File: algs.h

package info (click to toggle)
mldemos 0.5.1-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 32,224 kB
  • ctags: 46,525
  • sloc: cpp: 306,887; ansic: 167,718; ml: 126; sh: 109; makefile: 2
file content (960 lines) | stat: -rw-r--r-- 33,399 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
// Copyright (C) 2003  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_ALGs_
#define DLIB_ALGs_

// this file contains miscellaneous stuff                      


#ifdef _MSC_VER
// Disable the following warnings for Visual Studio

// this is to disable the "'this' : used in base member initializer list"
// warning you get from some of the GUI objects since all the objects
// require that their parent class be passed into their constructor. 
// In this case though it is totally safe so it is ok to disable this warning.
#pragma warning(disable : 4355)

// This is a warning you get sometimes when Visual Studio performs a Koenig Lookup. 
// This is a bug in visual studio.  It is a totally legitimate thing to 
// expect from a compiler. 
#pragma warning(disable : 4675)

// This is a warning you get from visual studio 2005 about things in the standard C++
// library being "deprecated."  I checked the C++ standard and it doesn't say jack 
// about any of them (I checked the searchable PDF).   So this warning is total Bunk.
#pragma warning(disable : 4996)

// This is a warning you get from visual studio 2003:
//    warning C4345: behavior change: an object of POD type constructed with an initializer 
//    of the form () will be default-initialized.
// I love it when this compiler gives warnings about bugs in previous versions of itself. 
#pragma warning(disable : 4345)


// Disable warnings about conversion from size_t to unsigned long and long.
#pragma warning(disable : 4267)

// Disable warnings about conversion from double to float  
#pragma warning(disable : 4244)
#pragma warning(disable : 4305)

#endif

#ifdef __BORLANDC__
// Disable the following warnings for the Borland Compilers
//
// These warnings just say that the compiler is refusing to inline functions with
// loops or try blocks in them.  
//
#pragma option -w-8027
#pragma option -w-8026 
#endif

#include <string>       // for the exceptions

#ifdef __CYGWIN__
namespace std
{
   typedef std::basic_string<wchar_t> wstring;
}
#endif

#include "platform.h"
#include "windows_magic.h"


#include <algorithm>    // for std::swap
#include <new>          // for std::bad_alloc
#include <cstdlib>
#include "assert.h"
#include "error.h"
#include "noncopyable.h"
#include "enable_if.h"
#include "uintn.h"
#include "memory_manager_stateless/memory_manager_stateless_kernel_1.h" // for the default memory manager



// ----------------------------------------------------------------------------------------
/*!A _dT !*/

template <typename charT>
inline charT _dTcast (const char a, const wchar_t b);
template <>
inline char _dTcast<char> (const char a, const wchar_t ) { return a; }
template <>
inline wchar_t _dTcast<wchar_t> (const char , const wchar_t b) { return b; }

template <typename charT>
inline const charT* _dTcast ( const char* a, const wchar_t* b);
template <>
inline const char* _dTcast<char> ( const char* a, const wchar_t* ) { return a; }
template <>
inline const wchar_t* _dTcast<wchar_t> ( const char* , const wchar_t* b) { return b; }


#define _dT(charT,str) _dTcast<charT>(str,L##str) 
/*!
    requires
        - charT == char or wchar_t
        - str == a string or character literal
    ensures
        - returns the literal in the form of a charT type literal.
!*/

// ----------------------------------------------------------------------------------------



namespace dlib
{

// ----------------------------------------------------------------------------------------

    /*!A default_memory_manager

        This memory manager just calls new and delete directly.  

