File: HISTORY.md

package info (click to toggle)
mlpack 4.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 31,272 kB
  • sloc: cpp: 226,039; python: 1,934; sh: 1,198; lisp: 414; makefile: 85
file content (1392 lines) | stat: -rw-r--r-- 43,146 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
# mlpack changelog

## mlpack 4.6.2

_2025-05-22_

 * Fix compilation of `Save()` when HDF5 is enabled (#3942).

 * Update bundled STB to fix warnings in R bindings (#3940).

 * Fix cross-validation support for algorithms with many parameters (including
   `RandomForest`) (#3941).

## mlpack 4.6.1

_2025-05-13_

 * Shuffle sequence lengths for RNNs (#3926).

 * Add ability to compile OpenBLAS for Windows (#3922).

 * Drop pytest-runner and "setup.py test" support (#3921).

 * Fix compilation errors with clang++ version 20 (#3928).

## mlpack 4.6.0

_2025-04-02_

 * Fix command-line duplicate output bug when loading matrices for some bindings
   (#3838).
 * Use `CMAKE_BUILD_TYPE` to specify build type instead of DEBUG and PROFILE options (#3865).

 * Add `MLPACK_NO_STD_MUTEX` to allow disabling `std::mutex` (#3868).

 * Bundle STB with mlpack and add `ResizeImages()` functionality (#3823).

 * Add `mlpack.cmake` to facilitate finding mlpack and its dependencies (#3872).

 * Fix conversion of empty Armadillo objects to numpy in Python bindings
   (#3896).

 * Added bootstrap strategies for `RandomForest`: `IdentityBootstrap`,
   `DefaultBootstrap`, and `SequentialBootstrap` (#3829).

 * Add `ResizeCropImages()` for resize-and-crop image preprocessing
   functionality (#3903).

 * Fix `LSTM` input size calculation for multidimensional inputs (#3913).

## mlpack 4.5.1

_2024-12-02_

 * Fix compilation with clang 19 (#3799).

 * Deprecate version of `data::Split()` that returns a `std::tuple` for
   consistency; use other overloads instead (#3803).

 * Fix LSTM layer copy/move constructors (#3809).

 * Fix compilation if only including `mlpack/methods/kde/kde_model.hpp` (#3800).

 * Fix serialization and `MinDistance()` bugs with `HollowBallBound` (#3808).

 * Add `LinearRecurrent` layer and revamp `LSTM` layer (#3859).

 * Fix BPTT issues in `RNN` (#3859).

## mlpack 4.5.0

_2024-09-17_

 * Distribute STB headers as part of R package (#3724, #3726).

 * Added OpenMP parallelization to Hamerly, Naive, and Elkan k-means (#3761, #3762, #3764).

 * Added OpenMP support for fast approximation (#3685).

 * Implemented the Find and Fill algorithm into the Dropout Layer and added OpenMP support (#3684).

 * Update Python bindings to support NumPy 2.x (#3752).

 * Bump minimum Armadillo version to 10.8 (#3760).

 * Adapt `NearestInterpolation` ANN layer to new Layer Inteface (#3768).

 * Add support for arbitrary matrix types to `Radical` and deprecate
   `Radical::DoRadical()` in favor of `Radical::Apply()` (#3787).

## mlpack 4.4.0

_2024-05-26_

  * Add `print_training_accuracy` option to LogisticRegression bindings (#3552).

  * Fix `preprocess_split()` call in documentation for `LinearRegression` and
    `AdaBoost` Python classes (#3563).

  * Added `Repeat` ANN layer type (#3565).

  * Remove `round()` implementation for old MSVC compilers (#3570).

  * (R) Added inline plugin to the R bindings to allow for other R packages to
    link to headers (#3626, h/t @cgiachalis).

  * (R) Removed extra gcc-specific options from `Makevars.win`  (#3627, h/t
    @kalibera).

  * (R) Changed roxygen package-level documentation from using
    `@docType package` to `"_PACKAGE"`. (#3636)

  * Fix floating-point accuracy issue for decision trees that sometimes caused
    crashes (#3595).

  * Use templates metaprog to distinguish between a matrix and a cube type
    (#3602), (#3585).

  * Use `MatType` instead of `arma::Mat<eT>`, (#3567), (#3607), (#3608),
    (#3609), (#3568).

  * Generalize matrix operations for armadillo and bandicoot, (#3619), (#3617),
    (#3610), (#3643), (#3600), (#3605), (#3629).

  * Change `arma::conv_to` to `ConvTo` using a local shim for bandicoot support
    (#3614).

  * Fix a bug for the stddev and mean in `RandNormal()` #(3651).

  * Allow PCA to take different matrix types (#3677).

  * Fix usage of precompiled headers; remove cotire (#3635).

  * Fix non-working `verbose` option for R bindings (#3691), and add global
    `mlpack.verbose` option (#3706).

  * Fix divide-by-zero edge case for LARS (#3701).

  * Templatize `SparseCoding` and `LocalCoordinateCoding` to allow different
    matrix types (#3709, #3711).

  * Fix handling of unused atoms in `LocalCoordinateCoding` (#3711).

  * Move minimum required C++ version from C++14 to C++17 (#3704).

## mlpack 4.3.0

_2023-11-27_

  * Fix include ordering issue for `LinearRegression` (#3541).

  * Fix L1 regularization in case where weight is zero (#3545).

  * Use HTTPS for all auto-downloaded dependencies (#3550).

  * More robust detection of C++17 mode in the MSVC "compiler" (#3555, #3557).

  * Fix setting number of classes correctly in `SoftmaxRegression::Train()`
    (#3553).

  * Adapt `MultiheadAttention` and `LayerNorm` ANN layers to new Layer interface
    (#3547).

