File: pssubs.c

package info (click to toggle)
mldemos 0.5.1-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 32,224 kB
  • ctags: 46,525
  • sloc: cpp: 306,887; ansic: 167,718; ml: 126; sh: 109; makefile: 2
file content (1269 lines) | stat: -rw-r--r-- 35,322 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
#include <math.h>
#include "luksan.h"

#define FALSE_ 0
#define MAX2(a,b) ((a) > (b) ? (a) : (b))
#define MIN2(a,b) ((a) < (b) ? (a) : (b))
#define iabs(a) ((a) < 0 ? -(a) : (a))

/*     subroutines extracted from pssubs.for */
/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE PCBS04             ALL SYSTEMS                   98/12/01
* PURPOSE :
* INITIATION OF THE VECTOR CONTAINING TYPES OF CONSTRAINTS.
*
* PARAMETERS :
*  II  NF  NUMBER OF VARIABLES.
*  RI  X(NF)  VECTOR OF VARIABLES.
*  II  IX(NF)  VECTOR CONTAINING TYPES OF BOUNDS.
*  RI  XL(NF)  VECTOR CONTAINING LOWER BOUNDS FOR VARIABLES.
*  RI  XU(NF)  VECTOR CONTAINING UPPER BOUNDS FOR VARIABLES.
*  RI  EPS9  TOLERANCE FOR ACTIVE CONSTRAINTS.
*  II  KBF  SPECIFICATION OF SIMPLE BOUNDS. KBF=0-NO SIMPLE BOUNDS.
*         KBF=1-ONE SIDED SIMPLE BOUNDS. KBF=2=TWO SIDED SIMPLE BOUNDS.
*/
void luksan_pcbs04__(int *nf, double *x, int *ix, 
	double *xl, double *xu, double *eps9, int *kbf)
{
    /* System generated locals */
    int i__1, i__2;
    double d__1, d__2;

    /* Local variables */
    int i__, ixi;
    double temp;

    /* Parameter adjustments */
    --xu;
    --xl;
    --ix;
    --x;

    /* Function Body */
    if (*kbf > 0) {
	i__1 = *nf;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    temp = 1.;
	    ixi = (i__2 = ix[i__], iabs(i__2));
/* Computing MAX */
	    d__2 = (d__1 = xl[i__], fabs(d__1));
	    if ((ixi == 1 || ixi == 3 || ixi == 4) && x[i__] <= xl[i__] + *
		    eps9 * MAX2(d__2,temp)) {
		x[i__] = xl[i__];
	    }
/* Computing MAX */
	    d__2 = (d__1 = xu[i__], fabs(d__1));
	    if ((ixi == 2 || ixi == 3 || ixi == 4) && x[i__] >= xu[i__] - *
		    eps9 * MAX2(d__2,temp)) {
		x[i__] = xu[i__];
	    }
/* L1: */
	}
    }
    return;
} /* luksan_pcbs04__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE PNINT1                ALL SYSTEMS                91/12/01 */
/* PURPOSE : */
/* EXTRAPOLATION OR INTERPOLATION FOR LINE SEARCH WITH DIRECTIONAL */
/* DERIVATIVES. */

/* PARAMETERS : */
/*  RI  RL  LOWER VALUE OF THE STEPSIZE PARAMETER. */
/*  RI  RU  UPPER VALUE OF THE STEPSIZE PARAMETER. */
/*  RI  FL  VALUE OF THE OBJECTIVE FUNCTION FOR R=RL. */
/*  RI  FU  VALUE OF THE OBJECTIVE FUNCTION FOR R=RU. */
/*  RI  PL  DIRECTIONAL DERIVATIVE FOR R=RL. */
/*  RI  PU  DIRECTIONAL DERIVATIVE FOR R=RU. */
/*  RO  R  VALUE OF THE STEPSIZE PARAMETER OBTAINED. */
/*  II  MODE  MODE OF LINE SEARCH. */
/*  II  MTYP  METHOD SELECTION. MTYP=1-BISECTION. MTYP=2-QUADRATIC */
/*         INTERPOLATION (WITH ONE DIRECTIONAL DERIVATIVE). */
/*         MTYP=3-QUADRATIC INTERPOLATION (WITH TWO DIRECTIONAL */
/*         DERIVATIVES). MTYP=4-CUBIC INTERPOLATION. MTYP=5-CONIC */
/*         INTERPOLATION. */
/*  IO  MERR  ERROR INDICATOR. MERR=0 FOR NORMAL RETURN. */

/* METHOD : */
/* EXTRAPOLATION OR INTERPOLATION WITH STANDARD MODEL FUNCTIONS. */

void luksan_pnint1__(double *rl, double *ru, double *fl, 
	double *fu, double *pl, double *pu, double *r__, 
	int *mode, int *mtyp, int *merr)
{
    /* System generated locals */
    double d__1, d__2;

    /* Local variables */
    double a, b, c__, d__, den, dis;
    int ntyp;

    *merr = 0;
    if (*mode <= 0) {
	return;
    }
    if (*pl >= 0.) {
	*merr = 2;
	return;
    } else if (*ru <= *rl) {
	*merr = 3;
	return;
    }
    for (ntyp = *mtyp; ntyp >= 1; --ntyp) {
	if (ntyp == 1) {

/*     BISECTION */

	    if (*mode == 1) {
		*r__ = *ru * 4.;
		return;
	    } else {
		*r__ = (*rl + *ru) * .5;
		return;
	    }
	} else if (ntyp == *mtyp) {
	    a = (*fu - *fl) / (*pl * (*ru - *rl));
	    b = *pu / *pl;
	}
	if (ntyp == 2) {

/*     QUADRATIC EXTRAPOLATION OR INTERPOLATION WITH ONE DIRECTIONAL */
/*     DERIVATIVE */

	    den = (1. - a) * 2.;
	} else if (ntyp == 3) {

/*     QUADRATIC EXTRAPOLATION OR INTERPOLATION WITH TWO DIRECTIONAL */
/*     DERIVATIVES */

	    den = 1. - b;
	} else if (ntyp == 4) {

/*     CUBIC EXTRAPOLATION OR INTERPOLATION */

	    c__ = b - a * 2. + 1.;
	    d__ = b - a * 3. + 2.;
	    dis = d__ * d__ - c__ * 3.;
	    if (dis < 0.) {
		goto L1;
	    }
	    den = d__ + sqrt(dis);
	} else if (ntyp == 5) {

/*     CONIC EXTRAPOLATION OR INTERPOLATION */

	    dis = a * a - b;
	    if (dis < 0.) {
		goto L1;
	    }
	    den = a + sqrt(dis);
	    if (den <= 0.) {
		goto L1;
	    }
/* Computing 3rd power */
	    d__1 = 1. / den;
	    den = 1. - b * (d__1 * (d__1 * d__1));
	}
	if (*mode == 1 && den > 0. && den < 1.) {

