likelihood maximisation 
                for sparse Bayesian models. In C. M. Bishop and B. J. Frey (Eds.), Proceedings 
                of the Ninth International Workshop on Artificial Intelligence and Statistics, 
                Key West, FL, Jan 3-6.

            This code mostly does what is described in the above paper with the exception 
            that here we use a different stopping condition as well as a modified alpha
            selection rule.  See the code for the exact details.
        !*/

    public:
        typedef kern_type kernel_type;
        typedef typename kernel_type::scalar_type scalar_type;
        typedef typename kernel_type::sample_type sample_type;
        typedef typename kernel_type::mem_manager_type mem_manager_type;
        typedef decision_function<kernel_type> trained_function_type;

        rvm_regression_trainer (
        ) : eps(0.001)
        {
        }

        void set_epsilon (
            scalar_type eps_
        )
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(eps_ > 0,
                "\tvoid rvm_regression_trainer::set_epsilon(eps_)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t eps: " << eps_ 
                );
            eps = eps_;
        }

        const scalar_type get_epsilon (
        ) const
        { 
            return eps;
        }

        void set_kernel (
            const kernel_type& k
        )
        {
            kernel = k;
        }

        const kernel_type& get_kernel (
        ) const
        {
            return kernel;
        }

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& t
        ) const
        {
            return do_train(vector_to_matrix(x), vector_to_matrix(t));
        }

        void swap (
            rvm_regression_trainer& item
        )
        {
            exchange(kernel, item.kernel);
            exchange(eps, item.eps);
        }

    private:

    // ------------------------------------------------------------------------------------

        typedef matrix<scalar_type,0,1,mem_manager_type> scalar_vector_type;
        typedef matrix<scalar_type,0,0,mem_manager_type> scalar_matrix_type;

        template <
            typename in_sample_vector_type,
            typename in_scalar_vector_type
            >
        const decision_function<kernel_type> do_train (
            const in_sample_vector_type& x,
            const in_scalar_vector_type& t
        ) const
        {

            // make sure requires clause is not broken
            DLIB_ASSERT(is_learning_problem(x,t) && x.size() > 0,
                "\tdecision_function rvm_regression_trainer::train(x,t)"
                << "\n\t invalid inputs were given to this function"
                << "\n\t x.nr(): " << x.nr() 
                << "\n\t t.nr(): " << t.nr() 
                << "\n\t x.nc(): " << x.nc() 
                << "\n\t t.nc(): " << t.nc() 
                );


            /*! This is the convention for the active_bases variable in the function:
                - if (active_bases(i) >= 0) then
                    - alpha(active_bases(i)) == the alpha value associated with sample x(i)
                    - weights(active_bases(i)) == the weight value associated with sample x(i)
                    - colm(phi, active_bases(i)) == the column of phi associated with sample x(i)
                    - colm(phi, active_bases(i)) == kernel column i (from get_kernel_column()) 
                - else
                    - the i'th sample isn't in the model and notionally has an alpha of infinity and
                      a weight of 0.
            !*/
            matrix<long,0,1,mem_manager_type> active_bases(x.nr());
            scalar_matrix_type phi(x.nr(),1);
            scalar_vector_type alpha(1), prev_alpha;
            scalar_vector_type weights(1), prev_weights;

            scalar_vector_type tempv, K_col; 
            scalar_type var = variance(t)*0.1;

            // set the initial values of these guys
            set_all_elements(active_bases, -1);
            long first_basis = pick_initial_vector(x,t);
            get_kernel_column(first_basis, x, K_col);
            active_bases(first_basis) = 0;
            set_colm(phi,0) = K_col;
            alpha(0) = compute_initial_alpha(phi, t, var);
            weights(0) = 1;


            // now declare a bunch of other variables we will be using below
            scalar_vector_type Q, S; 
            scalar_matrix_type sigma;
            
            matrix<scalar_type,1,0,mem_manager_type> tempv2, tempv3;
            scalar_matrix_type tempm;


            Q.set_size(x.nr());
            S.set_size(x.nr());


            bool search_all_alphas = false;
            unsigned long ticker = 0;
            const unsigned long rounds_of_narrow_search = 100;

            while (true)
            {
                // Compute optimal weights and sigma for current alpha using equation 6. 
                sigma = trans(phi)*phi/var;
                for (long r = 0; r < alpha.nr(); ++r)
                    sigma(r,r) += alpha(r);
                sigma = inv(sigma);
                weights = sigma*trans(phi)*t/var;  



                // check if we should do a full search for the best alpha to optimize
                if (ticker == rounds_of_narrow_search)
                {
                    // if the current alpha and weights are equal to what they were
                    // at the last time we were about to start a wide search then
                    // we are done.
                    if (equal(prev_alpha, alpha, eps) && equal(prev_weights, weights, eps))
                        break;

                    prev_alpha = alpha;
                    prev_weights = weights;
                    search_all_alphas = true;
                    ticker = 0;
                }
                else
                {
                    search_all_alphas = false;
                }
                ++ticker;

                // compute S and Q using equations 24 and 25 (tempv = phi*sigma*trans(phi)*B*t)
                tempv = phi*tmp(sigma*tmp(trans(phi)*t/var)); 
                for (long i = 0; i < S.size(); ++i)
                {
                    // if we are currently limiting the search for the next alpha to update
                    // to the set in the active set then skip a non-active vector.
                    if (search_all_alphas == false && active_bases(i) == -1)
                        continue;

                    // get the column for this sample out of the kernel matrix.  If it is 
                    // something in the active set then just get it right out of phi, otherwise 
                    // we have to calculate it.
                    if (active_bases(i) != -1)
                        K_col = colm(phi,active_bases(i));
                    else
                        get_kernel_column(i, x, K_col);