  * Fix inconsistent use of the "input" parameter to the Backward method in ANNs
    (#3551).

  * Allow passing weak learner hyperparameters directly to AdaBoost (#3560).

## mlpack 4.2.1

_2023-09-05_

  * Reinforcement Learning: Gaussian noise (#3515).

  * Reinforcement Learning: Twin Delayed Deep Deterministic Policy Gradient
    (#3512).

  * Reinforcement Learning: Ornstein-Uhlenbeck noise (#3499).

  * Reinforcement Learning: Deep Deterministic Policy Gradient (#3494).

  * Add `ClassProbabilities()` member to `DecisionTree` so that the internal
    details of trees can be more easily inspected (#3511).

  * Bipolar sigmoid activation function added and invertible functions
    fixed (#3506).

  * Add auto-configured `mlpack/config.hpp` to contain configuration details of
    mlpack that are required at compile time.  STB detection is now done in this
    file with the `MLPACK_HAS_STB` macro (#3519).

  * Fix CRAN package alias for R bindings (#3543).

## mlpack 4.2.0

_2023-06-14_

  * Adapt `C_ReLU`, `ReLU6`, `FlexibleReLU` layers for the new neural network
    API (#3445).

  * Fix PReLU, add integration test to it (#3473).

  * Fix bug in LogSoftMax derivative (#3469).

  * Add `serialize` method to `GaussianInitialization`,
    `LecunNormalInitialization`,
    `KathirvalavakumarSubavathiInitialization`, `NguyenWidrowInitialization`,
    and `OrthogonalInitialization` (#3483).

  * Allow categorical features to `preprocess_one_hot_encode` (#3487).

  * Install mlpack and cereal headers as part of R package (#3488).

  * Add intercept and normalization support to LARS (#3493).

  * Allow adding two features simultaneously to LARS models (#3493).

  * Adapt FTSwish activation function (#3485).

  * Adapt Hyper-Sinh activation function (#3491).

## mlpack 4.1.0

_2023-04-26_

  * Adapt HardTanH layer (#3454).

  * Adapt Softmin layer for new neural network API (#3437).

  * Adapt PReLU layer for new neural network API (#3420).

  * Add CF decomposition methods: `QUIC_SVDPolicy` and `BlockKrylovSVDPolicy`
    (#3413, #3404).

  * Update outdated code in tutorials (#3398, #3401).

  * Bugfix for non-square convolution kernels (#3376).

  * Fix a few missing includes in `<mlpack.hpp>` (#3374).

  * Fix DBSCAN handling of non-core points (#3346).

  * Avoid deprecation warnings in Armadillo 11.4.4+ (#3405).

  * Issue runtime error when serialization of neural networks is attempted but
    `MLPACK_ENABLE_ANN_SERIALIZATION` is not defined (#3451).

## mlpack 4.0.1

_2022-12-23_

  * Fix mapping of categorical data for Julia bindings (#3305).

  * Bugfix: catch all exceptions when running bindings from Julia, instead of
    crashing (#3304).

  * Various Python configuration fixes for Windows and OS X (#3312, #3313,
    #3311, #3309, #3308, #3297, #3302).

  * Optimize and strip compiled Python bindings when possible, resulting in
    significant size minimization (#3310).

  * The `/std:c++17` and `/Zc:__cplusplus` options are now required when using
    Visual Studio (#3318).  Documentation and compile-time checks added.

  * Set `BUILD_TESTS` to `OFF` by default.  If you want to build tests, like
    `mlpack_test`, manually set `BUILD_TESTS` to `ON` in your CMake
    configuration step (#3316).

  * Fix handling of transposed matrix parameters in Python, Julia, R, and Go
    bindings (#3327).

  * Comment out definition of ARMA_NO DEBUG. This allows various Armadillo
    run-time checks such as non-conforming matrices and out-of-bounds
    element access. In turn this helps tracking down bugs and incorrect
    usage (#3322).

## mlpack 4.0.0

_2022-10-23_

  * Bump C++ standard requirement to C++14 (#3233).

  * Fix `Perceptron` to work with cross-validation framework (#3190).

  * Migrate from boost tests to Catch2 framework (#2523), (#2584).

  * Bump minimum armadillo version from 8.400 to 9.800 (#3043), (#3048).

  * Adding a copy constructor in the Convolution layer (#3067).

  * Replace `boost::spirit` parser by a local efficient implementation (#2942).

  * Disable correctly the autodownloader + fix tests stability (#3076).

  * Replace `boost::any` with `core::v2::any` or `std::any` if available (#3006).

  * Remove old non used Boost headers (#3005).

  * Replace `boost::enable_if` with `std::enable_if` (#2998).

  * Replace `boost::is_same` with `std::is_same` (#2993).

  * Remove invalid option for emsmallen and STB (#2960).

  * Check for armadillo dependencies before downloading armadillo (#2954).

  * Disable the usage of autodownloader by default (#2953).

  * Install dependencies downloaded with the autodownloader (#2952).

  * Download older Boost if the compiler is old (#2940).

  * Add support for embedded systems (#2531).

  * Build mlpack executable statically if the library is statically linked (#2931).

  * Fix cover tree loop bug on embedded arm systems (#2869).

  * Fix a LAPACK bug in `FindArmadillo.cmake` (#2929).

  * Add an autodownloader to get mlpack dependencies (#2927).

  * Remove Coverage files and configurations from CMakeLists (#2866).

  * Added `Multi Label Soft Margin Loss` loss function for neural networks
   (#2345).

  * Added Decision Tree Regressor (#2905). It can be used using the class
    `mlpack::tree::DecisionTreeRegressor`. It is accessible only though C++.