/*     EXTRAPOLATION ACCEPTED */

	    *r__ = *rl + (*ru - *rl) / den;
/* Computing MAX */
	    d__1 = *r__, d__2 = *ru * 1.1;
	    *r__ = MAX2(d__1,d__2);
/* Computing MIN */
	    d__1 = *r__, d__2 = *ru * 1e3;
	    *r__ = MIN2(d__1,d__2);
	    return;
	} else if (*mode == 2 && den > 1.) {

/*     INTERPOLATION ACCEPTED */

	    *r__ = *rl + (*ru - *rl) / den;
	    if (*rl == 0.) {
/* Computing MAX */
		d__1 = *r__, d__2 = *rl + (*ru - *rl) * .01;
		*r__ = MAX2(d__1,d__2);
	    } else {
/* Computing MAX */
		d__1 = *r__, d__2 = *rl + (*ru - *rl) * .1;
		*r__ = MAX2(d__1,d__2);
	    }
/* Computing MIN */
	    d__1 = *r__, d__2 = *rl + (*ru - *rl) * .9;
	    *r__ = MIN2(d__1,d__2);
	    return;
	}
L1:
	;
    }
    return;
} /* luksan_pnint1__ */

/* save and restore state, replacing old non-reeentrant implementation
   that used static local variables */
#define SS(var) state->var = var
#define SAVE_STATE SS(fl); SS(fu); SS(pl); SS(rl); SS(pu); SS(ru); \
                   SS(mes1); SS(mes2); SS(mes3); SS(mode); SS(mtyp)
#define RS(var) var = state->var
#define RESTORE_STATE RS(fl); RS(fu); RS(pl); RS(rl); RS(pu); RS(ru); \
                      RS(mes1); RS(mes2); RS(mes3); RS(mode); RS(mtyp)


/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE PS1L01                ALL SYSTEMS                97/12/01
* PURPOSE :
*  STANDARD LINE SEARCH WITH DIRECTIONAL DERIVATIVES.
*
* PARAMETERS :
*  RO  R  VALUE OF THE STEPSIZE PARAMETER.
*  RO  RP  PREVIOUS VALUE OF THE STEPSIZE PARAMETER.
*  RO  F  VALUE OF THE OBJECTIVE FUNCTION.
*  RI  FO  INITIAL VALUE OF THE OBJECTIVE FUNCTION.
*  RO  FP  PREVIOUS VALUE OF THE OBJECTIVE FUNCTION.
*  RO  P  VALUE OF THE DIRECTIONAL DERIVATIVE.
*  RI  PO  INITIAL VALUE OF THE DIRECTIONAL DERIVATIVE.
*  RO  PP  PREVIOUS VALUE OF THE DIRECTIONAL DERIVATIVE.
*  RI  FMIN  LOWER BOUND FOR VALUE OF THE OBJECTIVE FUNCTION.
*  RI  MAXF  UPPER BOUND FOR VALUE OF THE OBJECTIVE FUNCTION.
*  RI  RMIN  MINIMUM VALUE OF THE STEPSIZE PARAMETER
*  RI  RMAX  MAXIMUM VALUE OF THE STEPSIZE PARAMETER
*  RI  TOLS  TERMINATION TOLERANCE FOR LINE SEARCH (IN TEST ON THE
*         CHANGE OF THE FUNCTION VALUE).
*  RI  TOLP  TERMINATION TOLERANCE FOR LINE SEARCH (IN TEST ON THE
*         CHANGE OF THE DIRECTIONAL DERIVATIVE).
*  RO  PAR1  PARAMETER FOR CONTROLLED SCALING OF VARIABLE METRIC
*         UPDATES.
*  RO  PAR2  PARAMETER FOR CONTROLLED SCALING OF VARIABLE METRIC
*         UPDATES.
*  II  KD  DEGREE OF REQUIRED DERIVATIVES.
*  IO  LD  DEGREE OF PREVIOUSLY COMPUTED DERIVATIVES OF OBJECTIVE
*  II  NIT  ACTUAL NUMBER OF ITERATIONS.
*  II  KIT  NUMBER OF THE ITERATION AFTER LAST RESTART.
*  IO  NRED  ACTUAL NUMBER OF EXTRAPOLATIONS OR INTERPOLATIONS.
*  II  MRED  MAXIMUM NUMBER OF EXTRAPOLATIONS OR INTERPOLATIONS.
*  IO  MAXST  MAXIMUM STEPSIZE INDICATOR. MAXST=0 OR MAXST=1 IF MAXIMUM
*         STEPSIZE WAS NOT OR WAS REACHED.
*  II  IEST  LOWER BOUND SPECIFICATION. IEST=0 OR IEST=1 IF LOWER BOUND
*         IS NOT OR IS GIVEN.
*  II  INITS  CHOICE OF THE INITIAL STEPSIZE. INITS=0-INITIAL STEPSIZE
*         IS SPECIFIED IN THE CALLING PROGRAM. INITS=1-UNIT INITIAL
*         STEPSIZE. INITS=2-COMBINED UNIT AND QUADRATICALLY ESTIMATED
*         INITIAL STEPSIZE. INITS=3-QUADRATICALLY ESTIMATED INITIAL
*         STEPSIZE.
*  IO  ITERS  TERMINATION INDICATOR. ITERS=0-ZERO STEP. ITERS=1-PERFECT
*         LINE SEARCH. ITERS=2 GOLDSTEIN STEPSIZE. ITERS=3-CURRY
*         STEPSIZE. ITERS=4-EXTENDED CURRY STEPSIZE.
*         ITERS=5-ARMIJO STEPSIZE. ITERS=6-FIRST STEPSIZE.
*         ITERS=7-MAXIMUM STEPSIZE. ITERS=8-UNBOUNDED FUNCTION.
*         ITERS=-1-MRED REACHED. ITERS=-2-POSITIVE DIRECTIONAL
*         DERIVATIVE. ITERS=-3-ERROR IN INTERPOLATION.
*  II  KTERS  TERMINATION SELECTION. KTERS=1-PERFECT LINE SEARCH.
*         KTERS=2-GOLDSTEIN STEPSIZE. KTERS=3-CURRY STEPSIZE.
*         KTERS=4-EXTENDED CURRY STEPSIZE. KTERS=5-ARMIJO STEPSIZE.
*         KTERS=6-FIRST STEPSIZE.
*  II  MES  METHOD SELECTION. MES=1-BISECTION. MES=2-QUADRATIC
*         INTERPOLATION (WITH ONE DIRECTIONAL DERIVATIVE).
*         MES=3-QUADRATIC INTERPOLATION (WITH TWO DIRECTIONAL
*         DERIVATIVES). MES=4-CUBIC INTERPOLATION. MES=5-CONIC
*         INTERPOLATION.
*  IU  ISYS  CONTROL PARAMETER.
*
* SUBPROGRAM USED :
*  S   PNINT1  EXTRAPOLATION OR INTERPOLATION WITH DIRECTIONAL
*         DERIVATIVES.
*
* METHOD :
* SAFEGUARDED EXTRAPOLATION AND INTERPOLATION WITH STANDARD TERMINATION
* CRITERIA.
*/
void luksan_ps1l01__(double *r__, double *rp, 
	double *f, double *fo, double *fp, double *p, 
	double *po, double *pp, double *minf, double *maxf, 
	double *rmin, double *rmax, double *tols, double *
	tolp, double *par1, double *par2, int *kd, int *ld, 
	int *nit, int *kit, int *nred, int *mred, int *
	maxst, int *iest, int *inits, int *iters, int *kters, 
	int *mes, int *isys, ps1l01_state *state)
{
    /* System generated locals */
    double d__1, d__2;

