File: optimization_line_search.h

package info (click to toggle)
mldemos 0.5.1-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 32,224 kB
  • ctags: 46,525
  • sloc: cpp: 306,887; ansic: 167,718; ml: 126; sh: 109; makefile: 2
file content (740 lines) | stat: -rw-r--r-- 25,493 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
// Copyright (C) 2008  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_OPTIMIZATIOn_LINE_SEARCH_H_
#define DLIB_OPTIMIZATIOn_LINE_SEARCH_H_

#include <cmath>
#include <limits>
#include "../matrix.h"
#include "../algs.h"
#include "optimization_line_search_abstract.h"
#include <utility>

namespace dlib
{

// ----------------------------------------------------------------------------------------

    template <typename funct, typename T>
    class line_search_funct 
    {
    public:
        // You get an error on this line when you pass in a global function to this function.
        // You have to either use a function object or pass a pointer to your global function
        // by taking its address using the & operator.  (This check is here because gcc 4.0
        // has a bug that causes it to silently corrupt return values from functions that
        // invoked through a reference)
        COMPILE_TIME_ASSERT(is_function<funct>::value == false);

        line_search_funct(const funct& f_, const T& start_, const T& direction_) 
            : f(f_),start(start_), direction(direction_), matrix_r(0), scalar_r(0)
        {}

        line_search_funct(const funct& f_, const T& start_, const T& direction_, T& r) 
            : f(f_),start(start_), direction(direction_), matrix_r(&r), scalar_r(0)
        {}

        line_search_funct(const funct& f_, const T& start_, const T& direction_, double& r) 
            : f(f_),start(start_), direction(direction_), matrix_r(0), scalar_r(&r)
        {}

        double operator()(const double& x) const
        {
            return get_value(f(start + x*direction));
        }

    private:

        double get_value (const double& r) const
        {
            // save a copy of this value for later
            if (scalar_r)
                *scalar_r = r;

            return r;
        }

        template <typename U>
        double get_value (const U& r) const
        {
            // U should be a matrix type
            COMPILE_TIME_ASSERT(is_matrix<U>::value);

            // save a copy of this value for later
            if (matrix_r)
                *matrix_r = r;

            return dot(r,direction);
        }

        const funct& f;
        const T& start;
        const T& direction;
        T* matrix_r;
        double* scalar_r;
    };

    template <typename funct, typename T>
    const line_search_funct<funct,T> make_line_search_function(const funct& f, const T& start, const T& direction) 
    { 
        // You get an error on this line when you pass in a global function to this function.
        // You have to either use a function object or pass a pointer to your global function
        // by taking its address using the & operator.  (This check is here because gcc 4.0
        // has a bug that causes it to silently corrupt return values from functions that
        // invoked through a reference)
        COMPILE_TIME_ASSERT(is_function<funct>::value == false);

        COMPILE_TIME_ASSERT(is_matrix<T>::value);
        DLIB_ASSERT (
            is_col_vector(start) && is_col_vector(direction) && start.size() == direction.size(),
            "\tline_search_funct make_line_search_function(f,start,direction)"
            << "\n\tYou have to supply column vectors to this function"
            << "\n\tstart.nc():     " << start.nc()
            << "\n\tdirection.nc(): " << direction.nc()
            << "\n\tstart.nr():     " << start.nr()
            << "\n\tdirection.nr(): " << direction.nr()
        );
        return line_search_funct<funct,T>(f,start,direction); 
    }

// ----------------------------------------------------------------------------------------

    template <typename funct, typename T>
    const line_search_funct<funct,T> make_line_search_function(const funct& f, const T& start, const T& direction, double& f_out) 
    { 
        // You get an error on this line when you pass in a global function to this function.
        // You have to either use a function object or pass a pointer to your global function
        // by taking its address using the & operator.  (This check is here because gcc 4.0
        // has a bug that causes it to silently corrupt return values from functions that
        // invoked through a reference)
        COMPILE_TIME_ASSERT(is_function<funct>::value == false);

        COMPILE_TIME_ASSERT(is_matrix<T>::value);
        DLIB_ASSERT (
            is_col_vector(start) && is_col_vector(direction) && start.size() == direction.size(),
            "\tline_search_funct make_line_search_function(f,start,direction)"
            << "\n\tYou have to supply column vectors to this function"
            << "\n\tstart.nc():     " << start.nc()
            << "\n\tdirection.nc(): " << direction.nc()
            << "\n\tstart.nr():     " << start.nr()
            << "\n\tdirection.nr(): " << direction.nr()
        );
        return line_search_funct<funct,T>(f,start,direction, f_out); 
    }