  * Added dict-style inspection of mlpack models in python bindings (#2868).

  * Added Extra Trees Algorithm (#2883). Currently, it can be used using the
    class `mlpack::tree::ExtraTrees`, but only through C++.

  * Add Flatten T Swish activation function (`flatten-t-swish.hpp`)

  * Added warm start feature to Random Forest (#2881); this feature is
    accessible from mlpack's bindings to different languages.

  * Added Pixel Shuffle layer (#2563).

  * Add "check_input_matrices" option to python bindings that checks
    for NaN and inf values in all the input matrices (#2787).

  * Add Adjusted R squared functionality to R2Score::Evaluate (#2624).

  * Disabled all the bindings by default in CMake (#2782).

  * Added an implementation to Stratify Data (#2671).

  * Add `BUILD_DOCS` CMake option to control whether Doxygen documentation is
    built (default ON) (#2730).

  * Add Triplet Margin Loss function (#2762).

  * Add finalizers to Julia binding model types to fix memory handling (#2756).

  * HMM: add functions to calculate likelihood for data stream with/without
    pre-calculated emission probability (#2142).

  * Replace Boost serialization library with Cereal (#2458).

  * Add `PYTHON_INSTALL_PREFIX` CMake option to specify installation root for
    Python bindings (#2797).

  * Removed `boost::visitor` from model classes for `knn`, `kfn`, `cf`,
    `range_search`, `krann`, and `kde` bindings (#2803).

  * Add k-means++ initialization strategy (#2813).

  * `NegativeLogLikelihood<>` now expects classes in the range `0` to
    `numClasses - 1` (#2534).

  * Add `Lambda1()`, `Lambda2()`, `UseCholesky()`, and `Tolerance()` members to
    `LARS` so parameters for training can be modified (#2861).

  * Remove unused `ElemType` template parameter from `DecisionTree` and
    `RandomForest` (#2874).

  * Fix Python binding build when the CMake variable `USE_OPENMP` is set to
    `OFF` (#2884).

  * The `mlpack_test` target is no longer built as part of `make all`.  Use
    `make mlpack_test` to build the tests.

  * Fixes to `HoeffdingTree`: ensure that training still works when empty
    constructor is used (#2964).

  * Fix Julia model serialization bug (#2970).

  * Fix `LoadCSV()` to use pre-populated `DatasetInfo` objects (#2980).

  * Add `probabilities` option to softmax regression binding, to get class
    probabilities for test points (#3001).

  * Fix thread safety issues in mlpack bindings to other languages (#2995).

  * Fix double-free of model pointers in R bindings (#3034).

  * Fix Julia, Python, R, and Go handling of categorical data for
    `decision_tree()` and `hoeffding_tree()` (#2971).

  * Depend on `pkgbuild` for R bindings (#3081).

  * Replaced Numpy deprecated code in Python bindings (#3126).

## mlpack 3.4.2

_2020-10-26_

  * Added Mean Absolute Percentage Error.

  * Added Softmin activation function as layer in ann/layer.

  * Fix spurious ARMA_64BIT_WORD compilation warnings on 32-bit systems (#2665).

## mlpack 3.4.1

_2020-09-07_

  * Fix incorrect parsing of required matrix/model parameters for command-line
    bindings (#2600).

  * Add manual type specification support to `data::Load()` and `data::Save()`
    (#2084, #2135, #2602).

  * Remove use of internal Armadillo functionality (#2596, #2601, #2602).

## mlpack 3.4.0

_2020-09-01_

  * Issue warnings when metrics produce NaNs in KFoldCV (#2595).

  * Added bindings for _R_ during Google Summer of Code (#2556).

  * Added common striptype function for all bindings (#2556).

  * Refactored common utility function of bindings to bindings/util (#2556).

  * Renamed InformationGain to HoeffdingInformationGain in
    methods/hoeffding_trees/information_gain.hpp (#2556).

  * Added macro for changing stream of printing and warnings/errors (#2556).

  * Added Spatial Dropout layer (#2564).

  * Force CMake to show error when it didn't find Python/modules (#2568).

  * Refactor `ProgramInfo()` to separate out all the different
    information (#2558).

  * Add bindings for one-hot encoding (#2325).

  * Added Soft Actor-Critic to RL methods (#2487).

  * Added Categorical DQN to q_networks (#2454).

  * Added N-step DQN to q_networks (#2461).

  * Add Silhoutte Score metric and Pairwise Distances (#2406).

  * Add Go bindings for some missed models (#2460).

  * Replace boost program_options dependency with CLI11 (#2459).

  * Additional functionality for the ARFF loader (#2486); use case sensitive
    categories (#2516).

  * Add `bayesian_linear_regression` binding for the command-line, Python,
    Julia, and Go.  Also called "Bayesian Ridge", this is equivalent to a
    version of linear regression where the regularization parameter is
    automatically tuned (#2030).

  * Fix defeatist search for spill tree traversals (#2566, #1269).

  * Fix incremental training of logistic regression models (#2560).

  * Change default configuration of `BUILD_PYTHON_BINDINGS` to `OFF` (#2575).

## mlpack 3.3.2

_2020-06-18_

  * Added Noisy DQN to q_networks (#2446).

  * Add Go bindings (#1884).

  * Added Dueling DQN to q_networks, Noisy linear layer to ann/layer
    and Empty loss to ann/loss_functions (#2414).

  * Storing and adding accessor method for action in q_learning (#2413).

  * Added accessor methods for ANN layers (#2321).

  * Addition of `Elliot` activation function (#2268).

  * Add adaptive max pooling and adaptive mean pooling layers (#2195).

  * Add parameter to avoid shuffling of data in preprocess_split (#2293).