    /* Local variables */
    unsigned l1, l2, l3, m1, l5, m2, l7, m3;
    double fl, fu, pl, rl, pu, ru;
    int mes1, mes2, mes3, mode;
    int merr;
    int mtyp;
    int init1;
    double rtemp;

    RESTORE_STATE;

    if (*isys == 1) {
	goto L3;
    }
    mes1 = 2;
    mes2 = 2;
    mes3 = 2;
    *iters = 0;
    if (*po >= 0.) {
	*r__ = 0.;
	*iters = -2;
	goto L4;
    }
    if (*rmax <= 0.) {
	*iters = 0;
	goto L4;
    }

/*     INITIAL STEPSIZE SELECTION */

    if (*inits > 0) {
	rtemp = *minf - *f;
    } else if (*iest == 0) {
	rtemp = *f - *fp;
    } else {
/* Computing MAX */
	d__1 = *f - *fp, d__2 = *minf - *f;
	rtemp = MAX2(d__1,d__2);
    }
    init1 = iabs(*inits);
    *rp = 0.;
    *fp = *fo;
    *pp = *po;
    if (init1 == 0) {
    } else if (init1 == 1 || (*inits >= 1 && *iest == 0)) {
	*r__ = 1.;
    } else if (init1 == 2) {
/* Computing MIN */
	d__1 = 1., d__2 = rtemp * 4. / *po;
	*r__ = MIN2(d__1,d__2);
    } else if (init1 == 3) {
/* Computing MIN */
	d__1 = 1., d__2 = rtemp * 2. / *po;
	*r__ = MIN2(d__1,d__2);
    } else if (init1 == 4) {
	*r__ = rtemp * 2. / *po;
    }
    *r__ = MAX2(*r__,*rmin);
    *r__ = MIN2(*r__,*rmax);
    mode = 0;
    ru = 0.;
    fu = *fo;
    pu = *po;

/*     NEW STEPSIZE SELECTION (EXTRAPOLATION OR INTERPOLATION) */

L2:
    luksan_pnint1__(&rl, &ru, &fl, &fu, &pl, &pu, r__, &mode, &mtyp, &merr);
    if (merr > 0) {
	*iters = -merr;
	goto L4;
    } else if (mode == 1) {
	--(*nred);
	*r__ = MIN2(*r__,*rmax);
    } else if (mode == 2) {
	++(*nred);
    }

/*     COMPUTATION OF THE NEW FUNCTION VALUE AND THE NEW DIRECTIONAL */
/*     DERIVATIVE */

    *kd = 1;
    *ld = -1;
    *isys = 1;
    SAVE_STATE;
    return;
L3:
    if (mode == 0) {
	*par1 = *p / *po;
	*par2 = *f - *fo;
    }
    if (*iters != 0) {
	goto L4;
    }
    if (*f <= *minf) {
	*iters = 7;
	goto L4;
    } else {
	l1 = *r__ <= *rmin && *nit != *kit;
	l2 = *r__ >= *rmax;
	l3 = *f - *fo <= *tols * *r__ * *po;
	l5 = *p >= *tolp * *po || (mes2 == 2 && mode == 2);
	l7 = mes2 <= 2 || mode != 0;
	m1 = FALSE_;
	m2 = FALSE_;
	m3 = l3;
	if (mes3 >= 1) {
	    m1 = fabs(*p) <= fabs(*po) * .01 && *fo - *f >= fabs(*fo) * 
		    9.9999999999999994e-12;
	    l3 = l3 || m1;
	}
	if (mes3 >= 2) {
	    m2 = fabs(*p) <= fabs(*po) * .5 && (d__1 = *fo - *f, fabs(d__1)) <= 
		    fabs(*fo) * 2.0000000000000001e-13;
	    l3 = l3 || m2;
	}
	*maxst = 0;
	if (l2) {
	    *maxst = 1;
	}
    }

/*     TEST ON TERMINATION */

    if (l1 && ! l3) {
	*iters = 0;
	goto L4;
    } else if (l2 && l3 && ! l5) {
	*iters = 7;
	goto L4;
    } else if (m3 && mes1 == 3) {
	*iters = 5;
	goto L4;
    } else if (l3 && l5 && l7) {
	*iters = 4;
	goto L4;
    } else if (*kters < 0 || (*kters == 6 && l7)) {
	*iters = 6;
	goto L4;
    } else if (iabs(*nred) >= *mred) {
	*iters = -1;
	goto L4;
    } else {
	*rp = *r__;
	*fp = *f;
	*pp = *p;
	mode = MAX2(mode,1);
	mtyp = iabs(*mes);
	if (*f >= *maxf) {
	    mtyp = 1;
	}
    }
    if (mode == 1) {

/*     INTERVAL CHANGE AFTER EXTRAPOLATION */

	rl = ru;
	fl = fu;
	pl = pu;
	ru = *r__;
	fu = *f;
	pu = *p;
	if (! l3) {
	    *nred = 0;
	    mode = 2;
	} else if (mes1 == 1) {
	    mtyp = 1;
	}
    } else {