// ----------------------------------------------------------------------------------------

    template <typename funct, typename T>
    const line_search_funct<funct,T> make_line_search_function(const funct& f, const T& start, const T& direction, T& grad_out) 
    { 
        // You get an error on this line when you pass in a global function to this function.
        // You have to either use a function object or pass a pointer to your global function
        // by taking its address using the & operator.  (This check is here because gcc 4.0
        // has a bug that causes it to silently corrupt return values from functions that
        // invoked through a reference)
        COMPILE_TIME_ASSERT(is_function<funct>::value == false);

        COMPILE_TIME_ASSERT(is_matrix<T>::value);
        DLIB_ASSERT (
            is_col_vector(start) && is_col_vector(direction) && start.size() == direction.size(),
            "\tline_search_funct make_line_search_function(f,start,direction)"
            << "\n\tYou have to supply column vectors to this function"
            << "\n\tstart.nc():     " << start.nc()
            << "\n\tdirection.nc(): " << direction.nc()
            << "\n\tstart.nr():     " << start.nr()
            << "\n\tdirection.nr(): " << direction.nr()
        );
        return line_search_funct<funct,T>(f,start,direction,grad_out); 
    }

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    inline double poly_min_extrap (
        double f0,
        double d0,
        double f1,
        double d1
    )
    {
        const double n = 3*(f1 - f0) - 2*d0 - d1;
        const double e = d0 + d1 - 2*(f1 - f0);


        // find the minimum of the derivative of the polynomial

        double temp = std::max(n*n - 3*e*d0,0.0);

        if (temp < 0)
            return 0.5;

        temp = std::sqrt(temp);

        if (std::abs(e) <= std::numeric_limits<double>::epsilon())
            return 0.5;

        // figure out the two possible min values
        double x1 = (temp - n)/(3*e);
        double x2 = -(temp + n)/(3*e);

        // compute the value of the interpolating polynomial at these two points
        double y1 = f0 + d0*x1 + n*x1*x1 + e*x1*x1*x1;
        double y2 = f0 + d0*x2 + n*x2*x2 + e*x2*x2*x2;

        // pick the best point
        double x;
        if (y1 < y2)
            x = x1;
        else
            x = x2;

        // now make sure the minimum is within the allowed range of (0,1) 
        return put_in_range(0,1,x);
    }

// ----------------------------------------------------------------------------------------

    inline double lagrange_poly_min_extrap (
        double p1, 
        double p2,
        double p3,
        double f1,
        double f2,
        double f3
    )
    {
        DLIB_ASSERT(p1 < p2 && p2 < p3 && f1 >= f2 && f2 <= f3,
                     "   p1: " << p1 
                     << "   p2: " << p2 
                     << "   p3: " << p3  
                     << "   f1: " << f1 
                     << "   f2: " << f2 
                     << "   f3: " << f3);

        // This formula is out of the book Nonlinear Optimization by Andrzej Ruszczynski.  See section 5.2.
        double temp1 =    f1*(p3*p3 - p2*p2) + f2*(p1*p1 - p3*p3) + f3*(p2*p2 - p1*p1);
        double temp2 = 2*(f1*(p3 - p2)       + f2*(p1 - p3)       + f3*(p2 - p1) );

        if (temp2 == 0)
        {
            return p2;
        }

        const double result = temp1/temp2;

        // do a final sanity check to make sure the result is in the right range
        if (p1 <= result && result <= p3)
        {
            return result;
        }
        else
        {
            return std::min(std::max(p1,result),p3);
        }
    }

// ----------------------------------------------------------------------------------------

    template <
        typename funct, 
        typename funct_der
        >
    double line_search (
        const funct& f, 
        const double f0,
        const funct_der& der, 
        const double d0,
        double rho, 
        double sigma, 
        double min_f,
        unsigned long max_iter 
    )
    {
        // You get an error on this line when you pass in a global function to this function.
        // You have to either use a function object or pass a pointer to your global function
        // by taking its address using the & operator.  (This check is here because gcc 4.0
        // has a bug that causes it to silently corrupt return values from functions that
        // invoked through a reference)
        COMPILE_TIME_ASSERT(is_function<funct>::value == false);
        COMPILE_TIME_ASSERT(is_function<funct_der>::value == false);