    !*/
    typedef memory_manager_stateless_kernel_1<char> default_memory_manager;

// ----------------------------------------------------------------------------------------

    /*!A swap !*/
    // make swap available in the dlib namespace
    using std::swap;

// ----------------------------------------------------------------------------------------

    /*!
        Here is where I define my return codes.  It is 
        important that they all be < 0.
    !*/

    enum general_return_codes
    {
        TIMEOUT     = -1,
        WOULDBLOCK  = -2,
        OTHER_ERROR = -3,
        SHUTDOWN    = -4,
        PORTINUSE   = -5
    };

// ----------------------------------------------------------------------------------------

    inline unsigned long square_root (
        unsigned long value
    )
    /*!
        requires
            - value <= 2^32 - 1
        ensures
            - returns the square root of value.  if the square root is not an
              integer then it will be rounded up to the nearest integer.
    !*/
    {
        unsigned long x;

        // set the initial guess for what the root is depending on 
        // how big value is
        if (value < 3)
            return value;
        else if (value < 4096) // 12
            x = 45;
        else if (value < 65536) // 16
            x = 179;
        else if (value < 1048576) // 20
            x = 717;
        else if (value < 16777216) // 24
            x = 2867;
        else if (value < 268435456) // 28
            x = 11469;
        else   // 32
            x = 45875;



        // find the root
        x = (x + value/x)>>1;
        x = (x + value/x)>>1;
        x = (x + value/x)>>1;
        x = (x + value/x)>>1;



        if (x*x < value)
            return x+1;
        else
            return x;
    }

// ----------------------------------------------------------------------------------------

    template <
        typename T
        >    
    void median (
        T& one,
        T& two,
        T& three
    );
    /*!
        requires
            - T implements operator< 
            - T is swappable by a global swap()
        ensures
            - #one is the median 
            - #one, #two, and #three is some permutation of one, two, and three.  
    !*/
    
    
    template <
        typename T
        >
    void median (
        T& one,
        T& two,
        T& three
    )    
    {    
        using std::swap;
        using dlib::swap;

        if ( one < two )
        {
            // one < two
            if ( two < three )
            {
                // one < two < three : two
                swap(one,two);
                
            }
            else
            {
                // one < two >= three
                if ( one < three)
                {
                    // three
                    swap(three,one);
                }
            }
            
        }
        else
        {
            // one >= two
            if ( three < one )
            {
                // three <= one >= two
                if ( three < two )
                {
                    // two
                    swap(two,one);
                }
                else
                {
                    // three
                    swap(three,one);
                }
            }
        }        
    }

// ----------------------------------------------------------------------------------------

    namespace relational_operators
    {
        template <
            typename A,
            typename B
            >
        bool operator> (
            const A& a,
            const B& b
        ) { return b < a; }

    // ---------------------------------

        template <
            typename A,
            typename B
            >
        bool operator!= (
            const A& a,
            const B& b
        ) { return !(a == b); }

    // ---------------------------------

        template <
            typename A,
            typename B
            >
        bool operator<= (
            const A& a,
            const B& b
        ) { return !(b < a); }

    // ---------------------------------

        template <
            typename A,
            typename B
            >
        bool operator>= (
            const A& a,
            const B& b
        ) { return !(a < b); }

    }

// ----------------------------------------------------------------------------------------

    template <
        typename T
        >
    void exchange (
        T& a,
        T& b
    )
    /*!
        This function does the exact same thing that global swap does and it does it by
        just calling swap.  But a lot of compilers have problems doing a Koenig Lookup
        and the fact that this has a different name (global swap has the same name as
        the member functions called swap) makes them compile right.

        So this is a workaround but not too ugly of one.  But hopefully I get get
        rid of this in a few years.  So this function is alredy deprecated. 

        This also means you should NOT use this function in your own code unless
        you have to support an old buggy compiler that benefits from this hack.
    !*/
    {
        using std::swap;
        using dlib::swap;
        swap(a,b);
    }

// ----------------------------------------------------------------------------------------

    /*!A is_pointer_type

        This is a template where is_pointer_type<T>::value == true when T is a pointer 
        type and false otherwise.
    !*/

    template <
        typename T
        >
    class is_pointer_type
    {
    public:
        enum { value = false };
    private:
        is_pointer_type();
    };

    template <
        typename T
        >
    class is_pointer_type<T*>
    {
    public:
        enum { value = true };
    private:
        is_pointer_type();
    };

// ----------------------------------------------------------------------------------------