/*     INTERVAL CHANGE AFTER INTERPOLATION */

	if (! l3) {
	    ru = *r__;
	    fu = *f;
	    pu = *p;
	} else {
	    rl = *r__;
	    fl = *f;
	    pl = *p;
	}
    }
    goto L2;
L4:
    *isys = 0;
    SAVE_STATE;
    return;
} /* luksan_ps1l01__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE PULSP3                ALL SYSTEMS                02/12/01
* PURPOSE :
* LIMITED STORAGE VARIABLE METRIC UPDATE.
*
* PARAMETERS :
*  II  N  NUMBER OF VARIABLES (NUMBER OF ROWS OF XM).
*  II  M  NUMBER OF COLUMNS OF XM.
*  II  MF  MAXIMUM NUMBER OF COLUMNS OF XM.
*  RI  XM(N*M)  RECTANGULAR MATRIX IN THE PRODUCT FORM SHIFTED BROYDEN
*         METHOD (STORED COLUMNWISE): H-SIGMA*I=XM*TRANS(XM)
*  RO  GR(M)  MATRIX TRANS(XM)*GO.
*  RU  XO(N)  VECTORS OF VARIABLES DIFFERENCE XO AND VECTOR XO-TILDE.
*  RU  GO(N)  GRADIENT DIFFERENCE GO AND VECTOR XM*TRANS(XM)*GO.
*  RI  R  STEPSIZE PARAMETER.
*  RI  PO  OLD DIRECTIONAL DERIVATIVE (MULTIPLIED BY R)
*  RU  SIG  SCALING PARAMETER (ZETA AND SIGMA).
*  IO  ITERH  TERMINATION INDICATOR. ITERH<0-BAD DECOMPOSITION.
*         ITERH=0-SUCCESSFUL UPDATE. ITERH>0-NONPOSITIVE PARAMETERS.
*  II  MET3  CHOICE OF SIGMA (1-CONSTANT, 2-QUADRATIC EQUATION).
*
* SUBPROGRAMS USED :
*  S   MXDRMM  MULTIPLICATION OF A ROWWISE STORED DENSE RECTANGULAR
*         MATRIX BY A VECTOR.
*  S   MXDCMU  UPDATE OF A COLUMNWISE STORED DENSE RECTANGULAR MATRIX.
*         WITH CONTROLLING OF POSITIVE DEFINITENESS.
*  S   MXVDIR  VECTOR AUGMENTED BY A SCALED VECTOR.
*  RF  MXVDOT  DOT PRODUCT OF VECTORS.
*  S   MXVSCL  SCALING OF A VECTOR.
*
* METHOD :
* SHIFTED BFGS METHOD IN THE PRODUCT FORM.
*/
void luksan_pulsp3__(int *n, int *m, int *mf, 
	double *xm, double *gr, double *xo, double *go, 
	double *r__, double *po, double *sig, int *iterh, 
	int *met3)
{
    /* System generated locals */
    double d__1, d__2, d__3, d__4;

    /* Builtin functions */

    /* Local variables */
    double a, b, c__, aa, bb, ah, den, par, pom;

    /* Parameter adjustments */
    --go;
    --xo;
    --gr;
    --xm;

    /* Function Body */
    if (*m >= *mf) {
	return;
    }
    b = luksan_mxvdot__(n, &xo[1], &go[1]);
    if (b <= 0.) {
	*iterh = 2;
	goto L22;
    }
    luksan_mxdrmm__(n, m, &xm[1], &go[1], &gr[1]);
    ah = luksan_mxvdot__(n, &go[1], &go[1]);
    aa = luksan_mxvdot__(m, &gr[1], &gr[1]);
    a = aa + ah * *sig;
    c__ = -(*r__) * *po;

/*     DETERMINATION OF THE PARAMETER SIG (SHIFT) */

    par = 1.;
    pom = b / ah;
    if (a > 0.) {
	den = luksan_mxvdot__(n, &xo[1], &xo[1]);
	if (*met3 <= 4) {
/* Computing MAX */
	    d__1 = 0., d__2 = 1. - aa / a;
/* Computing MAX */
	    d__3 = 0., d__4 = 1. - b * b / (den * ah);
	    *sig = sqrt((MAX2(d__1,d__2))) / (sqrt((MAX2(d__3,d__4))) + 1.) * 
		    pom;
	} else {
/* Computing MAX */
	    d__1 = 0., d__2 = *sig * ah / a;
/* Computing MAX */
	    d__3 = 0., d__4 = 1. - b * b / (den * ah);
	    *sig = sqrt((MAX2(d__1,d__2))) / (sqrt((MAX2(d__3,d__4))) + 1.) * 
		    pom;
	}
/* Computing MAX */
	d__1 = *sig, d__2 = pom * .2;
	*sig = MAX2(d__1,d__2);
/* Computing MIN */
	d__1 = *sig, d__2 = pom * .8;
	*sig = MIN2(d__1,d__2);
    } else {
	*sig = pom * .25;
    }

/*     COMPUTATION OF SHIFTED XO AND SHIFTED B */

    bb = b - ah * *sig;
    d__1 = -(*sig);
    luksan_mxvdir__(n, &d__1, &go[1], &xo[1], &xo[1]);

/*     BFGS-BASED SHIFTED BFGS UPDATE */

    pom = 1.;
    d__1 = -1. / bb;
    luksan_mxdcmu__(n, m, &xm[1], &d__1, &xo[1], &gr[1]);
    d__1 = sqrt(par / bb);
    luksan_mxvscl__(n, &d__1, &xo[1], &xm[*n * *m + 1]);
    ++(*m);
L22:
    *iterh = 0;
    return;
} /* luksan_pulsp3__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE PULVP3                ALL SYSTEMS                03/12/01
* PURPOSE :
* RANK-TWO LIMITED-STORAGE VARIABLE-METRIC METHODS IN THE PRODUCT FORM.
*
* PARAMETERS :
*  II  N  NUMBER OF VARIABLES (NUMBER OF ROWS OF XM).
*  II  M  NUMBER OF COLUMNS OF XM.
*  RI  XM(N*M)  RECTANGULAR MATRIX IN THE PRODUCT FORM SHIFTED BROYDEN
*         METHOD (STORED COLUMNWISE): H-SIGMA*I=XM*TRANS(XM)
*  RO  XR(M)  VECTOR TRANS(XM)*H**(-1)*XO.
*  RO  GR(M)  MATRIX TRANS(XM)*GO.
*  RA  S(N)  AUXILIARY VECTORS (H**(-1)*XO AND U).
*  RA  SO(N)  AUXILIARY VECTORS ((H-SIGMA*I)*H**(-1)*XO AND V).
*  RU  XO(N)  VECTORS OF VARIABLES DIFFERENCE XO AND VECTOR XO-TILDE.
*  RU  GO(N)  GRADIENT DIFFERENCE GO AND VECTOR XM*TRANS(XM)*GO.
*  RI  R  STEPSIZE PARAMETER.
*  RI  PO  OLD DIRECTIONAL DERIVATIVE (MULTIPLIED BY R)
*  RU  SIG  SCALING PARAMETER (ZETA AND SIGMA).
*  IO  ITERH  TERMINATION INDICATOR. ITERH<0-BAD DECOMPOSITION.
*         ITERH=0-SUCCESSFUL UPDATE. ITERH>0-NONPOSITIVE PARAMETERS.
*  II  MET2  CHOICE OF THE CORRECTION PARAMETER (1-THE UNIT VALUE,
*         2-THE BALANCING VALUE, 3-THE SQUARE ROOT, 4-THE GEOMETRIC
*         MEAN).
*  II  MET3  CHOICE OF THE SHIFT PARAMETER (4-THE FIRST FORMULA,
*         5-THE SECOND FORMULA).
*  II  MET5  CHOICE OF THE METHOD (1-RANK-ONE METHOD, 2-RANK-TWO
*         METHOD).
*
* SUBPROGRAMS USED :
*  S   MXDRMM  MULTIPLICATION OF A ROWWISE STORED DENSE RECTANGULAR
*         MATRIX BY A VECTOR.
*  S   MXDCMU  UPDATE OF A COLUMNWISE STORED DENSE RECTANGULAR MATRIX.
*         WITH CONTROLLING OF POSITIVE DEFINITENESS. RANK-ONE FORMULA.
*  S   MXDCMV  UPDATE OF A COLUMNWISE STORED DENSE RECTANGULAR MATRIX.
*         WITH CONTROLLING OF POSITIVE DEFINITENESS. RANK-TWO FORMULA.
*  S   MXVDIR  VECTOR AUGMENTED BY A SCALED VECTOR.
*  RF  MXVDOT  DOT PRODUCT OF VECTORS.
*  S   MXVLIN  LINEAR COMBINATION OF TWO VECTORS.
*  S   MXVSCL  SCALING OF A VECTOR.
*
* METHOD :
* RANK-ONE LIMITED-STORAGE VARIABLE-METRIC METHOD IN THE PRODUCT FORM.
*/
void luksan_pulvp3__(int *n, int *m, double *xm, 
	double *xr, double *gr, double *s, double *so, 
	double *xo, double *go, double *r__, double *po, 
	double *sig, int *iterh, int *met2, int *met3, 
	int *met5)
{
    /* System generated locals */
    double d__1, d__2, d__3, d__4;

