File: basicOpenCV.h

package info (click to toggle)
mldemos 0.5.1-3
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 32,224 kB
  • ctags: 46,525
  • sloc: cpp: 306,887; ansic: 167,718; ml: 126; sh: 109; makefile: 2
file content (382 lines) | stat: -rw-r--r-- 12,854 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
/*********************************************************************
MLDemos: A User-Friendly visualization toolkit for machine learning
Copyright (C) 2010  Basilio Noris
Contact: mldemos@b4silio.com

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public License,
version 3 as published by the Free Software Foundation.

This library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*********************************************************************/
#ifndef _BASICOPENCV_H_
#define _BASICOPENCV_H_

#include "public.h"
#include <vector>
#ifdef OPENCV22
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/video/tracking.hpp>
#include <opencv2/ml/ml.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/legacy/legacy.hpp>
#include <opencv2/legacy/compat.hpp>
#else
#include <opencv/cv.h>
#include <opencv/cxcore.h>
#include <opencv/cvaux.h>
#include <opencv/ml.h>
#include <opencv/highgui.h>
#endif

/* computes the point corresponding to a certain angle on an input image */
#define calc_point(img, angle)                                      \
    cvPoint( cvRound(img->width/2 + img->width/3*cos(angle)),		\
                cvRound(img->height/2 - img->width/3*sin(angle)))

/* plot points */
#define draw_cross(img, center, color, d )										\
    cvLine( img, cvPoint( center.x - d, center.y - d ),							\
                    cvPoint( center.x + d, center.y + d ), color, 1, CV_AA, 0); \
    cvLine( img, cvPoint( center.x + d, center.y - d ),							\
                    cvPoint( center.x - d, center.y + d ), color, 1, CV_AA, 0 )
/* draws a plus */
#define draw_plus(img, center, color, d )					\
	cvLine( img, cvPoint( center.x - d, center.y),			\
		cvPoint( center.x + d, center.y), color, 1, 0 );	\
	cvLine( img, cvPoint( center.x, center.y - d ),			\
		cvPoint( center.x, center.y + d ), color, 1, 0 )

void cvDrawRect(IplImage *img, CvRect rect, CvScalar color=CV_RGB(0,0,255), int thickness=1, int line_type=8, int shift=0);
void cvDrawGradient(IplImage *image, CvRect rect, CvScalar color1, CvScalar color2, bool vertical=true);

class BasicOpenCV
{
public:
	static const CvScalar color [22];
	static const u32 colorCnt = 22;

	static IplImage *Rotate(IplImage *src, float angle);
	static IplImage *Rotate90(IplImage *src, u32 direction=0);
	static void integralImage(const IplImage *image, IplImage **intimage);
	static u32 GetSum(IplImage *integral, CvRect rect);
	static u32 GetSum(IplImage *integral, int x, int y, int w, int h);
	static void cvCopyFlipped(IplImage *src, IplImage *dst);
	static void DisplayHueSatHist(IplImage* src);
	static void CreateHistogramImage(IplImage *src, IplImage *dst, int bins=256, int channels=0);
	static void RGB2NCC(IplImage *image, IplImage *red, IplImage *green);
	static void BinaryMedian(IplImage *src, IplImage *dst);
	static void RemoveNoise(IplImage * src);
	static IplImage *Deinterlace(IplImage *image);
	static IplImage *GetField(IplImage *image, u32 field);
	static IplImage *Half2Full(IplImage *image);
	static void Half2Full(IplImage *src, IplImage *dst);
	static IplImage *Half2Demi(IplImage *image);
	static void Half2Demi(IplImage *src, IplImage *dst);
	static IplImage *Half(IplImage *src);
	static void Half(IplImage **src);
	static IplImage *Resize(IplImage *src, CvSize size);
	static void Resize(IplImage **src,CvSize size);
	static void ChannelSubtraction(IplImage *src , IplImage *dst, u32 first, u32 second);
	static void Divide(IplImage *img1, IplImage *img2 );
	static IplImage *Crop(IplImage *image,CvRect selection);
	static int otsuThreshold(CvMat* prob, CvHistogram* hist);
	static float MaximizeSquare(IplImage *image, int *x, int *y, int *s);

	static IplImage *BoxPlot(std::vector<float> data, float maxVal=-FLT_MAX, float minVal=FLT_MAX);
	static IplImage *BoxPlot(std::vector<std::vector<float> > data, float maxVal=-FLT_MAX, float minVal=FLT_MAX);
};

typedef BasicOpenCV CV;

namespace BasicML
{
	//returns the index corresponding to the minimal value 
	static int smallest(s32 values[], u32 length){
		s32 minValue = values[0];
		u32 minIndex = 0;
		FOR(i, length){
			if (values[i] < minValue){
				minIndex = i;
				minValue = values[i];
			}
		}
		return minIndex;
	}

