1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
/*********************************************************************
MLDemos: A User-Friendly visualization toolkit for machine learning
Copyright (C) 2010 Basilio Noris
Contact: mldemos@b4silio.com
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public License,
version 3 as published by the Free Software Foundation.
This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*********************************************************************/
#include "interfaceExampleClassifier.h"
#include "drawUtils.h"
#include <basicMath.h>
#include <QPixmap>
#include <QBitmap>
#include <QPainter>
#include <QDebug>
using namespace std;
ClassExample::ClassExample()
{
// we initialize the hyperparameter widget
params = new Ui::ParametersExample();
params->setupUi(widget = new QWidget());
}
void ClassExample::SetParams(Classifier *classifier)
{
if(!classifier) return;
// the dynamic cast ensures that the pointer we received is really a classifierExample
ClassifierExample * myExample = dynamic_cast<ClassifierExample *>(classifier);
// if it isnt, we return
if(!myExample) return;
// here we gather the different hyperparameters from the interface
double param1 = params->param1Spin->value();
int param2 = params->param2Combo->currentIndex();
bool param3 = params->param3Check->isChecked();
// and finally we set the parameters of the algorithm
myExample->SetParams(param1, param2, param3);
}
QString ClassExample::GetAlgoString()
{
// here we gather the different hyperparameters from the interface
double param1 = params->param1Spin->value();
int param2 = params->param2Combo->currentIndex();
bool param3 = params->param3Check->isChecked();
// and we generate the algorithm string with something that is understandable
QString algo = QString("MyExample %1").arg(param1);
switch(param2)
{
case 0:
algo += " Low";
break;
case 1:
algo += " Med";
break;
case 2:
algo += " Hig";
break;
}
if(param3) algo += " Opt";
return algo;
}
Classifier *ClassExample::GetClassifier()
{
// we instanciate the algorithm object
ClassifierExample *classifier = new ClassifierExample();
// we set its parameters
SetParams(classifier);
// we return it to the main program
return classifier;
}
void ClassExample::DrawInfo(Canvas *canvas, QPainter &painter, Classifier *classifier)
{
if(!canvas || !classifier) return;
painter.setRenderHint(QPainter::Antialiasing);
ClassifierExample * myExample = dynamic_cast<ClassifierExample*>(classifier);
if(!myExample) return;
// to give an example, we use the QPainter interface to paint a circle close to the center of the data space
// first we need to know which 2 dimensions are currently being displayed (in case of multi-dimensional data)
// if the data is 2-dimensional it will be 0 and 1
int xIndex = canvas->xIndex;
int yIndex = canvas->yIndex;
// now we get the current position of the center of the dataspace
fvec sample = canvas->center;
// and we add a random noise around it
sample[xIndex] += (drand48()-0.5f)*0.1;
sample[yIndex] += (drand48()-0.5f)*0.1;
// we need to convert the sample coordinates from dataspace (N-dimensional in R) to the canvas coordinates (2D pixel by pixel)
QPointF pointInCanvas = canvas->toCanvasCoords(sample);
// we make the painter paint nicely (work well with forms, not so much with text)
painter.setRenderHint(QPainter::Antialiasing);
// we set the brush and pen, in our case no brush (hollow circle) and a thick red edge
painter.setBrush(Qt::NoBrush);
painter.setPen(QPen(Qt::red, 4));
// and we finally draw it with a radius of 10
painter.drawEllipse(pointInCanvas, 10, 10);
}
void ClassExample::DrawModel(Canvas *canvas, QPainter &painter, Classifier *classifier)
{
// we want to draw the samples
// we start by making the painter paint things nicely
painter.setRenderHint(QPainter::Antialiasing);
// for every point in the current dataset
FOR(i, canvas->data->GetCount())
{
// we get the sample
fvec sample = canvas->data->GetSample(i);
// and its label
int label = canvas->data->GetLabel(i);
// and we test it using the classifier (TestMulti is for multi-class classification)
fvec res = classifier->TestMulti(sample);
// we get the point in canvas coordinates (2D pixel by pixel) corresponding to the sample (N-dimensional in R)
QPointF point = canvas->toCanvasCoords(canvas->data->GetSample(i));
// if we only have one response it is a binary classification
if(res.size()==1)
{
// if the response is positive
if(res[0] > 0)
{
// if the sample is also positive then we draw it with the corresponding color
if(classifier->classMap[label] == 1) Canvas::drawSample(painter, point, 9, 1);
// else we draw a cross
else Canvas::drawCross(painter, point, 6, 2);
}
// vice-versa here if the response is negative
else
{
if(classifier->classMap[label] != 1) Canvas::drawSample(painter, point, 9, 0);
else Canvas::drawCross(painter, point, 6, 0);
}
}
// if we have multiple responses
else
{
// we look for the class with the maximum response
int max = 0;
for(int i=1; i<res.size(); i++) if(res[max] < res[i]) max = i;
int resp = classifier->inverseMap[max];
// if it corresponds to the actual label we draw it as a circle
if(label == resp) Canvas::drawSample(painter, point, 9, label);
// otherwise we draw a cross
else Canvas::drawCross(painter, point, 6, label);
}
}
}
void ClassExample::SaveOptions(QSettings &settings)
{
// we save to the system registry each parameter value
settings.setValue("Param1", params->param1Spin->value());
settings.setValue("Param2", params->param2Combo->currentIndex());
settings.setValue("Param3", params->param3Check->isChecked());
}
bool ClassExample::LoadOptions(QSettings &settings)
{
// we load the parameters from the registry so that when we launch the program we keep all values
if(settings.contains("Param1")) params->param1Spin->setValue(settings.value("Param1").toFloat());
if(settings.contains("Param2")) params->param2Combo->setCurrentIndex(settings.value("Param2").toInt());
if(settings.contains("Param3")) params->param3Check->setChecked(settings.value("Param3").toBool());
return true;
}
void ClassExample::SaveParams(QTextStream &file)
{
// same as above but for files/string saving
file << "classificationOptions" << ":" << "Param1" << " " << params->param1Spin->value() << "\n";
file << "classificationOptions" << ":" << "Param2" << " " << params->param2Combo->currentIndex() << "\n";
file << "classificationOptions" << ":" << "Param3" << " " << params->param3Check->isChecked() << "\n";
}
bool ClassExample::LoadParams(QString name, float value)
{
// same as above but for files/string saving
if(name.endsWith("Param1")) params->param1Spin->setValue((int)value);
if(name.endsWith("Param2")) params->param2Combo->setCurrentIndex((int)value);
if(name.endsWith("Param3")) params->param3Check->setChecked((int)value);
return true;
}
|