        DLIB_ASSERT (
            0 < rho && rho < sigma && sigma < 1 && max_iter > 0,
            "\tdouble line_search()"
            << "\n\tYou have given invalid arguments to this function"
            << "\n\t sigma:    " << sigma
            << "\n\t rho:      " << rho 
            << "\n\t max_iter: " << max_iter 
        );

        // The bracketing phase of this function is implemented according to block 2.6.2 from
        // the book Practical Methods of Optimization by R. Fletcher.   The sectioning 
        // phase is an implementation of 2.6.4 from the same book.

        // tau1 > 1. Controls the alpha jump size during the search
        const double tau1 = 9;

        // it must be the case that 0 < tau2 < tau3 <= 1/2 for the algorithm to function
        // correctly but the specific values of tau2 and tau3 aren't super important.
        const double tau2 = 1.0/10.0;
        const double tau3 = 1.0/2.0;


        // Stop right away and return a step size of 0 if the gradient is 0 at the starting point
        if (std::abs(d0) < std::numeric_limits<double>::epsilon())
            return 0;

        // Stop right away if the current value is good enough according to min_f
        if (f0 <= min_f)
            return 0;

        // Figure out a reasonable upper bound on how large alpha can get.
        const double mu = (min_f-f0)/(rho*d0);


        double alpha = 1;
        if (mu < 0)
            alpha = -alpha;
        alpha = put_in_range(0, 0.65*mu, alpha);


        double last_alpha = 0;
        double last_val = f0;
        double last_val_der = d0;

        // The bracketing stage will find a range of points [a,b]
        // that contains a reasonable solution to the line search
        double a, b;

        // These variables will hold the values and derivatives of f(a) and f(b)
        double a_val, b_val, a_val_der, b_val_der;

        // This thresh value represents the Wolfe curvature condition
        const double thresh = std::abs(sigma*d0);

        unsigned long itr = 0;
        // do the bracketing stage to find the bracket range [a,b]
        while (true)
        {
            ++itr;
            const double val = f(alpha);
            const double val_der = der(alpha);

            // we are done with the line search since we found a value smaller
            // than the minimum f value
            if (val <= min_f)
                return alpha;

            if (val > f0 + rho*alpha*d0 || val >= last_val)
            {
                a_val = last_val;
                a_val_der = last_val_der;
                b_val = val;
                b_val_der = val_der;

                a = last_alpha;
                b = alpha;
                break;
            }

            if (std::abs(val_der) <= thresh)
                return alpha;

            // if we are stuck not making progress then quit with the current alpha
            if (last_alpha == alpha || itr >= max_iter)
                return alpha;

            if (val_der >= 0)
            {
                a_val = val;
                a_val_der = val_der;
                b_val = last_val;
                b_val_der = last_val_der;

                a = alpha;
                b = last_alpha;
                break;
            }

            if (mu <= 2*alpha - last_alpha)
            {
                last_alpha = alpha;
                alpha = mu;
            }
            else
            {
                const double temp = alpha;

                double first = 2*alpha - last_alpha;
                double last;
                if (mu > 0)
                    last = std::min(mu, alpha + tau1*(alpha - last_alpha));
                else
                    last = std::max(mu, alpha + tau1*(alpha - last_alpha));


                // pick a point between first and last by doing some kind of interpolation
                if (last_alpha < alpha)
                    alpha = last_alpha + (alpha-last_alpha)*poly_min_extrap(last_val, last_val_der, val, val_der);
                else
                    alpha = alpha + (last_alpha-alpha)*poly_min_extrap(val, val_der, last_val, last_val_der);

                alpha = put_in_range(first,last,alpha);


                last_alpha = temp;
            }

            last_val = val;
            last_val_der = val_der;

        }


        // Now do the sectioning phase from 2.6.4
        while (true)
        {
            ++itr;
            double first = a + tau2*(b-a);
            double last = b - tau3*(b-a);

            // use interpolation to pick alpha between first and last
            alpha = a + (b-a)*poly_min_extrap(a_val, a_val_der, b_val, b_val_der);
            alpha = put_in_range(first,last,alpha);

            const double val = f(alpha);
            const double val_der = der(alpha);