	// returns the mean for the specified cluster
	static CvPoint mean(CvPoint3D32f points[], int length, int cluster){
		CvPoint mean = cvPoint(0,0);
		int nbPointInCluster = 0;
		for (int i=0; i<length; i++){
			if((int)points[i].z == cluster){
				mean.x += (int)points[i].x;
				mean.y += (int)points[i].y;
				nbPointInCluster++;
			}
		}

		// if a cluster has one or more point(s), change the cluster's mean
		if (nbPointInCluster){
			mean.x /= nbPointInCluster;
			mean.y /= nbPointInCluster;
		}
		return mean;
	}

	/**
	  * performs the K-mean clustering algorithm
	  *
	  * @param points[] : each element of this array is a 3-uple (x,y,c), where
	  *                   x,y are the coordinate of the point, and c the cluster
	  *                   the point belongs to.
	  *                   the c component can be initialized randomly and will be changed by the algo
	  * @param numberOfPoints : number of point to be clustered (i.e number of points
	  *                         corresponding to skin color (in our case)
	  * @param nbCluster :      number of clusters. Min 1, Max 3
	  * @param xmax :           max value for the x coordinate (i.e image's width)
	  * @param ymax :           max value for the y coordinate (i.e image's height)
	  *
	  */
	#define squareNorm(p1, p2) ((int)p1.x-p2.x)*((int)p1.x-p2.x) + ((int)p1.y-p2.y)*((int)p1.y-p2.y)

	static CvPoint *KmeansClustering(CvPoint3D32f points[],u32 length, u32 nbCluster, s32 xmax, s32 ymax){
		const s32 maxInt = 2^32-1;

		// contains the means for each cluster
		CvPoint *means = new CvPoint[nbCluster];

		// mean of the current cluster
		CvPoint currentMean;

		// has one point moved from one cluster to another ?
		bool atLeastOneChange=true;

		// contains the "distance" (i.e d*d) from the current point to each cluster
		s32 *currentSquareDistance = new s32[nbCluster];


		// Random number generation for initial means of clusters
		srand((u32)(cvGetTickCount()/cvGetTickFrequency()/10000000.0));

		//initialize the means randomly
		
		FOR(i, nbCluster){
			currentMean.x=rand()%xmax;
			currentMean.y=rand()%ymax;
			means[i]=(currentMean);
		}

		FOR(k, nbCluster){
			currentSquareDistance[k]=maxInt;
		}

		while(atLeastOneChange){
			atLeastOneChange=false;
			//classify the points into clusters
			FOR(i, length){
				FOR(j,nbCluster){
					currentSquareDistance[j]=squareNorm(points[i], means[j]);
				}
				if (points[i].z != (f32)smallest(currentSquareDistance,nbCluster)){
					atLeastOneChange=true;
					points[i].z = (f32)smallest(currentSquareDistance,nbCluster);
				}
			}
			//calculate the mean of each cluster
			FOR(k,nbCluster){
				means[k]=mean(points, length,k);
			}
		}
		return means;
	}

	static CvPoint *KMeans(IplImage *image, u32 clusterCount)
	{
		if(!image ||image->nChannels != 1) return NULL;

		cvMorphologyEx(image, image, 0, 0, CV_MOP_CLOSE,2);
		u32 width = image->width;
		u32 height = image->height;
		CvPoint3D32f *points = new CvPoint3D32f[width*height];
		u32 pointsCount = 0;

		FOR(i,height){
                        FOR(j,width){
                                if ((uchar)image->imageData[i*width+j]){
					points[pointsCount++] = cvPoint3D32f(j,i,0);
				}
			}
		}
		CvPoint *clusters = KmeansClustering(points, pointsCount, clusterCount, width, height);
		//FOR(i,pointsCount)
			//RGB(image, u32(points[i].y*width + points[i].x)) = ((u32)points[i].z + 1)*255/(clusterCount+1);
		delete points;
		return clusters;
	}

	#ifndef EIGEN_STRUCT
	#define EIGEN_STRUCT
	typedef struct{
		 CvPoint2D32f e1;
		 CvPoint2D32f e2;
		 CvPoint2D32f lambda;
		 CvPoint2D32f mean;
		 //f32 l1;
		 //f32 l2;
		 //f32 mean.x;
		 //f32 mean.y;
	} Eigen;
	#endif // EIGEN_STRUCT

	/**
	  *   PCA over the CbCr space using calibration data.
	  *
	  *	  @return :          eigenvectors (e1 & e2), cooresponding eigenvalues (l1 & l2) 
	  *                      and the center of mass of distribution (mean.x & mean.y)
	  */

	static Eigen PCA(CvPoint2D32f points[], u32 nbPoints){
		CvPoint2D32f mean = cvPoint2D32f(0,0);

		//the covariance matrix
		f32 c0[2][2];	

		FOR(i, nbPoints){
			mean.y+=points[i].x;
			mean.x+=points[i].y;
		}
		mean.y/=(f32)nbPoints;
		mean.x/=(f32)nbPoints;

		//initialisation
		FOR(i,2)
			FOR(j,2)
				c0[i][j]=0.0;