    /*!A is_const_type

        This is a template where is_const_type<T>::value == true when T is a const 
        type and false otherwise.
    !*/

    template <typename T>
    struct is_const_type
    {
        static const bool value = false;
    };
    template <typename T>
    struct is_const_type<const T>
    {
        static const bool value = true;
    };
    template <typename T>
    struct is_const_type<const T&>
    {
        static const bool value = true;
    };

// ----------------------------------------------------------------------------------------

    /*!A is_reference_type 

        This is a template where is_reference_type<T>::value == true when T is a reference 
        type and false otherwise.
    !*/

    template <typename T>
    struct is_reference_type
    {
        static const bool value = false;
    };

    template <typename T> struct is_reference_type<const T&> { static const bool value = true; };
    template <typename T> struct is_reference_type<T&> { static const bool value = true; };

// ----------------------------------------------------------------------------------------

    /*!A is_same_type 

        This is a template where is_same_type<T,U>::value == true when T and U are the
        same type and false otherwise.   
    !*/

    template <
        typename T,
        typename U
        >
    class is_same_type
    {
    public:
        enum {value = false};
    private:
        is_same_type();
    };

    template <typename T>
    class is_same_type<T,T>
    {
    public:
        enum {value = true};
    private:
        is_same_type();
    };

// ----------------------------------------------------------------------------------------

    /*!A is_float_type

        This is a template that can be used to determine if a type is one of the built
        int floating point types (i.e. float, double, or long double).
    !*/

    template < typename T > struct is_float_type  { const static bool value = false; };
    template <> struct is_float_type<float>       { const static bool value = true; };
    template <> struct is_float_type<double>      { const static bool value = true; };
    template <> struct is_float_type<long double> { const static bool value = true; };

// ----------------------------------------------------------------------------------------

    /*!A is_convertible

        This is a template that can be used to determine if one type is convertible 
        into another type.

        For example:
            is_convertible<int,float>::value == true    // because ints are convertible to floats
            is_convertible<int*,float>::value == false  // because int pointers are NOT convertible to floats
    !*/

    template <typename from, typename to>
    struct is_convertible
    {
        struct yes_type { char a; };
        struct no_type { yes_type a[2]; };
        static const from& from_helper();
        static yes_type test(to);
        static no_type test(...);
        const static bool value = sizeof(test(from_helper())) == sizeof(yes_type);
    };

// ----------------------------------------------------------------------------------------

    /*!A is_same_object 

        This is a templated function which checks if both of its arguments are actually
        references to the same object.  It returns true if they are and false otherwise.

    !*/

    // handle the case where T and U are unrelated types.
    template < typename T, typename U >
    typename disable_if_c<is_convertible<T*, U*>::value || is_convertible<U*,T*>::value, bool>::type
    is_same_object (
        const T& a, 
        const U& b
    ) 
    { 
        return ((void*)&a == (void*)&b); 
    }

    // handle the case where T and U are related types because their pointers can be
    // implicitly converted into one or the other.  E.g. a derived class and its base class. 
    // Or where both T and U are just the same type.  This way we make sure that if there is a
    // valid way to convert between these two pointer types then we will take that route rather
    // than the void* approach used otherwise.
    template < typename T, typename U >
    typename enable_if_c<is_convertible<T*, U*>::value || is_convertible<U*,T*>::value, bool>::type
    is_same_object (
        const T& a, 
        const U& b
    ) 
    { 
        return (&a == &b); 
    }

// ----------------------------------------------------------------------------------------

    /*!A is_unsigned_type 

        This is a template where is_unsigned_type<T>::value == true when T is an unsigned
        scalar type and false when T is a signed scalar type.
    !*/
    template <
        typename T
        >
    struct is_unsigned_type
    {
        static const bool value = static_cast<T>((static_cast<T>(0)-static_cast<T>(1))) > 0;
    };
    template <> struct is_unsigned_type<long double> { static const bool value = false; };
    template <> struct is_unsigned_type<double>      { static const bool value = false; };
    template <> struct is_unsigned_type<float>       { static const bool value = false; };

// ----------------------------------------------------------------------------------------

    /*!A is_signed_type 

        This is a template where is_signed_type<T>::value == true when T is a signed
        scalar type and false when T is an unsigned scalar type.
    !*/
    template <
        typename T
        >
    struct is_signed_type
    {
        static const bool value = !is_unsigned_type<T>::value;
    };

