File: kcentroid.h

package info (click to toggle)
mldemos 0.5.1-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 32,224 kB
  • ctags: 46,525
  • sloc: cpp: 306,887; ansic: 167,718; ml: 126; sh: 109; makefile: 2
file content (614 lines) | stat: -rw-r--r-- 21,590 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
// Copyright (C) 2008  Davis E. King (davis@dlib.net)
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_KCENTROId_
#define DLIB_KCENTROId_

#include <vector>

#include "kcentroid_abstract.h"
#include "../matrix.h"
#include "function.h"
#include "../std_allocator.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------

    template <typename kernel_type>
    class kcentroid
    {
        /*!
            This object represents a weighted sum of sample points in a kernel induced
            feature space.  It can be used to kernelize any algorithm that requires only
            the ability to perform vector addition, subtraction, scalar multiplication,
            and inner products.  It uses the sparsification technique described in the 
            paper The Kernel Recursive Least Squares Algorithm by Yaakov Engel.

            To understand the code it would also be useful to consult page 114 of the book 
            Kernel Methods for Pattern Analysis by Taylor and Cristianini as well as page 554 
            (particularly equation 18.31) of the book Learning with Kernels by Scholkopf and 
            Smola.  Everything you really need to know is in the Engel paper.  But the other 
            books help give more perspective on the issues involved.


            INITIAL VALUE
                - min_strength == 0
                - min_vect_idx == 0
                - K_inv.size() == 0
                - K.size() == 0
                - dictionary.size() == 0
                - bias == 0
                - bias_is_stale == false

            CONVENTION
                - max_dictionary_size() == my_max_dictionary_size
                - get_kernel() == kernel

                - K.nr() == dictionary.size()
                - K.nc() == dictionary.size()
                - for all valid r,c:
                    - K(r,c) == kernel(dictionary[r], dictionary[c])
                - K_inv == inv(K)

                - if (dictionary.size() == my_max_dictionary_size && my_remove_oldest_first == false) then
                    - for all valid 0 < i < dictionary.size():
                        - Let STRENGTHS[i] == the delta you would get for dictionary[i] (i.e. Approximately 
                          Linearly Dependent value) if you removed dictionary[i] from this object and then 
                          tried to add it back in.
                        - min_strength == the minimum value from STRENGTHS
                        - min_vect_idx == the index of the element in STRENGTHS with the smallest value

        !*/

    public:
        typedef typename kernel_type::scalar_type scalar_type;
        typedef typename kernel_type::sample_type sample_type;
        typedef typename kernel_type::mem_manager_type mem_manager_type;

        kcentroid (
        ) : 
            my_remove_oldest_first(false),
            my_tolerance(0.001),
            my_max_dictionary_size(1000000),
            bias(0),
            bias_is_stale(false)
        {
            clear_dictionary();
        }

        explicit kcentroid (
            const kernel_type& kernel_, 
            scalar_type tolerance_ = 0.001,
            unsigned long max_dictionary_size_ = 1000000,
            bool remove_oldest_first_ = false 
        ) : 
            my_remove_oldest_first(remove_oldest_first_),
            kernel(kernel_), 
            my_tolerance(tolerance_),
            my_max_dictionary_size(max_dictionary_size_),
            bias(0),
            bias_is_stale(false)
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(tolerance_ > 0 && max_dictionary_size_ > 1,
                "\tkcentroid::kcentroid()"
                << "\n\t You have to give a positive tolerance"
                << "\n\t this:                 " << this
                << "\n\t tolerance_:           " << tolerance_ 
                << "\n\t max_dictionary_size_: " << max_dictionary_size_ 
                );

            clear_dictionary();
        }

        scalar_type tolerance() const
        {
            return my_tolerance;
        }

        unsigned long max_dictionary_size() const
        {
            return my_max_dictionary_size;
        }

        bool remove_oldest_first (
        ) const
        {
            return my_remove_oldest_first;
        }

        const kernel_type& get_kernel (
        ) const
        {
            return kernel;
        }

        void clear_dictionary ()
        {
            dictionary.clear();
            alpha.clear();

            min_strength = 0;
            min_vect_idx = 0;
            K_inv.set_size(0,0);
            K.set_size(0,0);
            samples_seen = 0;
            bias = 0;
            bias_is_stale = false;
        }

        scalar_type operator() (
            const kcentroid& x
        ) const
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(x.get_kernel() == get_kernel(),
                "\tscalar_type kcentroid::operator()(const kcentroid& x)"
                << "\n\tYou can only compare two kcentroid objects if they use the same kernel"
                << "\n\tthis: " << this
                );