  * Add `MatType` parameter to `LSHSearch`, allowing sparse matrices to be used
    for search (#2395).

  * Documentation fixes to resolve Doxygen warnings and issues (#2400).

  * Add Load and Save of Sparse Matrix (#2344).

  * Add Intersection over Union (IoU) metric for bounding boxes (#2402).

  * Add Non Maximal Supression (NMS) metric for bounding boxes (#2410).

  * Fix `no_intercept` and probability computation for linear SVM bindings
    (#2419).

  * Fix incorrect neighbors for `k > 1` searches in `approx_kfn` binding, for
    the `QDAFN` algorithm (#2448).

  * Fix serialization of kernels with state for FastMKS (#2452).

  * Add `RBF` layer in ann module to make `RBFN` architecture (#2261).

## mlpack 3.3.1

_2020-04-29_

  * Minor Julia and Python documentation fixes (#2373).

  * Updated terminal state and fixed bugs for Pendulum environment (#2354,
    #2369).

  * Added `EliSH` activation function (#2323).

  * Add L1 Loss function (#2203).

  * Pass CMAKE_CXX_FLAGS (compilation options) correctly to Python build
    (#2367).

  * Expose ensmallen Callbacks for sparseautoencoder (#2198).

  * Bugfix for LARS class causing invalid read (#2374).

  * Add serialization support from Julia; use `mlpack.serialize()` and
    `mlpack.deserialize()` to save and load from `IOBuffer`s.

## mlpack 3.3.0

_2020-04-07_

  * Added `Normal Distribution` to `ann/dists` (#2382).

  * Templated return type of `Forward function` of loss functions (#2339).

  * Added `R2 Score` regression metric (#2323).

  * Added `poisson negative log likelihood` loss function (#2196).

  * Added `huber` loss function (#2199).

  * Added `mean squared logarithmic error` loss function for neural networks
    (#2210).

  * Added `mean bias loss function` for neural networks (#2210).

  * The DecisionStump class has been marked deprecated; use the `DecisionTree`
    class with `NoRecursion=true` or use `ID3DecisionStump` instead (#2099).

  * Added `probabilities_file` parameter to get the probabilities matrix of
    AdaBoost classifier (#2050).

  * Fix STB header search paths (#2104).

  * Add `DISABLE_DOWNLOADS` CMake configuration option (#2104).

  * Add padding layer in TransposedConvolutionLayer (#2082).

  * Fix pkgconfig generation on non-Linux systems (#2101).

  * Use log-space to represent HMM initial state and transition probabilities
    (#2081).

  * Add functions to access parameters of `Convolution` and `AtrousConvolution`
    layers (#1985).

  * Add Compute Error function in lars regression and changing Train function to
    return computed error (#2139).

  * Add Julia bindings (#1949).  Build settings can be controlled with the
    `BUILD_JULIA_BINDINGS=(ON/OFF)` and `JULIA_EXECUTABLE=/path/to/julia` CMake
    parameters.

  * CMake fix for finding STB include directory (#2145).

  * Add bindings for loading and saving images (#2019); `mlpack_image_converter`
    from the command-line, `mlpack.image_converter()` from Python.

  * Add normalization support for CF binding (#2136).

  * Add Mish activation function (#2158).

  * Update `init_rules` in AMF to allow users to merge two initialization
    rules (#2151).

  * Add GELU activation function (#2183).

  * Better error handling of eigendecompositions and Cholesky decompositions
    (#2088, #1840).

  * Add LiSHT activation function (#2182).

  * Add Valid and Same Padding for Transposed Convolution layer (#2163).

  * Add CELU activation function (#2191)

  * Add Log-Hyperbolic-Cosine Loss function (#2207).

  * Change neural network types to avoid unnecessary use of rvalue references
    (#2259).

  * Bump minimum Boost version to 1.58 (#2305).

  * Refactor STB support so `HAS_STB` macro is not needed when compiling against
    mlpack (#2312).

  * Add Hard Shrink Activation Function (#2186).

  * Add Soft Shrink Activation Function (#2174).

  * Add Hinge Embedding Loss Function (#2229).

  * Add Cosine Embedding Loss Function (#2209).

  * Add Margin Ranking Loss Function (#2264).

  * Bugfix for incorrect parameter vector sizes in logistic regression and
    softmax regression (#2359).

## mlpack 3.2.2

_2019-11-26_

  * Add `valid` and `same` padding option in `Convolution` and `Atrous
    Convolution` layer (#1988).

  * Add Model() to the FFN class to access individual layers (#2043).

  * Update documentation for pip and conda installation packages (#2044).

  * Add bindings for linear SVM (#1935); `mlpack_linear_svm` from the
    command-line, `linear_svm()` from Python.

  * Add support to return the layer name as `std::string` (#1987).

  * Speed and memory improvements for the Transposed Convolution layer (#1493).

  * Fix Windows Python build configuration (#1885).

  * Validate md5 of STB library after download (#2087).

  * Add `__version__` to `__init__.py` (#2092).

  * Correctly handle RNN sequences that are shorter than the value of rho (#2102).

## mlpack 3.2.1

_2019-10-01_

  * Enforce CMake version check for ensmallen (#2032).

  * Fix CMake check for Armadillo version (#2029).

  * Better handling of when STB is not installed (#2033).

  * Fix Naive Bayes classifier computations in high dimensions (#2022).

## mlpack 3.2.0

_2019-09-25_

  * Fix some potential infinity errors in Naive Bayes Classifier (#2022).

  * Fix occasionally-failing RADICAL test (#1924).

  * Fix gcc 9 OpenMP compilation issue (#1970).

  * Added support for loading and saving of images (#1903).

