1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
/*********************************************************************
MLDemos: A User-Friendly visualization toolkit for machine learning
Copyright (C) 2010 Basilio Noris
Contact: mldemos@b4silio.com
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*********************************************************************/
#include "public.h"
#include "classifierExample.h"
#include <map>
#include <QDebug>
using namespace std;
void ClassifierExample::Train(std::vector< fvec > samples, ivec labels)
{
// we don't want to train anything if we don't have data
if(!samples.size()) return;
// we determine the size of the data
dim = samples[0].size();
// we split the samples into separate lists for each class
vector< fvec > positives, negatives;
classes.clear();
classMap.clear();
inverseMap.clear();
// we go through all the samples and either make a list of classes, or use the "positive vs negative" grouping
int cnt=0;
FOR(i, labels.size()) if(!classMap.count(labels[i])) classMap[labels[i]] = cnt++;
for(map<int,int>::iterator it=classMap.begin(); it != classMap.end(); it++) inverseMap[it->second] = it->first;
ivec newLabels(labels.size());
FOR(i, labels.size()) newLabels[i] = classMap[labels[i]];
for(map<int,int>::iterator it=inverseMap.begin(); it != inverseMap.end(); it++) qDebug() << "inverse: " << it->first << it->second;
for(map<int,int>::iterator it=classMap.begin(); it != classMap.end(); it++) qDebug() << "class: " << it->first << it->second;
std::map<int, vector<fvec> > sampleMap;
FOR(i, samples.size())
{
sampleMap[newLabels[i]].push_back(samples[i]);
if(newLabels[i] == 1) positives.push_back(samples[i]);
else negatives.push_back(samples[i]);
}
// to give an example, we compute the center of each class
centers.clear();
// we iterate through the list of samples split by class
for(map<int,vector<fvec> >::iterator it=sampleMap.begin(); it != sampleMap.end(); it++)
{
qDebug() << "analyzing class #" << it->first;
// we get the list for the current class
vector<fvec> &s = it->second;
// we initialize the mean at zero
fvec mean(dim, 0);
// we compute the mean
FOR(j, s.size())
{
mean += s[j];
}
mean /= s.size();
// and we push it in the list by class
centers[it->first] = mean;
}
}
fvec ClassifierExample::TestMulti(const fvec &sample)
{
fvec res(centers.size(),0);
// we simply compute the distance from the center to the current sample
for(map<int,fvec>::iterator it=centers.begin(); it != centers.end(); it++)
{
// we compute the difference
fvec diff = sample - it->second;
// we compute the dot product
float x = sqrtf(diff*diff);
// we use a simple rbf distance
res[it->first] = expf(-0.5*x);
}
return res;
}
float ClassifierExample::Test(const fvec &sample)
{
fvec likelihood = TestMulti(sample);
if(likelihood.size() < 2) return 0;
float res = log(likelihood[1]) - log(likelihood[0]);
return res;
}
const char *ClassifierExample::GetInfoString()
{
char *text = new char[1024];
sprintf(text, "My Classifier Example\n");
sprintf(text, "%s\n", text);
sprintf(text, "%sTraining information:\n", text);
// here you can fill in whatever information you want
for(map<int,fvec>::iterator it=centers.begin(); it != centers.end(); it++)
{
sprintf(text, "%sCenter for class %d\n", text, it->first);
FOR(d, it->second.size())
{
// write down the dimension as floats with 3 decimals
sprintf(text,"%s %.3f", text, it->second[d]);
}
sprintf(text, "%s\n", text);
}
return text;
}
|