File: clustererExample.h

package info (click to toggle)
mldemos 0.5.1-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 32,224 kB
  • ctags: 46,525
  • sloc: cpp: 306,887; ansic: 167,718; ml: 126; sh: 109; makefile: 2
file content (62 lines) | stat: -rw-r--r-- 2,201 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/*********************************************************************
MLDemos: A User-Friendly visualization toolkit for machine learning
Copyright (C) 2010  Basilio Noris
Contact: mldemos@b4silio.com

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public License,
version 3 as published by the Free Software Foundation.

This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*********************************************************************/
#ifndef _CLUSTERER_EXAMPLE_H_
#define _CLUSTERER_EXAMPLE_H_

#include <vector>
#include <clusterer.h>

/**
  Clusterer example implementing all the necessary functions from the interface
  */
class ClustererExample : public Clusterer
{
public:
    /**
      Constructor, instanciating everything that will be used
      */
    ClustererExample(){}
    /**
      Deconstructor, deinstanciating everything that has been instanciated
      */
    ~ClustererExample(){}

    /**
      The training function, called by the main program, all training should go here
      */
    void Train(std::vector< fvec > samples);

    /**
      The testing function, returns a vector of size nbClusters, with the contribution/weight of the point for each cluster
      */
	fvec Test( const fvec &sample);

    /**
      Information string for the Algorithm Information and Statistics panel in the main program interface.
      Here you probably will put the number of parameters, the training time or anything else
      */
    const char *GetInfoString();

    /**
      Function to set the algorithm hyper-parameters, called prior to the training itself
      */
    void SetParams(float param1, int param2, bool param3){}
};

#endif // _CLUSTERER_EXAMPLE_H_