  * Add Multiple Pole Balancing Environment (#1901, #1951).

  * Added functionality for scaling of data (#1876); see the command-line
    binding `mlpack_preprocess_scale` or Python binding `preprocess_scale()`.

  * Add new parameter `maximum_depth` to decision tree and random forest
    bindings (#1916).

  * Fix prediction output of softmax regression when test set accuracy is
    calculated (#1922).

  * Pendulum environment now checks for termination. All RL environments now
    have an option to terminate after a set number of time steps (no limit
    by default) (#1941).

  * Add support for probabilistic KDE (kernel density estimation) error bounds
    when using the Gaussian kernel (#1934).

  * Fix negative distances for cover tree computation (#1979).

  * Fix cover tree building when all pairwise distances are 0 (#1986).

  * Improve KDE pruning by reclaiming not used error tolerance (#1954, #1984).

  * Optimizations for sparse matrix accesses in z-score normalization for CF
    (#1989).

  * Add `kmeans_max_iterations` option to GMM training binding `gmm_train_main`.

  * Bump minimum Armadillo version to 8.400.0 due to ensmallen dependency
    requirement (#2015).

## mlpack 3.1.1

_2019-05-26_

  * Fix random forest bug for numerical-only data (#1887).

  * Significant speedups for random forest (#1887).

  * Random forest now has `minimum_gain_split` and `subspace_dim` parameters
    (#1887).

  * Decision tree parameter `print_training_error` deprecated in favor of
    `print_training_accuracy`.

  * `output` option changed to `predictions` for adaboost and perceptron
    binding. Old options are now deprecated and will be preserved until mlpack
    4.0.0 (#1882).

  * Concatenated ReLU layer (#1843).

  * Accelerate NormalizeLabels function using hashing instead of linear search
    (see `src/mlpack/core/data/normalize_labels_impl.hpp`) (#1780).

  * Add `ConfusionMatrix()` function for checking performance of classifiers
    (#1798).

  * Install ensmallen headers when it is downloaded during build (#1900).

## mlpack 3.1.0

_2019-04-25_

  * Add DiagonalGaussianDistribution and DiagonalGMM classes to speed up the
    diagonal covariance computation and deprecate DiagonalConstraint (#1666).

  * Add kernel density estimation (KDE) implementation with bindings to other
    languages (#1301).

  * Where relevant, all models with a `Train()` method now return a `double`
    value representing the goodness of fit (i.e. final objective value, error,
    etc.) (#1678).

  * Add implementation for linear support vector machine (see
    `src/mlpack/methods/linear_svm`).

  * Change DBSCAN to use PointSelectionPolicy and add OrderedPointSelection (#1625).

  * Residual block support (#1594).

  * Bidirectional RNN (#1626).

  * Dice loss layer (#1674, #1714) and hard sigmoid layer (#1776).

  * `output` option changed to `predictions` and `output_probabilities` to
    `probabilities` for Naive Bayes binding (`mlpack_nbc`/`nbc()`).  Old options
    are now deprecated and will be preserved until mlpack 4.0.0 (#1616).

  * Add support for Diagonal GMMs to HMM code (#1658, #1666).  This can provide
    large speedup when a diagonal GMM is acceptable as an emission probability
    distribution.

  * Python binding improvements: check parameter type (#1717), avoid copying
    Pandas dataframes (#1711), handle Pandas Series objects (#1700).

## mlpack 3.0.4

_2018-11-13_

  * Bump minimum CMake version to 3.3.2.

  * CMake fixes for Ninja generator by Marc Espie.

## mlpack 3.0.3

_2018-07-27_

  * Fix Visual Studio compilation issue (#1443).

  * Allow running local_coordinate_coding binding with no initial_dictionary
    parameter when input_model is not specified (#1457).

  * Make use of OpenMP optional via the CMake 'USE_OPENMP' configuration
    variable (#1474).

  * Accelerate FNN training by 20-30% by avoiding redundant calculations
    (#1467).

  * Fix math::RandomSeed() usage in tests (#1462, #1440).

  * Generate better Python setup.py with documentation (#1460).

## mlpack 3.0.2

_2018-06-08_

  * Documentation generation fixes for Python bindings (#1421).

  * Fix build error for man pages if command-line bindings are not being built
    (#1424).

  * Add 'shuffle' parameter and Shuffle() method to KFoldCV (#1412).  This will
    shuffle the data when the object is constructed, or when Shuffle() is
    called.

  * Added neural network layers: AtrousConvolution (#1390), Embedding (#1401),
    and LayerNorm (layer normalization) (#1389).

  * Add Pendulum environment for reinforcement learning (#1388) and update
    Mountain Car environment (#1394).

## mlpack 3.0.1

_2018-05-10_

  * Fix intermittently failing tests (#1387).

  * Add big-batch SGD (BBSGD) optimizer in
    src/mlpack/core/optimizers/bigbatch_sgd/ (#1131).

  * Fix simple compiler warnings (#1380, #1373).

  * Simplify NeighborSearch constructor and Train() overloads (#1378).

  * Add warning for OpenMP setting differences (#1358/#1382).  When mlpack is
    compiled with OpenMP but another application is not (or vice versa), a
    compilation warning will now be issued.

  * Restructured loss functions in src/mlpack/methods/ann/ (#1365).

  * Add environments for reinforcement learning tests (#1368, #1370, #1329).

  * Allow single outputs for multiple timestep inputs for recurrent neural
    networks (#1348).

  * Add He and LeCun normal initializations for neural networks (#1342).
    Neural networks: add He and LeCun normal initializations (#1342), add FReLU
    and SELU activation functions (#1346, #1341), add alpha-dropout (#1349).