// ----------------------------------------------------------------------------------------

    template <
        typename T
        >
    class copy_functor
    {
    public:
        void operator() (
            const T& source, 
            T& destination
        ) const
        {
            destination = source;
        }
    };

// ----------------------------------------------------------------------------------------

    /*!A static_switch

        To use this template you give it some number of boolean expressions and it
        tells you which one of them is true.   If more than one of them is true then
        it causes a compile time error.

        for example:
            static_switch<1 + 1 == 2, 4 - 1 == 4>::value == 1  // because the first expression is true
            static_switch<1 + 1 == 3, 4 == 4>::value == 2      // because the second expression is true
            static_switch<1 + 1 == 3, 4 == 5>::value == 0      // 0 here because none of them are true 
            static_switch<1 + 1 == 2, 4 == 4>::value == compiler error  // because more than one expression is true 
    !*/

    template < bool v1 = 0, bool v2 = 0, bool v3 = 0, bool v4 = 0, bool v5 = 0,
               bool v6 = 0, bool v7 = 0, bool v8 = 0, bool v9 = 0, bool v10 = 0, 
               bool v11 = 0, bool v12 = 0, bool v13 = 0, bool v14 = 0, bool v15 = 0 >
    struct static_switch; 

    template <> struct static_switch<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0> { const static int value = 0; };
    template <> struct static_switch<1,0,0,0,0,0,0,0,0,0,0,0,0,0,0> { const static int value = 1; };
    template <> struct static_switch<0,1,0,0,0,0,0,0,0,0,0,0,0,0,0> { const static int value = 2; };
    template <> struct static_switch<0,0,1,0,0,0,0,0,0,0,0,0,0,0,0> { const static int value = 3; };
    template <> struct static_switch<0,0,0,1,0,0,0,0,0,0,0,0,0,0,0> { const static int value = 4; };
    template <> struct static_switch<0,0,0,0,1,0,0,0,0,0,0,0,0,0,0> { const static int value = 5; };
    template <> struct static_switch<0,0,0,0,0,1,0,0,0,0,0,0,0,0,0> { const static int value = 6; };
    template <> struct static_switch<0,0,0,0,0,0,1,0,0,0,0,0,0,0,0> { const static int value = 7; };
    template <> struct static_switch<0,0,0,0,0,0,0,1,0,0,0,0,0,0,0> { const static int value = 8; };
    template <> struct static_switch<0,0,0,0,0,0,0,0,1,0,0,0,0,0,0> { const static int value = 9; };
    template <> struct static_switch<0,0,0,0,0,0,0,0,0,1,0,0,0,0,0> { const static int value = 10; };
    template <> struct static_switch<0,0,0,0,0,0,0,0,0,0,1,0,0,0,0> { const static int value = 11; };
    template <> struct static_switch<0,0,0,0,0,0,0,0,0,0,0,1,0,0,0> { const static int value = 12; };
    template <> struct static_switch<0,0,0,0,0,0,0,0,0,0,0,0,1,0,0> { const static int value = 13; };
    template <> struct static_switch<0,0,0,0,0,0,0,0,0,0,0,0,0,1,0> { const static int value = 14; };
    template <> struct static_switch<0,0,0,0,0,0,0,0,0,0,0,0,0,0,1> { const static int value = 15; };

// ----------------------------------------------------------------------------------------
    /*!A is_built_in_scalar_type
        
        This is a template that allows you to determine if the given type is a built
        in scalar type such as an int, char, float, short, etc.