            // we are done with the line search since we found a value smaller
            // than the minimum f value or we ran out of iterations.
            if (val <= min_f || itr >= max_iter)
                return alpha;

            // stop if the interval gets so small that it isn't shrinking any more due to rounding error 
            if (a == first || b == last)
            {
                return b;
            }


            if (val > f0 + rho*alpha*d0 || val >= a_val)
            {
                b = alpha;
                b_val = val;
                b_val_der = val_der;
            }
            else
            {
                if (std::abs(val_der) <= thresh)
                    return alpha;

                if ( (b-a)*val_der >= 0)
                {
                    b = a;
                    b_val = a_val;
                    b_val_der = a_val_der;
                }

                a = alpha;
                a_val = val;
                a_val_der = val_der;
            }
        }
    }

// ----------------------------------------------------------------------------------------

    class optimize_single_variable_failure : public error {
    public: optimize_single_variable_failure(const std::string& s):error(s){}
    };

// ----------------------------------------------------------------------------------------

    template <typename funct>
    double find_min_single_variable (
        const funct& f,
        double& starting_point,
        const double begin = -1e200,
        const double end = 1e200,
        const double eps = 1e-3,
        const long max_iter = 100
    )
    {
        // You get an error on this line when you pass in a global function to this function.
        // You have to either use a function object or pass a pointer to your global function
        // by taking its address using the & operator.  (This check is here because gcc 4.0
        // has a bug that causes it to silently corrupt return values from functions that
        // invoked through a reference)
        COMPILE_TIME_ASSERT(is_function<funct>::value == false);

        DLIB_CASSERT( eps > 0 &&
                      max_iter > 1 &&
                      begin <= starting_point && starting_point <= end,
                      "eps: " << eps
                      << "\n max_iter: "<< max_iter 
                      << "\n begin: "<< begin 
                      << "\n end:   "<< end 
                      << "\n starting_point: "<< starting_point 
        );

        double p1=0, p2=0, p3=0, f1=0, f2=0, f3=0;
        long f_evals = 1;

        if (begin == end)
        {
            return f(starting_point);
        }

        using std::abs;
        using std::min;
        using std::max;

        // find three bracketing points such that f1 > f2 < f3.   Do this by generating a sequence
        // of points expanding away from 0.   Also note that, in the following code, it is always the
        // case that p1 < p2 < p3.



        // The first thing we do is get a starting set of 3 points that are inside the [begin,end] bounds
        p1 = max(starting_point-1, begin);
        p3 = min(starting_point+1, end);
        f1 = f(p1);
        f3 = f(p3);

        if (starting_point == p1 || starting_point == p3)
        {
            p2 = (p1+p3)/2;
            f2 = f(p2);
        }
        else
        {
            p2 = starting_point;
            f2 = f(starting_point);
        }

        f_evals += 2;

        // Now we have 3 points on the function.  Start looking for a bracketing set such that
        // f1 > f2 < f3 is the case.
        double jump_size = 1;
        while ( !(f1 > f2 && f2 < f3))
        {
            // check for hitting max_iter or if the interval is now too small
            if (f_evals >= max_iter)
            {
                throw optimize_single_variable_failure(
                    "The max number of iterations of single variable optimization have been reached\n"
                    "without converging.");
            }
            if (p3-p1 < eps)
            {
                if (f1 < min(f2,f3)) 
                {
                    starting_point = p1;
                    return f1;
                }

                if (f2 < min(f1,f3)) 
                {
                    starting_point = p2;
                    return f2;
                }

                starting_point = p3;
                return f3;
            }

            // if f1 is small then take a step to the left
            if (f1 < f3)
            { 
                // check if the minimum is butting up against the bounds and if so then pick
                // a point between p1 and p2 in the hopes that shrinking the interval will
                // be a good thing to do.  Or if p1 and p2 aren't differentiated then try and
                // get them to obtain different values.
                if (p1 == begin || (f1 == f2 && (end-begin) < jump_size ))
                {
                    p3 = p2;
                    f3 = f2;

                    p2 = (p1+p2)/2.0;
                    f2 = f(p2);
                }
                else
                {
                    // pick a new point to the left of our current bracket
                    p3 = p2;
                    f3 = f2;