## mlpack 3.0.0

_2018-03-30_

  * Speed and memory improvements for DBSCAN.  --single_mode can now be used for
    situations where previously RAM usage was too high.

  * Bump minimum required version of Armadillo to 6.500.0.

  * Add automatically generated Python bindings.  These have the same interface
    as the command-line programs.

  * Add deep learning infrastructure in src/mlpack/methods/ann/.

  * Add reinforcement learning infrastructure in
    src/mlpack/methods/reinforcement_learning/.

  * Add optimizers: AdaGrad, CMAES, CNE, FrankeWolfe, GradientDescent,
    GridSearch, IQN, Katyusha, LineSearch, ParallelSGD, SARAH, SCD, SGDR,
    SMORMS3, SPALeRA, SVRG.

  * Add hyperparameter tuning infrastructure and cross-validation infrastructure
    in src/mlpack/core/cv/ and src/mlpack/core/hpt/.

  * Fix bug in mean shift.

  * Add random forests (see src/mlpack/methods/random_forest).

  * Numerous other bugfixes and testing improvements.

  * Add randomized Krylov SVD and Block Krylov SVD.

## mlpack 2.2.5

_2017-08-25_

  * Compilation fix for some systems (#1082).

  * Fix PARAM_INT_OUT() (#1100).

## mlpack 2.2.4

_2017-07-18_

  * Speed and memory improvements for DBSCAN. --single_mode can now be used for
    situations where previously RAM usage was too high.

  * Fix bug in CF causing incorrect recommendations.

## mlpack 2.2.3

_2017-05-24_

  * Bug fix for --predictions_file in mlpack_decision_tree program.

## mlpack 2.2.2

_2017-05-04_

  * Install backwards-compatibility mlpack_allknn and mlpack_allkfn programs;
    note they are deprecated and will be removed in mlpack 3.0.0 (#992).

  * Fix RStarTree bug that surfaced on OS X only (#964).

  * Small fixes for MiniBatchSGD and SGD and tests.

## mlpack 2.2.1

_2017-04-13_

  * Compilation fix for mlpack_nca and mlpack_test on older Armadillo versions
    (#984).

## mlpack 2.2.0

_2017-03-21_

  * Bugfix for mlpack_knn program (#816).

  * Add decision tree implementation in methods/decision_tree/.  This is very
    similar to a C4.5 tree learner.

  * Add DBSCAN implementation in methods/dbscan/.

  * Add support for multidimensional discrete distributions (#810, #830).

  * Better output for Log::Debug/Log::Info/Log::Warn/Log::Fatal for Armadillo
    objects (#895, #928).

  * Refactor categorical CSV loading with boost::spirit for faster loading
    (#681).

## mlpack 2.1.1

_2016-12-22_

  * HMMs now use random initialization; this should fix some convergence issues
    (#828).

  * HMMs now initialize emissions according to the distribution of observations
    (#833).

  * Minor fix for formatted output (#814).

  * Fix DecisionStump to properly work with any input type.

## mlpack 2.1.0

_2016-10-31_

  * Fixed CoverTree to properly handle single-point datasets.

  * Fixed a bug in CosineTree (and thus QUIC-SVD) that caused split failures for
    some datasets (#717).

  * Added mlpack_preprocess_describe program, which can be used to print
    statistics on a given dataset (#742).

  * Fix prioritized recursion for k-furthest-neighbor search (mlpack_kfn and the
    KFN class), leading to orders-of-magnitude speedups in some cases.

  * Bump minimum required version of Armadillo to 4.200.0.

  * Added simple Gradient Descent optimizer, found in
    src/mlpack/core/optimizers/gradient_descent/ (#792).

  * Added approximate furthest neighbor search algorithms QDAFN and
    DrusillaSelect in src/mlpack/methods/approx_kfn/, with command-line program
    mlpack_approx_kfn.

## mlpack 2.0.3

_2016-07-21_

  * Added multiprobe LSH (#691).  The parameter 'T' to LSHSearch::Search() can
    now be used to control the number of extra bins that are probed, as can the
    -T (--num_probes) option to mlpack_lsh.

  * Added the Hilbert R tree to src/mlpack/core/tree/rectangle_tree/ (#664).  It
    can be used as the typedef HilbertRTree, and it is now an option in the
    mlpack_knn, mlpack_kfn, mlpack_range_search, and mlpack_krann command-line
    programs.

  * Added the mlpack_preprocess_split and mlpack_preprocess_binarize programs,
    which can be used for preprocessing code (#650, #666).

  * Added OpenMP support to LSHSearch and mlpack_lsh (#700).

## mlpack 2.0.2

_2016-06-20_

  * Added the function LSHSearch::Projections(), which returns an arma::cube
    with each projection table in a slice (#663).  Instead of Projection(i), you
    should now use Projections().slice(i).

  * A new constructor has been added to LSHSearch that creates objects using
    projection tables provided in an arma::cube (#663).

  * Handle zero-variance dimensions in DET (#515).

  * Add MiniBatchSGD optimizer (src/mlpack/core/optimizers/minibatch_sgd/) and
    allow its use in mlpack_logistic_regression and mlpack_nca programs.

  * Add better backtrace support from Grzegorz Krajewski for Log::Fatal messages
    when compiled with debugging and profiling symbols.  This requires libbfd
    and libdl to be present during compilation.

  * CosineTree test fix from Mikhail Lozhnikov (#358).

  * Fixed HMM initial state estimation (#600).

  * Changed versioning macros __MLPACK_VERSION_MAJOR, __MLPACK_VERSION_MINOR,
    and __MLPACK_VERSION_PATCH to MLPACK_VERSION_MAJOR, MLPACK_VERSION_MINOR,
    and MLPACK_VERSION_PATCH.  The old names will remain in place until
    mlpack 3.0.0.