        For example, is_built_in_scalar_type<char>::value == true
        For example, is_built_in_scalar_type<std::string>::value == false 
    !*/

    template <typename T> struct is_built_in_scalar_type        { const static bool value = false; };

    template <> struct is_built_in_scalar_type<float>           { const static bool value = true; };
    template <> struct is_built_in_scalar_type<double>          { const static bool value = true; };
    template <> struct is_built_in_scalar_type<long double>     { const static bool value = true; };
    template <> struct is_built_in_scalar_type<short>           { const static bool value = true; };
    template <> struct is_built_in_scalar_type<int>             { const static bool value = true; };
    template <> struct is_built_in_scalar_type<long>            { const static bool value = true; };
    template <> struct is_built_in_scalar_type<unsigned short>  { const static bool value = true; };
    template <> struct is_built_in_scalar_type<unsigned int>    { const static bool value = true; };
    template <> struct is_built_in_scalar_type<unsigned long>   { const static bool value = true; };
    template <> struct is_built_in_scalar_type<uint64>          { const static bool value = true; };
    template <> struct is_built_in_scalar_type<int64>           { const static bool value = true; };
    template <> struct is_built_in_scalar_type<char>            { const static bool value = true; };
    template <> struct is_built_in_scalar_type<signed char>     { const static bool value = true; };
    template <> struct is_built_in_scalar_type<unsigned char>   { const static bool value = true; };
    // Don't define one for wchar_t when using a version of visual studio
    // older than 8.0 (visual studio 2005) since before then they improperly set
    // wchar_t to be a typedef rather than its own type as required by the C++ 
    // standard.
#if !defined(_MSC_VER) || _NATIVE_WCHAR_T_DEFINED
    template <> struct is_built_in_scalar_type<wchar_t>         { const static bool value = true; };
#endif

// ----------------------------------------------------------------------------------------
    
    /*!A promote 
        
        This is a template that takes one of the built in scalar types and gives you another
        scalar type that should be big enough to hold sums of values from the original scalar 
        type.  The new scalar type will also always be signed.

        For example, promote<uint16>::type == int32
    !*/

    template <typename T, size_t s = sizeof(T)> struct promote;
    template <typename T> struct promote<T,1> { typedef int32 type; };
    template <typename T> struct promote<T,2> { typedef int32 type; };
    template <typename T> struct promote<T,4> { typedef int64 type; };
    template <typename T> struct promote<T,8> { typedef int64 type; };

    template <> struct promote<float,sizeof(float)>             { typedef double type; };
    template <> struct promote<double,sizeof(double)>           { typedef double type; };
    template <> struct promote<long double,sizeof(long double)> { typedef long double type; };

// ----------------------------------------------------------------------------------------
    
    /*!A assign_zero_if_built_in_scalar_type

        This function assigns its argument the value of 0 if it is a built in scalar
        type according to the is_built_in_scalar_type<> template.  If it isn't a
        built in scalar type then it does nothing.
    !*/

    template <typename T> inline typename disable_if<is_built_in_scalar_type<T>,void>::type assign_zero_if_built_in_scalar_type (T&){}
    template <typename T> inline typename enable_if<is_built_in_scalar_type<T>,void>::type assign_zero_if_built_in_scalar_type (T& a){a=0;}

// ----------------------------------------------------------------------------------------

    /*!A basic_type

        This is a template that takes a type and strips off any const, volatile, or reference
        qualifiers and gives you back the basic underlying type.  So for example:

        basic_type<const int&>::type == int
    !*/

    template <typename T> struct basic_type { typedef T type; };
    template <typename T> struct basic_type<const T> { typedef T type; };
    template <typename T> struct basic_type<const T&> { typedef T type; };
    template <typename T> struct basic_type<volatile const T&> { typedef T type; };
    template <typename T> struct basic_type<T&> { typedef T type; };
    template <typename T> struct basic_type<volatile T&> { typedef T type; };
    template <typename T> struct basic_type<volatile T> { typedef T type; };
    template <typename T> struct basic_type<volatile const T> { typedef T type; };

// ----------------------------------------------------------------------------------------

    template <typename T>
    T put_in_range (
        const T& a, 
        const T& b, 
        const T& val
    )
    /*!
        requires
            - T is a type that looks like double, float, int, or so forth
        ensures
            - if (val is within the range [a,b]) then
                - returns val
            - else 
                - returns the end of the range [a,b] that is closest to val
    !*/
    {
        if (a < b)
        {
            if (val < a)
                return a;
            else if (val > b)
                return b;
        }
        else
        {
            if (val < b)
                return b;
            else if (val > a)
                return a;
        }

        return val;
    }

    // overload for double 
    inline double put_in_range(const double& a, const double& b, const double& val)
    { return put_in_range<double>(a,b,val); }

// ----------------------------------------------------------------------------------------

    /*!A tabs 

        This is a template to compute the absolute value a number at compile time.