    /* Builtin functions */

    /* Local variables */
    double a, b, c__, aa, bb, cc, ah, den, par, pom, zet;

    /* Parameter adjustments */
    --go;
    --xo;
    --so;
    --s;
    --gr;
    --xr;
    --xm;

    /* Function Body */
    zet = *sig;

/*     COMPUTATION OF B */

    b = luksan_mxvdot__(n, &xo[1], &go[1]);
    if (b <= 0.) {
	*iterh = 2;
	goto L22;
    }

/*     COMPUTATION OF GR=TRANS(XM)*GO, XR=TRANS(XM)*H**(-1)*XO */
/*     AND S=H**(-1)*XO, SO=(H-SIGMA*I)*H**(-1)*XO. COMPUTATION */
/*     OF AA=GR*GR, BB=GR*XR, CC=XR*XR. COMPUTATION OF A AND C. */

    luksan_mxdrmm__(n, m, &xm[1], &go[1], &gr[1]);
    luksan_mxvscl__(n, r__, &s[1], &s[1]);
    luksan_mxdrmm__(n, m, &xm[1], &s[1], &xr[1]);
    d__1 = -(*sig);
    luksan_mxvdir__(n, &d__1, &s[1], &xo[1], &so[1]);
    ah = luksan_mxvdot__(n, &go[1], &go[1]);
    aa = luksan_mxvdot__(m, &gr[1], &gr[1]);
    bb = luksan_mxvdot__(m, &gr[1], &xr[1]);
    cc = luksan_mxvdot__(m, &xr[1], &xr[1]);
    a = aa + ah * *sig;
    c__ = -(*r__) * *po;

/*     DETERMINATION OF THE PARAMETER SIG (SHIFT) */

    pom = b / ah;
    if (a > 0.) {
	den = luksan_mxvdot__(n, &xo[1], &xo[1]);
	if (*met3 <= 4) {
/* Computing MAX */
	    d__1 = 0., d__2 = 1. - aa / a;
/* Computing MAX */
	    d__3 = 0., d__4 = 1. - b * b / (den * ah);
	    *sig = sqrt((MAX2(d__1,d__2))) / (sqrt((MAX2(d__3,d__4))) + 1.) * 
		    pom;
	} else {
/* Computing MAX */
	    d__1 = 0., d__2 = *sig * ah / a;
/* Computing MAX */
	    d__3 = 0., d__4 = 1. - b * b / (den * ah);
	    *sig = sqrt((MAX2(d__1,d__2))) / (sqrt((MAX2(d__3,d__4))) + 1.) * 
		    pom;
	}
/* Computing MAX */
	d__1 = *sig, d__2 = pom * .2;
	*sig = MAX2(d__1,d__2);
/* Computing MIN */
	d__1 = *sig, d__2 = pom * .8;
	*sig = MIN2(d__1,d__2);
    } else {
	*sig = pom * .25;
    }

/*     COMPUTATION OF SHIFTED XO AND SHIFTED B */

    b -= ah * *sig;
    d__1 = -(*sig);
    luksan_mxvdir__(n, &d__1, &go[1], &xo[1], &xo[1]);

/*     COMPUTATION OF THE PARAMETER RHO (CORRECTION) */

    if (*met2 <= 1) {
	par = 1.;
    } else if (*met2 == 2) {
	par = *sig * ah / b;
    } else if (*met2 == 3) {
	par = sqrt(1. - aa / a);
    } else if (*met2 == 4) {
	par = sqrt(sqrt(1. - aa / a) * (*sig * ah / b));
    } else {
	par = zet / (zet + *sig);
    }

/*     COMPUTATION OF THE PARAMETER THETA (BFGS) */

    d__1 = sqrt(par * b / cc);
    pom = copysign(d__1, bb);

/*     COMPUTATION OF Q AND P */

    if (*met5 == 1) {

/*     RANK ONE UPDATE OF XM */

	luksan_mxvdir__(m, &pom, &xr[1], &gr[1], &xr[1]);
	luksan_mxvlin__(n, &par, &xo[1], &pom, &so[1], &s[1]);
	d__1 = -1. / (par * b + pom * bb);
	luksan_mxdcmu__(n, m, &xm[1], &d__1, &s[1], &xr[1]);
    } else {

/*     RANK TWO UPDATE OF XM */

	d__1 = par / pom - bb / b;
	luksan_mxvdir__(n, &d__1, &xo[1], &so[1], &s[1]);
	d__1 = -1. / b;
	d__2 = -1. / cc;
	luksan_mxdcmv__(n, m, &xm[1], &d__1, &xo[1], &gr[1], &d__2, &s[1], &xr[1]);
    }
L22:
    *iterh = 0;
    return;
} /* luksan_pulvp3__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE PYADC0                ALL SYSTEMS                98/12/01
* PURPOSE :
* NEW SIMPLE BOUNDS ARE ADDED TO THE ACTIVE SET.
*
* PARAMETERS :
*  II  NF  DECLARED NUMBER OF VARIABLES.
*  II  N  REDUCED NUMBER OF VARIABLES.
*  RI  X(NF)  VECTOR OF VARIABLES.
*  II  IX(NF)  VECTOR CONTAINING TYPES OF BOUNDS.
*  RI  XL(NF)  VECTOR CONTAINING LOWER BOUNDS FOR VARIABLES.
*  RI  XU(NF)  VECTOR CONTAINING UPPER BOUNDS FOR VARIABLES.
*  IO  INEW  NUMBER OF ACTIVE CONSTRAINTS.
*/
void luksan_pyadc0__(int *nf, int *n, double *x, 
	int *ix, double *xl, double *xu, int *inew)
{
    /* System generated locals */
    int i__1;