  * Renamed mlpack_allknn, mlpack_allkfn, and mlpack_allkrann to mlpack_knn,
    mlpack_kfn, and mlpack_krann.  The mlpack_allknn, mlpack_allkfn, and
    mlpack_allkrann programs will remain as copies until mlpack 3.0.0.

  * Add --random_initialization option to mlpack_hmm_train, for use when no
    labels are provided.

  * Add --kill_empty_clusters option to mlpack_kmeans and KillEmptyClusters
    policy for the KMeans class (#595, #596).

## mlpack 2.0.1

_2016-02-04_

  * Fix CMake to properly detect when MKL is being used with Armadillo.

  * Minor parameter handling fixes to mlpack_logistic_regression (#504, #505).

  * Properly install arma_config.hpp.

  * Memory handling fixes for Hoeffding tree code.

  * Add functions that allow changing training-time parameters to HoeffdingTree
    class.

  * Fix infinite loop in sparse coding test.

  * Documentation spelling fixes (#501).

  * Properly handle covariances for Gaussians with large condition number
    (#496), preventing GMMs from filling with NaNs during training (and also
    HMMs that use GMMs).

  * CMake fixes for finding LAPACK and BLAS as Armadillo dependencies when ATLAS
    is used.

  * CMake fix for projects using mlpack's CMake configuration from elsewhere
    (#512).

## mlpack 2.0.0

_2015-12-24_

  * Removed overclustering support from k-means because it is not well-tested,
    may be buggy, and is (I think) unused.  If this was support you were using,
    open a bug or get in touch with us; it would not be hard for us to
    reimplement it.

  * Refactored KMeans to allow different types of Lloyd iterations.

  * Added implementations of k-means: Elkan's algorithm, Hamerly's algorithm,
    Pelleg-Moore's algorithm, and the DTNN (dual-tree nearest neighbor)
    algorithm.

  * Significant acceleration of LRSDP via the use of accu(a % b) instead of
    trace(a * b).

  * Added MatrixCompletion class (matrix_completion), which performs nuclear
    norm minimization to fill unknown values of an input matrix.

  * No more dependence on Boost.Random; now we use C++11 STL random support.

  * Add softmax regression, contributed by Siddharth Agrawal and QiaoAn Chen.

  * Changed NeighborSearch, RangeSearch, FastMKS, LSH, and RASearch API; these
    classes now take the query sets in the Search() method, instead of in the
    constructor.

  * Use OpenMP, if available.  For now OpenMP support is only available in the
    DET training code.

  * Add support for predicting new test point values to LARS and the
    command-line `lars` program.

  * Add serialization support for `Perceptron` and `LogisticRegression`.

  * Refactor SoftmaxRegression to predict into an `arma::Row<size_t>` object,
    and add a `softmax_regression` program.

  * Refactor LSH to allow loading and saving of models.

  * ToString() is removed entirely (#487).

  * Add `--input_model_file` and `--output_model_file` options to appropriate
    machine learning algorithms.

  * Rename all executables to start with an "mlpack" prefix (#229).

  * Add HoeffdingTree and `mlpack_hoeffding_tree`, an implementation of the
    streaming decision tree methodology from Domingos and Hulten in 2000.

## mlpack 1.0.12

_2015-01-07_

  * Switch to 3-clause BSD license (from LGPL).

## mlpack 1.0.11

_2014-12-11_

  * Proper handling of dimension calculation in PCA.

  * Load parameter vectors properly for LinearRegression models.

  * Linker fixes for AugLagrangian specializations under Visual Studio.

  * Add support for observation weights to LinearRegression.

  * `MahalanobisDistance<>` now takes the root of the distance by default and
    therefore satisfies the triangle inequality (TakeRoot now defaults to true).

  * Better handling of optional Armadillo HDF5 dependency.

  * Fixes for numerous intermittent test failures.

  * math::RandomSeed() now sets the random seed for recent (>=3.930) Armadillo
    versions.

  * Handle Newton method convergence better for
    SparseCoding::OptimizeDictionary() and make maximum iterations a parameter.

  * Known bug: CosineTree construction may fail in some cases on i386 systems
    (#358).

## mlpack 1.0.10

_2014-08-29_

  * Bugfix for NeighborSearch regression which caused very slow allknn/allkfn.
    Speeds are now restored to approximately 1.0.8 speeds, with significant
    improvement for the cover tree (#347).

  * Detect dependencies correctly when ARMA_USE_WRAPPER is not being defined
    (i.e., libarmadillo.so does not exist).

  * Bugfix for compilation under Visual Studio (#348).

## mlpack 1.0.9

_2014-07-28_

  * GMM initialization is now safer and provides a working GMM when constructed
    with only the dimensionality and number of Gaussians (#301).

  * Check for division by 0 in Forward-Backward Algorithm in HMMs (#301).

  * Fix MaxVarianceNewCluster (used when re-initializing clusters for k-means)
    (#301).

  * Fixed implementation of Viterbi algorithm in HMM::Predict() (#303).

  * Significant speedups for dual-tree algorithms using the cover tree (#235,
    #314) including a faster implementation of FastMKS.

  * Fix for LRSDP optimizer so that it compiles and can be used (#312).

  * CF (collaborative filtering) now expects users and items to be zero-indexed,
    not one-indexed (#311).

  * CF::GetRecommendations() API change: now requires the number of
    recommendations as the first parameter.  The number of users in the local
    neighborhood should be specified with CF::NumUsersForSimilarity().

  * Removed incorrect PeriodicHRectBound (#58).