        For example,
            abs<-4>::value == 4
            abs<4>::value == 4
    !*/

        template <long x, typename enabled=void>
        struct tabs { const static long value = x; };
        template <long x>
        struct tabs<x,typename enable_if_c<(x < 0)>::type> { const static long value = -x; };

// ----------------------------------------------------------------------------------------

    /*!A tmax

        This is a template to compute the max of two values at compile time

        For example,
            abs<4,7>::value == 7
    !*/

        template <long x, long y, typename enabled=void>
        struct tmax { const static long value = x; };
        template <long x, long y>
        struct tmax<x,y,typename enable_if_c<(y > x)>::type> { const static long value = y; };

// ----------------------------------------------------------------------------------------

    /*!A tmin 

        This is a template to compute the min of two values at compile time

        For example,
            abs<4,7>::value == 4
    !*/

        template <long x, long y, typename enabled=void>
        struct tmin { const static long value = x; };
        template <long x, long y>
        struct tmin<x,y,typename enable_if_c<(y < x)>::type> { const static long value = y; };

// ----------------------------------------------------------------------------------------

    /*!A is_function 
        
        This is a template that allows you to determine if the given type is a function.

        For example,
            void funct();

            is_built_in_scalar_type<funct>::value == true
            is_built_in_scalar_type<int>::value == false 
    !*/

    template <typename T> struct is_function { static const bool value = false; };
    template <typename T> 
    struct is_function<T (void)> { static const bool value = true; };
    template <typename T, typename A0> 
    struct is_function<T (A0)> { static const bool value = true; };
    template <typename T, typename A0, typename A1> 
    struct is_function<T (A0, A1)> { static const bool value = true; };
    template <typename T, typename A0, typename A1, typename A2> 
    struct is_function<T (A0, A1, A2)> { static const bool value = true; };
    template <typename T, typename A0, typename A1, typename A2, typename A3> 
    struct is_function<T (A0, A1, A2, A3)> { static const bool value = true; };
    template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4> 
    struct is_function<T (A0, A1, A2, A3, A4)> { static const bool value = true; };
    template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4,
                          typename A5> 
    struct is_function<T (A0,A1,A2,A3,A4,A5)> { static const bool value = true; };
    template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4,
                          typename A5, typename A6> 
    struct is_function<T (A0,A1,A2,A3,A4,A5,A6)> { static const bool value = true; };
    template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4,
                          typename A5, typename A6, typename A7> 
    struct is_function<T (A0,A1,A2,A3,A4,A5,A6,A7)> { static const bool value = true; };
    template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4,
                          typename A5, typename A6, typename A7, typename A8> 
    struct is_function<T (A0,A1,A2,A3,A4,A5,A6,A7,A8)> { static const bool value = true; };
    template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4,
                          typename A5, typename A6, typename A7, typename A8, typename A9> 
    struct is_function<T (A0,A1,A2,A3,A4,A5,A6,A7,A8,A9)> { static const bool value = true; };