		//CbCb (variance of Cb)
		FOR(i,nbPoints)
			c0[0][0]+=(points[i].x-mean.x)*(points[i].x-mean.x);
		c0[0][0]/=(f32)nbPoints;

		//CbCr (covariance of Cb-Cr = covariance Cr-Cb)
		c0[0][1] = 0.0;
		FOR(i, nbPoints)
			c0[0][1]+=(points[i].x-mean.x)*(points[i].y-mean.y);
		c0[0][1]/=(f32)nbPoints;

		c0[1][0] = c0[0][1];

		//CrCr (variance of Cr)
		FOR(i, nbPoints)
			c0[1][1]+=(points[i].y-mean.y)*(points[i].y-mean.y);
		c0[1][1]/=(f32)nbPoints;

		f32 determinant = (c0[1][1]+c0[0][0])*(c0[1][1]+c0[0][0])-4.0f*(c0[0][0]*c0[1][1]-c0[1][0]*c0[0][1]);
		CvPoint2D32f eig = cvPoint2D32f(0,0);

		if (determinant > 0){
			eig.x= (c0[1][1]+c0[0][0]+sqrtf(determinant))/2.0f;
			eig.y= (c0[1][1]+c0[0][0]-sqrtf(determinant))/2.0f;
		}else{
			//printf("determinant is not positive during calculation of eigenvalues !!");
		}

		CvPoint2D32f e1;
		e1.x=-c0[0][1]/(c0[0][0]-eig.x);
		e1.y=1.0;

		//f32 norm = sqrtf(e1.x*e1.x+e1.y*e1.y);

		CvPoint2D32f e2;
		e2.x=-c0[0][1]/(c0[0][0]-eig.y);
		e2.y=1.0;

		Eigen result;

		result.e1=e1;
		result.e2=e2;
		result.lambda = eig;
		result.mean = mean;

		return result;

	}

	static Eigen PCA(IplImage *x, IplImage *y){
		Eigen eig;
		eig.e1 = cvPoint2D32f(0,0);
		if(!x || !y) return eig;
		u32 length = x->widthStep*x->height;
		if(length != (u32)(y->widthStep*y->height)) return eig;
		CvPoint2D32f *points = new CvPoint2D32f[length];
		FOR(i, length){
                        points[i].x = x->imageData[i]/255.f;
                        points[i].y = y->imageData[i]/255.f;
		}
		eig = PCA(points, length);
		delete[] points;
		return eig;
	}

	/**
	  *   determines if a point is inside a ellipse given by the eigenvalues (radius), eigenvectors (direction) and center.
	  *
	  *   @param point        : is the CbCr **point** into the ellipse  
	  *	  @param eigenValVect : eigenvalues, corresp. eigenvectors, center of mass

	  *	  @return : true if the *point* is inside the ellipse (i.e this point corresponds to skin color)
	  */

	static bool isInsideEllipse(CvPoint2D32f point, Eigen eigenValVect, f32 proportionFactor){

		//translate the coordinate system to the center of mass of points
		CvPoint2D32f newPoint;
		newPoint.x = point.x - eigenValVect.mean.x;
		newPoint.y = point.y - eigenValVect.mean.y;

		f32 theta;
		
		if (eigenValVect.e1.x >= 0)
			theta = atanf(eigenValVect.e1.y/eigenValVect.e1.x);
		else if(eigenValVect.e2.x >= 0)
			theta = atanf(eigenValVect.e2.y/eigenValVect.e2.x);
		else{
			//printf("\n*** ERROR - NON ORTHOGONAL VECTORS ***\n");
		}

		// rotation
		newPoint.x=newPoint.x*cosf(theta)-point.y*sinf(theta);
		newPoint.y=newPoint.x*sinf(theta)+point.y*cosf(theta);

		return ((((newPoint.x*newPoint.x)/(eigenValVect.lambda.x*proportionFactor*eigenValVect.lambda.x*proportionFactor))
			+((newPoint.y*newPoint.y)/(eigenValVect.lambda.y*proportionFactor*eigenValVect.lambda.y*proportionFactor))) < 1.0f);
	}

	static void SelectPCA(IplImage *x, IplImage *y, IplImage *dst, Eigen eig, f32 ratio)
	{
		if(!x || !y) return;
		if(!dst) dst = cvCreateImage(cvGetSize(x),8,1);
		else if (dst->width != x->width && dst->height != x->height){
			cvReleaseImage(&dst);
			dst = NULL;
			cvCreateImage(cvGetSize(x),8,1);
		}
		u32 width = x->width;
		u32 height = x->height;
		FOR(i,height){
			FOR(j, width){
                                dst->imageData[i*width + j] = isInsideEllipse(cvPoint2D32f((unsigned char)(x->imageData[i*width+j])/255.f, ((unsigned char)y->imageData[i*width+j])/255.f), eig, ratio) ? 255 : 0;
			}
		}
	}
}
#endif //_BASICOPENCV_H_