  * Refactor LRSDP into LRSDP class and standalone function to be optimized
    (#305).

  * Fix for centering in kernel PCA (#337).

  * Added simulated annealing (SA) optimizer, contributed by Zhihao Lou.

  * HMMs now support initial state probabilities; these can be set in the
    constructor, trained, or set manually with HMM::Initial() (#302).

  * Added Nyström method for kernel matrix approximation by Marcus Edel.

  * Kernel PCA now supports using Nyström method for approximation.

  * Ball trees now work with dual-tree algorithms, via the BallBound<> bound
    structure (#307); fixed by Yash Vadalia.

  * The NMF class is now AMF<>, and supports far more types of factorizations,
    by Sumedh Ghaisas.

  * A QUIC-SVD implementation has returned, written by Siddharth Agrawal and
    based on older code from Mudit Gupta.

  * Added perceptron and decision stump by Udit Saxena (these are weak learners
    for an eventual AdaBoost class).

  * Sparse autoencoder added by Siddharth Agrawal.

## mlpack 1.0.8

_2014-01-06_

  * Memory leak in NeighborSearch index-mapping code fixed (#298).

  * GMMs can be trained using the existing model as a starting point by
    specifying an additional boolean parameter to GMM::Estimate() (#296).

  * Logistic regression implementation added in methods/logistic_regression (see
    also #293).

  * L-BFGS optimizer now returns its function via Function().

  * Version information is now obtainable via mlpack::util::GetVersion() or the
    __MLPACK_VERSION_MAJOR, __MLPACK_VERSION_MINOR, and  __MLPACK_VERSION_PATCH
    macros (#297).

  * Fix typos in allkfn and allkrann output.

## mlpack 1.0.7

_2013-10-04_

  * Cover tree support for range search (range_search), rank-approximate nearest
    neighbors (allkrann), minimum spanning tree calculation (emst), and FastMKS
    (fastmks).

  * Dual-tree FastMKS implementation added and tested.

  * Added collaborative filtering package (cf) that can provide recommendations
    when given users and items.

  * Fix for correctness of Kernel PCA (kernel_pca) (#270).

  * Speedups for PCA and Kernel PCA (#198).

  * Fix for correctness of Neighborhood Components Analysis (NCA) (#279).

  * Minor speedups for dual-tree algorithms.

  * Fix for Naive Bayes Classifier (nbc) (#269).

  * Added a ridge regression option to LinearRegression (linear_regression)
    (#286).

  * Gaussian Mixture Models (gmm::GMM<>) now support arbitrary covariance matrix
    constraints (#283).

  * MVU (mvu) removed because it is known to not work (#183).

  * Minor updates and fixes for kernels (in mlpack::kernel).

## mlpack 1.0.6

_2013-06-13_

  * Minor bugfix so that FastMKS gets built.

## mlpack 1.0.5

_2013-05-01_

  * Speedups of cover tree traversers (#235).

  * Addition of rank-approximate nearest neighbors (RANN), found in
    src/mlpack/methods/rann/.

  * Addition of fast exact max-kernel search (FastMKS), found in
    src/mlpack/methods/fastmks/.

  * Fix for EM covariance estimation; this should improve GMM training time.

  * More parameters for GMM estimation.

  * Force GMM and GaussianDistribution covariance matrices to be positive
    definite, so that training converges much more often.

  * Add parameter for the tolerance of the Baum-Welch algorithm for HMM
    training.

  * Fix for compilation with clang compiler.

  * Fix for k-furthest-neighbor-search.

## mlpack 1.0.4

_2013-02-08_

  * Force minimum Armadillo version to 2.4.2.

  * Better output of class types to streams; a class with a ToString() method
    implemented can be sent to a stream with operator<<.

  * Change return type of GMM::Estimate() to double (#257).

  * Style fixes for k-means and RADICAL.

  * Handle size_t support correctly with Armadillo 3.6.2 (#258).

  * Add locality-sensitive hashing (LSH), found in src/mlpack/methods/lsh/.

  * Better tests for SGD (stochastic gradient descent) and NCA (neighborhood
    components analysis).

## mlpack 1.0.3

_2012-09-16_

  * Remove internal sparse matrix support because Armadillo 3.4.0 now includes
    it.  When using Armadillo versions older than 3.4.0, sparse matrix support
    is not available.

  * NCA (neighborhood components analysis) now support an arbitrary optimizer
    (#245), including stochastic gradient descent (#249).

## mlpack 1.0.2

_2012-08-15_

  * Added density estimation trees, found in src/mlpack/methods/det/.

  * Added non-negative matrix factorization, found in src/mlpack/methods/nmf/.

  * Added experimental cover tree implementation, found in
    src/mlpack/core/tree/cover_tree/ (#157).

  * Better reporting of boost::program_options errors (#225).

  * Fix for timers on Windows (#212, #211).

  * Fix for allknn and allkfn output (#204).

  * Sparse coding dictionary initialization is now a template parameter (#220).

## mlpack 1.0.1

_2012-03-03_

  * Added kernel principal components analysis (kernel PCA), found in
    src/mlpack/methods/kernel_pca/ (#74).

  * Fix for Lovasz-Theta AugLagrangian tests (#182).

  * Fixes for allknn output (#185, #186).

  * Added range search executable (#192).

  * Adapted citations in documentation to BibTeX; no citations in -h output
    (#195).

  * Stop use of 'const char*' and prefer 'std::string' (#176).

  * Support seeds for random numbers (#177).

## mlpack 1.0.0

_2011-12-17_

  * Initial release.  See any resolved tickets numbered less than #196 or
    execute this query:
    http://www.mlpack.org/trac/query?status=closed&milestone=mlpack+1.0.0