            // make sure the bias terms are up to date
            refresh_bias();
            x.refresh_bias();

            scalar_type temp = x.bias + bias - 2*inner_product(x);

            if (temp > 0)
                return std::sqrt(temp);
            else
                return 0;
        }

        scalar_type inner_product (
            const sample_type& x
        ) const
        {
            scalar_type temp = 0; 
            for (unsigned long i = 0; i < alpha.size(); ++i)
                temp += alpha[i]*kernel(dictionary[i], x);
            return temp;
        }

        scalar_type inner_product (
            const kcentroid& x
        ) const
        {
            // make sure requires clause is not broken
            DLIB_ASSERT(x.get_kernel() == get_kernel(),
                "\tscalar_type kcentroid::inner_product(const kcentroid& x)"
                << "\n\tYou can only compare two kcentroid objects if they use the same kernel"
                << "\n\tthis: " << this
                );

            scalar_type temp = 0; 
            for (unsigned long i = 0; i < alpha.size(); ++i)
            {
                for (unsigned long j = 0; j < x.alpha.size(); ++j)
                {
                    temp += alpha[i]*x.alpha[j]*kernel(dictionary[i], x.dictionary[j]);
                }
            }
            return temp;
        }

        scalar_type squared_norm (
        ) const
        {
            refresh_bias();
            return bias;
        }

        scalar_type operator() (
            const sample_type& x
        ) const
        {
            // make sure the bias terms are up to date
            refresh_bias();

            const scalar_type kxx = kernel(x,x);

            scalar_type temp = kxx + bias - 2*inner_product(x);
            if (temp > 0)
                return std::sqrt(temp);
            else
                return 0;
        }

        scalar_type samples_trained (
        ) const
        {
            return samples_seen;
        }

        scalar_type test_and_train (
            const sample_type& x
        )
        {
            ++samples_seen;
            const scalar_type xscale = 1/samples_seen;
            const scalar_type cscale = 1-xscale;
            return train_and_maybe_test(x,cscale,xscale,true);
        }

        void train (
            const sample_type& x
        )
        {
            ++samples_seen;
            const scalar_type xscale = 1/samples_seen;
            const scalar_type cscale = 1-xscale;
            train_and_maybe_test(x,cscale,xscale,false);
        }

        scalar_type test_and_train (
            const sample_type& x,
            scalar_type cscale,
            scalar_type xscale
        )
        {
            ++samples_seen;
            return train_and_maybe_test(x,cscale,xscale,true);
        }

        void scale_by (
            scalar_type cscale
        )
        {
            for (unsigned long i = 0; i < alpha.size(); ++i)
            {
                alpha[i] = cscale*alpha[i];
            }
        }

        void train (
            const sample_type& x,
            scalar_type cscale,
            scalar_type xscale
        )
        {
            ++samples_seen;
            train_and_maybe_test(x,cscale,xscale,false);
        }

        void swap (
            kcentroid& item
        )
        {
            exchange(min_strength, item.min_strength);
            exchange(min_vect_idx, item.min_vect_idx);
            exchange(my_remove_oldest_first, item.my_remove_oldest_first);

            exchange(kernel, item.kernel);
            dictionary.swap(item.dictionary);
            alpha.swap(item.alpha);
            K_inv.swap(item.K_inv);
            K.swap(item.K);
            exchange(my_tolerance, item.my_tolerance);
            exchange(samples_seen, item.samples_seen);
            exchange(bias, item.bias);
            a.swap(item.a);
            k.swap(item.k);
            exchange(bias_is_stale, item.bias_is_stale);
            exchange(my_max_dictionary_size, item.my_max_dictionary_size);
        }

        unsigned long dictionary_size (
        ) const { return dictionary.size(); }

        friend void serialize(const kcentroid& item, std::ostream& out)
        {
            serialize(item.min_strength, out);
            serialize(item.min_vect_idx, out);
            serialize(item.my_remove_oldest_first, out);

            serialize(item.kernel, out);
            serialize(item.dictionary, out);
            serialize(item.alpha, out);
            serialize(item.K_inv, out);
            serialize(item.K, out);
            serialize(item.my_tolerance, out);
            serialize(item.samples_seen, out);
            serialize(item.bias, out);
            serialize(item.bias_is_stale, out);
            serialize(item.my_max_dictionary_size, out);
        }

        friend void deserialize(kcentroid& item, std::istream& in)
        {
            deserialize(item.min_strength, in);
            deserialize(item.min_vect_idx, in);
            deserialize(item.my_remove_oldest_first, in);