                    // tempv2 = trans(phi_m)*B
                    tempv2 = trans(K_col)/var;  
                    tempv3 = tempv2*phi;
                    S(i) = tempv2*K_col - tempv3*sigma*trans(tempv3);
                    Q(i) = tempv2*t - tempv2*tempv; 
                }

                const long selected_idx = rvm_helpers::find_next_best_alpha_to_update(S,Q,alpha,active_bases, search_all_alphas, eps);

                // if find_next_best_alpha_to_update didn't find any good alpha to update
                if (selected_idx == -1)
                {
                    if (search_all_alphas == false)
                    {
                        // jump us to where search_all_alphas will be set to true and try again
                        ticker = rounds_of_narrow_search;
                        continue;
                    }
                    else
                    {
                        // we are really done so quit the main loop
                        break;
                    }
                }

                // recompute the variance
                var = length_squared(t - phi*weights)/(x.nr() - weights.size() + trans(alpha)*diag(sigma));

                // next we update the selected alpha.

                // if the selected alpha is in the active set
                if (active_bases(selected_idx) >= 0)
                {
                    const long idx = active_bases(selected_idx);
                    const scalar_type s = alpha(idx)*S(selected_idx)/(alpha(idx) - S(selected_idx));
                    const scalar_type q = alpha(idx)*Q(selected_idx)/(alpha(idx) - S(selected_idx));

                    if (q*q-s > 0)
                    {
                        // reestimate the value of alpha
                        alpha(idx) = s*s/(q*q-s);

                    }
                    else 
                    {
                        // the new alpha value is infinite so remove the selected alpha from our model
                        active_bases(selected_idx) = -1; 
                        phi = remove_col(phi, idx);
                        weights = remove_row(weights, idx);
                        alpha = remove_row(alpha, idx);

                        // fix the index values in active_bases
                        for (long i = 0; i < active_bases.size(); ++i)
                        {
                            if (active_bases(i) > idx)
                            {
                                active_bases(i) -= 1;
                            }
                        }
                    }
                }
                else
                {
                    const scalar_type s = S(selected_idx);
                    const scalar_type q = Q(selected_idx);

                    if (q*q-s > 0)
                    {
                        // add the selected alpha to our model
                        
                        active_bases(selected_idx) = phi.nc();
                        
                        // update alpha
                        tempv.set_size(alpha.size()+1);
                        set_subm(tempv, get_rect(alpha)) = alpha;
                        tempv(phi.nc()) = s*s/(q*q-s);
                        tempv.swap(alpha);

                        // update weights 
                        tempv.set_size(weights.size()+1);
                        set_subm(tempv, get_rect(weights)) = weights;
                        tempv(phi.nc()) = 0;
                        tempv.swap(weights);

                        // update phi by adding the new sample's kernel matrix column in as one of phi's columns
                        tempm.set_size(phi.nr(), phi.nc()+1);
                        set_subm(tempm, get_rect(phi)) = phi;
                        get_kernel_column(selected_idx, x, K_col);
                        set_colm(tempm, phi.nc()) = K_col;
                        tempm.swap(phi);

                    }
                }



            } // end while(true).  So we have converged on the final answer.

       
            // now put everything into a decision_function object and return it
            std_vector_c<sample_type> dictionary;
            std_vector_c<scalar_type> final_weights;
            for (long i = 0; i < active_bases.size(); ++i)
            {
                if (active_bases(i) >= 0)
                {
                    dictionary.push_back(x(i));
                    final_weights.push_back(weights(active_bases(i)));
                }
            }

            return decision_function<kernel_type> ( vector_to_matrix(final_weights),
                                                    -sum(vector_to_matrix(final_weights))*tau, 
                                                    kernel,
                                                    vector_to_matrix(dictionary));

        }

    // ------------------------------------------------------------------------------------

        template <typename T>
        void get_kernel_column (
            long idx,
            const T& x,
            scalar_vector_type& col
        ) const
        {
            col.set_size(x.nr());
            for (long i = 0; i < col.size(); ++i)
            {
                col(i) = kernel(x(idx), x(i)) + tau;
            }
        }

    // ------------------------------------------------------------------------------------

        template <typename M1, typename M2>
        scalar_type compute_initial_alpha (
            const M1& phi,
            const M2& t,
            const scalar_type& var
        ) const
        {
            const double temp = length_squared(phi);
            const double temp2 = trans(phi)*t;

            return temp/( temp2*temp2/temp + var);
        }

    // ------------------------------------------------------------------------------------

        template <typename M1, typename M2>
        long pick_initial_vector (
            const M1& x,
            const M2& t
        ) const
        {
            scalar_vector_type K_col;
            double max_projection = -std::numeric_limits<scalar_type>::infinity();
            long max_idx = 0;
            // find the row in the kernel matrix that has the biggest normalized projection onto the t vector
            for (long r = 0; r < x.nr(); ++r)
            {
                get_kernel_column(r,x,K_col);
                double temp = trans(K_col)*t;
                temp = temp*temp/length_squared(K_col);

                if (temp > max_projection)
                {
                    max_projection = temp;
                    max_idx = r;
                }
            }

            return max_idx;
        }

    // ------------------------------------------------------------------------------------

    // private member variables
        kernel_type kernel;
        scalar_type eps;

        const static scalar_type tau;

    }; // end of class rvm_regression_trainer 

    template <typename kernel_type>
    const typename kernel_type::scalar_type rvm_regression_trainer<kernel_type>::tau = static_cast<typename kernel_type::scalar_type>(0.001);

// ----------------------------------------------------------------------------------------

    template <typename K>
    void swap (
        rvm_regression_trainer<K>& a,
        rvm_regression_trainer<K>& b
    ) { a.swap(b); }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_RVm_