                    p2 = p1;
                    f2 = f1;

                    p1 = max(p1 - jump_size, begin);
                    f1 = f(p1);

                    jump_size *= 2;
                }

            }
            // otherwise f3 is small and we should take a step to the right
            else 
            {
                // check if the minimum is butting up against the bounds and if so then pick
                // a point between p2 and p3 in the hopes that shrinking the interval will
                // be a good thing to do.  Or if p2 and p3 aren't differentiated then try and
                // get them to obtain different values.
                if (p3 == end || (f2 == f3 && (end-begin) < jump_size))
                {
                    p1 = p2;
                    f1 = f2;

                    p2 = (p3+p2)/2.0;
                    f2 = f(p2);
                }
                else
                {
                    // pick a new point to the right of our current bracket
                    p1 = p2;
                    f1 = f2;

                    p2 = p3;
                    f2 = f3;

                    p3 = min(p3 + jump_size, end);
                    f3 = f(p3);

                    jump_size *= 2;
                }
            }

            ++f_evals;
        }


        // Loop until we have done the max allowable number of iterations or
        // the bracketing window is smaller than eps.
        // Within this loop we maintain the invariant that: f1 > f2 < f3 and p1 < p2 < p3
        const double tau = 0.1;
        while( f_evals < max_iter && p3-p1 > eps)
        {
            double p_min = lagrange_poly_min_extrap(p1,p2,p3, f1,f2,f3);


            // make sure p_min isn't too close to the three points we already have
            if (p_min < p2)
            {
                const double min_dist = (p2-p1)*tau;
                if (abs(p1-p_min) < min_dist) 
                {
                    p_min = p1 + min_dist;
                }
                else if (abs(p2-p_min) < min_dist)
                {
                    p_min = p2 - min_dist;
                }
            }
            else
            {
                const double min_dist = (p3-p2)*tau;
                if (abs(p2-p_min) < min_dist) 
                {
                    p_min = p2 + min_dist;
                }
                else if (abs(p3-p_min) < min_dist)
                {
                    p_min = p3 - min_dist;
                }
            }

            // make sure one side of the bracket isn't super huge compared to the other
            // side.  If it is then contract it.
            const double bracket_ratio = abs(p1-p2)/abs(p2-p3);
            if ( !( bracket_ratio < 100 && bracket_ratio > 0.01) )
            {
                // Force p_min to be on a reasonable side.  But only if lagrange_poly_min_extrap()
                // didn't put it on a good side already.
                if (bracket_ratio > 1 && p_min > p2)
                    p_min = (p1+p2)/2;
                else if (p_min < p2)
                    p_min = (p2+p3)/2;
            }


            const double f_min = f(p_min);


            // Remove one of the endpoints of our bracket depending on where the new point falls.
            if (p_min < p2)
            {
                if (f1 > f_min && f_min < f2)
                {
                    p3 = p2;
                    f3 = f2;
                    p2 = p_min;
                    f2 = f_min;
                }
                else
                {
                    p1 = p_min;
                    f1 = f_min;
                }
            }
            else
            {
                if (f2 > f_min && f_min < f3)
                {
                    p1 = p2;
                    f1 = f2;
                    p2 = p_min;
                    f2 = f_min;
                }
                else
                {
                    p3 = p_min;
                    f3 = f_min;
                }
            }


            ++f_evals;
        }

        if (f_evals >= max_iter)
        {
            throw optimize_single_variable_failure(
                "The max number of iterations of single variable optimization have been reached\n"
                "without converging.");
        }

        starting_point = p2;
        return f2;
    }

// ----------------------------------------------------------------------------------------

    template <typename funct>
    double find_max_single_variable (
        const funct& f,
        double& starting_point,
        const double begin = -1e200,
        const double end = 1e200,
        const double eps = 1e-3,
        const long max_iter = 100
    )
    {
        // You get an error on this line when you pass in a global function to this function.
        // You have to either use a function object or pass a pointer to your global function
        // by taking its address using the & operator.  (This check is here because gcc 4.0
        // has a bug that causes it to silently corrupt return values from functions that
        // invoked through a reference)
        COMPILE_TIME_ASSERT(is_function<funct>::value == false);

        return -find_min_single_variable(negate_function(f), starting_point, begin, end, eps, max_iter);
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_OPTIMIZATIOn_LINE_SEARCH_H_