    /* Local variables */
    int i__, ii, ixi;

    /* Parameter adjustments */
    --ix;
    --x;
    --xl;
    --xu;

    /* Function Body */
    *n = *nf;
    *inew = 0;
    i__1 = *nf;
    for (i__ = 1; i__ <= i__1; ++i__) {
	ii = ix[i__];
	ixi = iabs(ii);
	if (ixi >= 5) {
	    ix[i__] = -ixi;
	} else if ((ixi == 1 || ixi == 3 || ixi == 4) && x[i__] <= xl[i__]) {
	    x[i__] = xl[i__];
	    if (ixi == 4) {
		ix[i__] = -3;
	    } else {
		ix[i__] = -ixi;
	    }
	    --(*n);
	    if (ii > 0) {
		++(*inew);
	    }
	} else if ((ixi == 2 || ixi == 3 || ixi == 4) && x[i__] >= xu[i__]) {
	    x[i__] = xu[i__];
	    if (ixi == 3) {
		ix[i__] = -4;
	    } else {
		ix[i__] = -ixi;
	    }
	    --(*n);
	    if (ii > 0) {
		++(*inew);
	    }
	}
/* L1: */
    }
    return;
} /* luksan_pyadc0__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE PYFUT1                ALL SYSTEMS                98/12/01
* PURPOSE :
* TERMINATION CRITERIA AND TEST ON RESTART.
*
* PARAMETERS :
*  II  N  ACTUAL NUMBER OF VARIABLES.
*  RI  F  NEW VALUE OF THE OBJECTIVE FUNCTION.
*  RI  FO  OLD VALUE OF THE OBJECTIVE FUNCTION.
*  RI  UMAX  MAXIMUM ABSOLUTE VALUE OF THE NEGATIVE LAGRANGE MULTIPLIER.
*  RO  GMAX  NORM OF THE TRANSFORMED GRADIENT.
*  RI  DMAX  MAXIMUM RELATIVE DIFFERENCE OF VARIABLES.
*  RI  TOLX  LOWER BOUND FOR STEPLENGTH.
*  RI  TOLF  LOWER BOUND FOR FUNCTION DECREASE.
*  RI  TOLB  LOWER BOUND FOR FUNCTION VALUE.
*  RI  TOLG  LOWER BOUND FOR GRADIENT.
*  II  KD  DEGREE OF REQUIRED DERIVATIVES.
*  IU  NIT  ACTUAL NUMBER OF ITERATIONS.
*  II  KIT  NUMBER OF THE ITERATION AFTER RESTART.
*  II  MIT  MAXIMUM NUMBER OF ITERATIONS.
*  IU  NFV  ACTUAL NUMBER OF COMPUTED FUNCTION VALUES.
*  II  MFV  MAXIMUM NUMBER OF COMPUTED FUNCTION VALUES.
*  IU  NFG  ACTUAL NUMBER OF COMPUTED GRADIENT VALUES.
*  II  MFG  MAXIMUM NUMBER OF COMPUTED GRADIENT VALUES.
*  IU  NTESX  ACTUAL NUMBER OF TESTS ON STEPLENGTH.
*  II  MTESX  MAXIMUM NUMBER OF TESTS ON STEPLENGTH.
*  IU  NTESF  ACTUAL NUMBER OF TESTS ON FUNCTION DECREASE.
*  II  MTESF  MAXIMUM NUMBER OF TESTS ON FUNCTION DECREASE.
*  II  IRES1  RESTART SPECIFICATION. RESTART IS PERFORMED AFTER
*         IRES1*N+IRES2 ITERATIONS.
*  II  IRES2  RESTART SPECIFICATION. RESTART IS PERFORMED AFTER
*         IRES1*N+IRES2 ITERATIONS.
*  IU  IREST  RESTART INDICATOR. RESTART IS PERFORMED IF IREST>0.
*  II  ITERS  TERMINATION INDICATOR FOR STEPLENGTH DETERMINATION.
*         ITERS=0 FOR ZERO STEP.
*  IO  ITERM  TERMINATION INDICATOR. ITERM=1-TERMINATION AFTER MTESX
*         UNSUFFICIENT STEPLENGTHS. ITERM=2-TERMINATION AFTER MTESF
*         UNSUFFICIENT FUNCTION DECREASES. ITERM=3-TERMINATION ON LOWER
*         BOUND FOR FUNCTION VALUE. ITERM=4-TERMINATION ON LOWER BOUND
*         FOR GRADIENT. ITERM=11-TERMINATION AFTER MAXIMUM NUMBER OF
*         ITERATIONS. ITERM=12-TERMINATION AFTER MAXIMUM NUMBER OF
*         COMPUTED FUNCTION VALUES.
*/
void luksan_pyfut1__(int *n, double *f, double *fo, double *umax, 
		     double *gmax, int xstop, /* double *dmax__,  */
		     const nlopt_stopping *stop,
		     double *tolg, int *kd, int *nit, int *kit, int *mit, 
		     int *nfg, int *mfg, int *ntesx, 
	int *mtesx, int *ntesf, int *mtesf, int *ites, 
	int *ires1, int *ires2, int *irest, int *iters, 
	int *iterm)
{
    /* System generated locals */
    double d__1, d__2;