            deserialize(item.kernel, in);
            deserialize(item.dictionary, in);
            deserialize(item.alpha, in);
            deserialize(item.K_inv, in);
            deserialize(item.K, in);
            deserialize(item.my_tolerance, in);
            deserialize(item.samples_seen, in);
            deserialize(item.bias, in);
            deserialize(item.bias_is_stale, in);
            deserialize(item.my_max_dictionary_size, in);
        }

        distance_function<kernel_type> get_distance_function (
        ) const
        {
            refresh_bias();
            return distance_function<kernel_type>(vector_to_matrix(alpha),
                                                  bias, 
                                                  kernel, 
                                                  vector_to_matrix(dictionary));
        }

    private:

        void refresh_bias (
        ) const 
        {
            if (bias_is_stale)
            {
                bias_is_stale = false;
                // recompute the bias term
                bias = sum(pointwise_multiply(K, vector_to_matrix(alpha)*trans(vector_to_matrix(alpha))));
            }
        }

        scalar_type train_and_maybe_test (
            const sample_type& x,
            scalar_type cscale,
            scalar_type xscale,
            bool do_test
        )
        {
            scalar_type test_result = 0;
            const scalar_type kx = kernel(x,x);
            if (alpha.size() == 0)
            {
                // just ignore this sample if it is the zero vector (or really close to being zero)
                if (std::abs(kx) > std::numeric_limits<scalar_type>::epsilon())
                {
                    // set initial state since this is the first training example we have seen

                    K_inv.set_size(1,1);
                    K_inv(0,0) = 1/kx;
                    K.set_size(1,1);
                    K(0,0) = kx;

                    alpha.push_back(xscale);
                    dictionary.push_back(x);
                }
                else
                {
                    // the distance from an empty kcentroid and the zero vector is zero by definition.
                    return 0;
                }
            }
            else
            {
                // fill in k
                k.set_size(alpha.size());
                for (long r = 0; r < k.nr(); ++r)
                    k(r) = kernel(x,dictionary[r]);

                if (do_test)
                {
                    refresh_bias();
                    test_result = std::sqrt(kx + bias - 2*trans(vector_to_matrix(alpha))*k);
                }

                // compute the error we would have if we approximated the new x sample
                // with the dictionary.  That is, do the ALD test from the KRLS paper.
                a = K_inv*k;
                scalar_type delta = kx - trans(k)*a;

                // if this new vector isn't approximately linearly dependent on the vectors
                // in our dictionary.
                if (delta > min_strength && delta > my_tolerance)
                {
                    bool need_to_update_min_strength = false;
                    if (dictionary.size() >= my_max_dictionary_size)
                    {
                        // We need to remove one of the old members of the dictionary before
                        // we proceed with adding a new one.  
                        long idx_to_remove;
                        if (my_remove_oldest_first)
                        {
                            // remove the oldest one
                            idx_to_remove = 0;
                        }
                        else
                        {
                            // if we have never computed the min_strength then we should compute it 
                            if (min_strength == 0)
                                recompute_min_strength();

                            // select the dictionary vector that is most linearly dependent for removal
                            idx_to_remove = min_vect_idx;
                            need_to_update_min_strength = true;
                        }

                        remove_dictionary_vector(idx_to_remove);

                        // recompute these guys since they were computed with the old
                        // kernel matrix
                        k = remove_row(k,idx_to_remove);
                        a = K_inv*k;
                        delta = kx - trans(k)*a;
                    }

                    // add x to the dictionary
                    dictionary.push_back(x);


                    // update K_inv by computing the new one in the temp matrix (equation 3.14)
                    matrix<scalar_type,0,0,mem_manager_type> temp(K_inv.nr()+1, K_inv.nc()+1);
                    // update the middle part of the matrix
                    set_subm(temp, get_rect(K_inv)) = K_inv + a*trans(a)/delta;
                    // update the right column of the matrix
                    set_subm(temp, 0, K_inv.nr(),K_inv.nr(),1) = -a/delta;
                    // update the bottom row of the matrix
                    set_subm(temp, K_inv.nr(), 0, 1, K_inv.nr()) = trans(-a/delta);
                    // update the bottom right corner of the matrix
                    temp(K_inv.nr(), K_inv.nc()) = 1/delta;
                    // put temp into K_inv
                    temp.swap(K_inv);



                    // update K (the kernel matrix)
                    temp.set_size(K.nr()+1, K.nc()+1);
                    set_subm(temp, get_rect(K)) = K;
                    // update the right column of the matrix
                    set_subm(temp, 0, K.nr(),K.nr(),1) = k;
                    // update the bottom row of the matrix
                    set_subm(temp, K.nr(), 0, 1, K.nr()) = trans(k);
                    temp(K.nr(), K.nc()) = kx;
                    // put temp into K
                    temp.swap(K);