    template <typename T> class funct_wrap0
    {
    public:
        funct_wrap0(T (&f_)()):f(f_){}
        T operator()() const { return f(); }
    private:
        T (&f)();
    };
    template <typename T, typename A0> class funct_wrap1
    {
    public:
        funct_wrap1(T (&f_)(A0)):f(f_){}
        T operator()(A0 a0) const { return f(a0); }
    private:
        T (&f)(A0);
    };
    template <typename T, typename A0, typename A1> class funct_wrap2
    {
    public:
        funct_wrap2(T (&f_)(A0,A1)):f(f_){}
        T operator()(A0 a0, A1 a1) const { return f(a0,a1); }
    private:
        T (&f)(A0,A1);
    };
    template <typename T, typename A0, typename A1, typename A2> class funct_wrap3
    {
    public:
        funct_wrap3(T (&f_)(A0,A1,A2)):f(f_){}
        T operator()(A0 a0, A1 a1, A2 a2) const { return f(a0,a1,a2); }
    private:
        T (&f)(A0,A1,A2);
    };
    template <typename T, typename A0, typename A1, typename A2, typename A3> class funct_wrap4
    {
    public:
        funct_wrap4(T (&f_)(A0,A1,A2,A3)):f(f_){}
        T operator()(A0 a0, A1 a1, A2 a2, A3 a3) const { return f(a0,a1,a2,a3); }
    private:
        T (&f)(A0,A1,A2,A3);
    };
    template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4> class funct_wrap5
    {
    public:
        funct_wrap5(T (&f_)(A0,A1,A2,A3,A4)):f(f_){}
        T operator()(A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) const { return f(a0,a1,a2,a3,a4); }
    private:
        T (&f)(A0,A1,A2,A3,A4);
    };

    /*!A wrap_function 
        
        This is a template that allows you to turn a global function into a 
        function object.  The reason for this template's existance is so you can
        do stuff like this:
            
            template <typename T>
            void call_funct(const T& funct)
            {  cout << funct(); }

            std::string test() { return "asdfasf"; }

            int main()
            {
                call_funct(wrap_function(test));
            }

        The above code doesn't work right on some compilers if you don't
        use wrap_function.  
    !*/

    template <typename T>
    funct_wrap0<T> wrap_function(T (&f)()) { return funct_wrap0<T>(f); }
    template <typename T, typename A0>
    funct_wrap1<T,A0> wrap_function(T (&f)(A0)) { return funct_wrap1<T,A0>(f); }
    template <typename T, typename A0, typename A1>
    funct_wrap2<T,A0,A1> wrap_function(T (&f)(A0, A1)) { return funct_wrap2<T,A0,A1>(f); }
    template <typename T, typename A0, typename A1, typename A2>
    funct_wrap3<T,A0,A1,A2> wrap_function(T (&f)(A0, A1, A2)) { return funct_wrap3<T,A0,A1,A2>(f); }
    template <typename T, typename A0, typename A1, typename A2, typename A3>
    funct_wrap4<T,A0,A1,A2,A3> wrap_function(T (&f)(A0, A1, A2, A3)) { return funct_wrap4<T,A0,A1,A2,A3>(f); }
    template <typename T, typename A0, typename A1, typename A2, typename A3, typename A4>
    funct_wrap5<T,A0,A1,A2,A3,A4> wrap_function(T (&f)(A0, A1, A2, A3, A4)) { return funct_wrap5<T,A0,A1,A2,A3,A4>(f); }

// ----------------------------------------------------------------------------------------

    template <unsigned long bSIZE>
    class stack_based_memory_block : noncopyable
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This object is a simple container for a block of memory
                of bSIZE bytes.  This memory block is located on the stack
                and properly aligned to hold any kind of object.
        !*/
    public:
        static const unsigned long size = bSIZE;

        stack_based_memory_block(): data(mem.data) {}

        void* get () { return data; }
        /*!
            ensures
                - returns a pointer to the block of memory contained in this object
        !*/

        const void* get () const { return data; }
        /*!
            ensures
                - returns a pointer to the block of memory contained in this object
        !*/

    private:

        // You obviously can't have a block of memory that has zero bytes in it.
        COMPILE_TIME_ASSERT(bSIZE > 0);
        
        union mem_block
        {
            // All of this garbage is to make sure this union is properly aligned 
            // (a union is always aligned such that everything in it would be properly
            // aligned.  So the assumption here is that one of these objects has 
            // a large enough alignment requirement to satisfy any object this
            // block of memory might be cast into).
            void* void_ptr;
            int integer;
            struct {
                void (stack_based_memory_block::*callback)();
                stack_based_memory_block* o; 
            } stuff;
            long double more_stuff;

            uint64 var1;
            uint32 var2;
            double var3;

            char data[size]; 
        } mem;

        // The reason for having this variable is that doing it this way avoids
        // warnings from gcc about violations of strict-aliasing rules.
        void* const data; 
    };

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_ALGs_