    /* Builtin functions */

    if (*iterm < 0) {
	return;
    }
    if (*ites <= 0) {
	goto L1;
    }
    if (*iters == 0) {
	goto L1;
    }
    if (*nit <= 0) {
/* Computing MIN */
	d__1 = sqrt((fabs(*f))), d__2 = fabs(*f) / 10.;
	*fo = *f + MIN2(d__1,d__2);
    }
    if (nlopt_stop_forced(stop)) {
	*iterm = -999;
	return;
    }
    if (*f <= stop->minf_max /* *tolb */) {
	*iterm = 3;
	return;
    }
    if (*kd > 0) {
	if (*gmax <= *tolg && *umax <= *tolg) {
	    *iterm = 4;
	    return;
	}
    }
    if (*nit <= 0) {
	*ntesx = 0;
	*ntesf = 0;
    }
    if (xstop) /* (*dmax__ <= *tolx) */ {
	*iterm = 1;
	++(*ntesx);
	if (*ntesx >= *mtesx) {
	    return;
	}
    } else {
	*ntesx = 0;
    }
    if (nlopt_stop_ftol(stop, *f, *fo)) {
	*iterm = 2;
	++(*ntesf);
	if (*ntesf >= *mtesf) {
	    return;
	}
    } else {
	*ntesf = 0;
    }
L1:
    if (*nit >= *mit) {
	*iterm = 11;
	return;
    }
    if (nlopt_stop_evals(stop)) /* (*nfv >= *mfv) */ {
	*iterm = 12;
	return;
    }
    if (*nfg >= *mfg) {
	*iterm = 13;
	return;
    }
    *iterm = 0;
    if (*n > 0 && *nit - *kit >= *ires1 * *n + *ires2) {
	*irest = MAX2(*irest,1);
    }
    ++(*nit);
    return;
} /* luksan_pyfut1__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE PYRMC0                ALL SYSTEMS                98/12/01
* PURPOSE :
* OLD SIMPLE BOUND IS REMOVED FROM THE ACTIVE SET. TRANSFORMED
* GRADIENT OF THE OBJECTIVE FUNCTION IS UPDATED.
*
* PARAMETERS :
*  II  NF  DECLARED NUMBER OF VARIABLES.
*  II  N  REDUCED NUMBER OF VARIABLES.
*  II  IX(NF)  VECTOR CONTAINING TYPES OF BOUNDS.
*  RI  G(NF)  GRADIENT OF THE OBJECTIVE FUNCTION.
*  RI  EPS8  TOLERANCE FOR CONSTRAINT TO BE REMOVED.
*  RI  UMAX  MAXIMUM ABSOLUTE VALUE OF THE NEGATIVE LAGRANGE MULTIPLIER.
*  RI  GMAX  NORM OF THE TRANSFORMED GRADIENT.
*  RO  RMAX  MAXIMUM VALUE OF THE STEPSIZE PARAMETER.
*  II  IOLD  NUMBER OF REMOVED CONSTRAINTS.
*  IU  IREST  RESTART INDICATOR.
*/
void luksan_pyrmc0__(int *nf, int *n, int *ix, 
	double *g, double *eps8, double *umax, double *gmax, 
	double *rmax, int *iold, int *irest)
{
    /* System generated locals */
    int i__1, i__2, i__3;

    /* Local variables */
    int i__, ixi;

    /* Parameter adjustments */
    --g;
    --ix;

    /* Function Body */
    if (*n == 0 || *rmax > 0.) {
	if (*umax > *eps8 * *gmax) {
	    *iold = 0;
	    i__1 = *nf;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		ixi = ix[i__];
		if (ixi >= 0) {
		} else if (ixi <= -5) {
		} else if ((ixi == -1 || ixi == -3) && -g[i__] <= 0.) {
		} else if ((ixi == -2 || ixi == -4) && g[i__] <= 0.) {
		} else {
		    ++(*iold);
/* Computing MIN */
		    i__3 = (i__2 = ix[i__], iabs(i__2));
		    ix[i__] = MIN2(i__3,3);
		    if (*rmax == 0.) {
			goto L2;
		    }
		}
/* L1: */
	    }
L2:
	    if (*iold > 1) {
		*irest = MAX2(*irest,1);
	    }
	}
    }
    return;
} /* luksan_pyrmc0__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE PYTRCD             ALL SYSTEMS                   98/12/01
* PURPOSE :
* VECTORS OF VARIABLES DIFFERENCE AND GRADIENTS DIFFERENCE ARE COMPUTED
* AND SCALED AND REDUCED. TEST VALUE DMAX IS DETERMINED.
*
* PARAMETERS :
*  II  NF DECLARED NUMBER OF VARIABLES.
*  RI  X(NF)  VECTOR OF VARIABLES.
*  II  IX(NF)  VECTOR CONTAINING TYPES OF BOUNDS.
*  RU  XO(NF)  VECTORS OF VARIABLES DIFFERENCE.
*  RI  G(NF)  GRADIENT OF THE OBJECTIVE FUNCTION.
*  RU  GO(NF)  GRADIENTS DIFFERENCE.
*  RO  R  VALUE OF THE STEPSIZE PARAMETER.
*  RO  F  NEW VALUE OF THE OBJECTIVE FUNCTION.
*  RI  FO  OLD VALUE OF THE OBJECTIVE FUNCTION.
*  RO  P  NEW VALUE OF THE DIRECTIONAL DERIVATIVE.
*  RI  PO  OLD VALUE OF THE DIRECTIONAL DERIVATIVE.
*  RO  DMAX  MAXIMUM RELATIVE DIFFERENCE OF VARIABLES.
*  II  KBF  SPECIFICATION OF SIMPLE BOUNDS. KBF=0-NO SIMPLE BOUNDS.
*         KBF=1-ONE SIDED SIMPLE BOUNDS. KBF=2=TWO SIDED SIMPLE BOUNDS.
*  IO  KD  DEGREE OF REQUIRED DERIVATIVES.
*  IO  LD  DEGREE OF COMPUTED DERIVATIVES.
*  II  ITERS  TERMINATION INDICATOR FOR STEPLENGTH DETERMINATION.
*         ITERS=0 FOR ZERO STEP.
*
* SUBPROGRAMS USED :
*  S   MXVDIF  DIFFERENCE OF TWO VECTORS.
*  S   MXVSAV  DIFFERENCE OF TWO VECTORS WITH COPYING AND SAVING THE
*         SUBSTRACTED ONE.
*/
void luksan_pytrcd__(int *nf, double *x, int *ix, 
	double *xo, double *g, double *go, double *r__, 
	double *f, double *fo, double *p, double *po, 
	double *dmax__, int *kbf, int *kd, int *ld, int *
	iters)
{
    /* System generated locals */
    int i__1;
    double d__1, d__2, d__3, d__4, d__5;

    /* Local variables */
    int i__;

    /* Parameter adjustments */
    --go;
    --g;
    --xo;
    --ix;
    --x;