                    // now update the alpha vector 
                    for (unsigned long i = 0; i < alpha.size(); ++i)
                    {
                        alpha[i] *= cscale;
                    }
                    alpha.push_back(xscale);


                    if (need_to_update_min_strength)
                    {
                        // now we have to recompute the min_strength in this case
                        recompute_min_strength();
                    }
                }
                else
                {
                    // update the alpha vector so that this new sample has been added into
                    // the mean vector we are accumulating
                    for (unsigned long i = 0; i < alpha.size(); ++i)
                    {
                        alpha[i] = cscale*alpha[i] + xscale*a(i);
                    }
                }
            }

            bias_is_stale = true;
            
            return test_result;
        }

        void remove_dictionary_vector (
            long i
        )
        /*!
            requires
                - 0 <= i < dictionary.size()
            ensures
                - #dictionary.size() == dictionary.size() - 1
                - #alpha.size() == alpha.size() - 1
                - updates the K_inv matrix so that it is still a proper inverse of the
                  kernel matrix
                - also removes the necessary row and column from the K matrix
                - uses the this->a variable so after this function runs that variable
                  will contain a different value.  
        !*/
        {
            // remove the dictionary vector 
            dictionary.erase(dictionary.begin()+i);

            // remove the i'th vector from the inverse kernel matrix.  This formula is basically
            // just the reverse of the way K_inv is updated by equation 3.14 during normal training.
            K_inv = removerc(K_inv,i,i) - remove_row(colm(K_inv,i)/K_inv(i,i),i)*remove_col(rowm(K_inv,i),i);

            // now compute the updated alpha values to take account that we just removed one of 
            // our dictionary vectors
            a = (K_inv*remove_row(K,i)*vector_to_matrix(alpha));

            // now copy over the new alpha values
            alpha.resize(alpha.size()-1);
            for (unsigned long k = 0; k < alpha.size(); ++k)
            {
                alpha[k] = a(k);
            }

            // update the K matrix as well
            K = removerc(K,i,i);
        }

        void recompute_min_strength (
        )
        /*!
            ensures
                - recomputes the min_strength and min_vect_idx values
                  so that they are correct with respect to the CONVENTION
                - uses the this->a variable so after this function runs that variable
                  will contain a different value.  
        !*/
        {
            min_strength = std::numeric_limits<scalar_type>::max();

            // here we loop over each dictionary vector and compute what its delta would be if
            // we were to remove it from the dictionary and then try to add it back in.
            for (unsigned long i = 0; i < dictionary.size(); ++i)
            {
                // compute a = K_inv*k but where dictionary vector i has been removed
                a = (removerc(K_inv,i,i) - remove_row(colm(K_inv,i)/K_inv(i,i),i)*remove_col(rowm(K_inv,i),i)) *
                    (remove_row(colm(K,i),i));
                scalar_type delta = K(i,i) - trans(remove_row(colm(K,i),i))*a;

                if (delta < min_strength)
                {
                    min_strength = delta;
                    min_vect_idx = i;
                }
            }
        }



        typedef std_allocator<sample_type, mem_manager_type> alloc_sample_type;
        typedef std_allocator<scalar_type, mem_manager_type> alloc_scalar_type;
        typedef std::vector<sample_type,alloc_sample_type> dictionary_vector_type;
        typedef std::vector<scalar_type,alloc_scalar_type> alpha_vector_type;


        scalar_type min_strength;
        unsigned long min_vect_idx;
        bool my_remove_oldest_first;

        kernel_type kernel;
        dictionary_vector_type dictionary;
        alpha_vector_type alpha;

        matrix<scalar_type,0,0,mem_manager_type> K_inv;
        matrix<scalar_type,0,0,mem_manager_type> K;

        scalar_type my_tolerance;
        unsigned long my_max_dictionary_size;
        scalar_type samples_seen;
        mutable scalar_type bias;
        mutable bool bias_is_stale;


        // temp variables here just so we don't have to reconstruct them over and over.  Thus, 
        // they aren't really part of the state of this object.
        matrix<scalar_type,0,1,mem_manager_type> a;
        matrix<scalar_type,0,1,mem_manager_type> k;

    };

// ----------------------------------------------------------------------------------------

    template <typename kernel_type>
    void swap(kcentroid<kernel_type>& a, kcentroid<kernel_type>& b)
    { a.swap(b); }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_KCENTROId_