    /* Function Body */
    if (*iters > 0) {
	luksan_mxvdif__(nf, &x[1], &xo[1], &xo[1]);
	luksan_mxvdif__(nf, &g[1], &go[1], &go[1]);
	*po = *r__ * *po;
	*p = *r__ * *p;
    } else {
	*f = *fo;
	*p = *po;
	luksan_mxvsav__(nf, &x[1], &xo[1]);
	luksan_mxvsav__(nf, &g[1], &go[1]);
	*ld = *kd;
    }
    *dmax__ = 0.;
    i__1 = *nf;
    for (i__ = 1; i__ <= i__1; ++i__) {
	if (*kbf > 0) {
	    if (ix[i__] < 0) {
		xo[i__] = 0.;
		go[i__] = 0.;
		goto L1;
	    }
	}
/* Computing MAX */
/* Computing MAX */
	d__5 = (d__2 = x[i__], fabs(d__2));
	d__3 = *dmax__, d__4 = (d__1 = xo[i__], fabs(d__1)) / MAX2(d__5,1.);
	*dmax__ = MAX2(d__3,d__4);
L1:
	;
    }
    return;
} /* luksan_pytrcd__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE PYTRCG                ALL SYSTEMS                99/12/01
* PURPOSE :
*  GRADIENT OF THE OBJECTIVE FUNCTION IS SCALED AND REDUCED. TEST VALUES
*  GMAX AND UMAX ARE COMPUTED.
*
* PARAMETERS :
*  II  NF DECLARED NUMBER OF VARIABLES.
*  II  N  ACTUAL NUMBER OF VARIABLES.
*  II  IX(NF)  VECTOR CONTAINING TYPES OF BOUNDS.
*  RI  G(NF)  GRADIENT OF THE OBJECTIVE FUNCTION.
*  RI  UMAX  MAXIMUM ABSOLUTE VALUE OF THE NEGATIVE LAGRANGE MULTIPLIER.
*  RI  GMAX  NORM OF THE TRANSFORMED GRADIENT.
*  II  KBF  SPECIFICATION OF SIMPLE BOUNDS. KBF=0-NO SIMPLE BOUNDS.
*         KBF=1-ONE SIDED SIMPLE BOUNDS. KBF=2=TWO SIDED SIMPLE BOUNDS.
*  II  IOLD  INDEX OF THE REMOVED CONSTRAINT.
*
* SUBPROGRAMS USED :
*  RF  MXVMAX  L-INFINITY NORM OF A VECTOR.
*/
void luksan_pytrcg__(int *nf, int *n, int *ix, 
	double *g, double *umax, double *gmax, int *kbf, 
	int *iold)
{
    /* System generated locals */
    int i__1;
    double d__1, d__2;

    /* Local variables */
    int i__;
    double temp;

    /* Parameter adjustments */
    --g;
    --ix;

    /* Function Body */
    if (*kbf > 0) {
	*gmax = 0.;
	*umax = 0.;
	*iold = 0;
	i__1 = *nf;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    temp = g[i__];
	    if (ix[i__] >= 0) {
/* Computing MAX */
		d__1 = *gmax, d__2 = fabs(temp);
		*gmax = MAX2(d__1,d__2);
	    } else if (ix[i__] <= -5) {
	    } else if ((ix[i__] == -1 || ix[i__] == -3) && *umax + temp >= 0.)
		     {
	    } else if ((ix[i__] == -2 || ix[i__] == -4) && *umax - temp >= 0.)
		     {
	    } else {
		*iold = i__;
		*umax = fabs(temp);
	    }
/* L1: */
	}
    } else {
	*umax = 0.;
	*gmax = luksan_mxvmax__(nf, &g[1]);
    }
    *n = *nf;
    return;
} /* luksan_pytrcg__ */

/* cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc */
/* SUBROUTINE PYTRCS             ALL SYSTEMS                   98/12/01
* PURPOSE :
* SCALED AND REDUCED DIRECTION VECTOR IS BACK TRANSFORMED. VECTORS
* X,G AND VALUES F,P ARE SAVED.
*
* PARAMETERS :
*  II  NF DECLARED NUMBER OF VARIABLES.
*  RI  X(NF)  VECTOR OF VARIABLES.
*  II  IX(NF)  VECTOR CONTAINING TYPES OF BOUNDS.
*  RO  XO(NF)  SAVED VECTOR OF VARIABLES.
*  RI  XL(NF)  VECTOR CONTAINING LOWER BOUNDS FOR VARIABLES.
*  RI  XU(NF)  VECTOR CONTAINING UPPER BOUNDS FOR VARIABLES.
*  RI  G(NF)  GRADIENT OF THE OBJECTIVE FUNCTION.
*  RO  GO(NF)  SAVED GRADIENT OF THE OBJECTIVE FUNCTION.
*  RO  S(NF)  DIRECTION VECTOR.
*  RO  RO  SAVED VALUE OF THE STEPSIZE PARAMETER.
*  RO  FP  PREVIOUS VALUE OF THE OBJECTIVE FUNCTION.
*  RU  FO  SAVED VALUE OF THE OBJECTIVE FUNCTION.
*  RI  F  VALUE OF THE OBJECTIVE FUNCTION.
*  RO  PO  SAVED VALUE OF THE DIRECTIONAL DERIVATIVE.
*  RI  P  VALUE OF THE DIRECTIONAL DERIVATIVE.
*  RO  RMAX  MAXIMUM VALUE OF THE STEPSIZE PARAMETER.
*  RI  ETA9  MAXIMUM FOR REAL NUMBERS.
*  II  KBF  SPECIFICATION OF SIMPLE BOUNDS. KBF=0-NO SIMPLE BOUNDS.
*         KBF=1-ONE SIDED SIMPLE BOUNDS. KBF=2=TWO SIDED SIMPLE BOUNDS.
*
* SUBPROGRAMS USED :
*  S   MXVCOP  COPYING OF A VECTOR.
*/
void luksan_pytrcs__(int *nf, double *x, int *ix, 
	double *xo, double *xl, double *xu, double *g, 
	double *go, double *s, double *ro, double *fp, 
	double *fo, double *f, double *po, double *p, 
	double *rmax, double *eta9, int *kbf)
{
    /* System generated locals */
    int i__1;
    double d__1, d__2;

    /* Local variables */
    int i__;

    /* Parameter adjustments */
    --s;
    --go;
    --g;
    --xu;
    --xl;
    --xo;
    --ix;
    --x;

    /* Function Body */
    *fp = *fo;
    *ro = 0.;
    *fo = *f;
    *po = *p;
    luksan_mxvcop__(nf, &x[1], &xo[1]);
    luksan_mxvcop__(nf, &g[1], &go[1]);
    if (*kbf > 0) {
	i__1 = *nf;
	for (i__ = 1; i__ <= i__1; ++i__) {
	    if (ix[i__] < 0) {
		s[i__] = 0.;
	    } else {
		if (ix[i__] == 1 || ix[i__] >= 3) {
		    if (s[i__] < -1. / *eta9) {
/* Computing MIN */
			d__1 = *rmax, d__2 = (xl[i__] - x[i__]) / s[i__];
			*rmax = MIN2(d__1,d__2);
		    }
		}
		if (ix[i__] == 2 || ix[i__] >= 3) {
		    if (s[i__] > 1. / *eta9) {
/* Computing MIN */
			d__1 = *rmax, d__2 = (xu[i__] - x[i__]) / s[i__];
			*rmax = MIN2(d__1,d__2);
		    }
		}
	    }
/* L1: */
	}
    }
    return;
} /* luksan_pytrcs__ */