File: math.md

package info (click to toggle)
mlpack 4.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 31,272 kB
  • sloc: cpp: 226,039; python: 1,934; sh: 1,198; lisp: 414; makefile: 85
file content (802 lines) | stat: -rw-r--r-- 29,868 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
# Core math utilities

mlpack provides a number of mathematical utility classes and functions on top of
Armadillo.

 * [Aliases](#aliases): utilities to create and manage aliases (`MakeAlias()`,
   `ClearAlias()`, `UnwrapAlias()`).

 * [`Range`](#range): simple mathematical range (i.e. `[0, 3]`)

 * [`ColumnCovariance()`](#columncovariance): compute covariance of
   [column-major](../matrices.md#representing-data-in-mlpack) data

 * [`ColumnsToBlocks`](#columnstoblocks): reshape data points into a block
   matrix for visualization (useful for images)

 * [Distribution utilities](#distribution-utilities): `Digamma()`, `Trigamma()`

 * [`RandVector()`](#randvector): generate random vector on the unit sphere
   using the Box-Muller transform

 * [Logarithmic utilities](#logarithmic-utilities): `LogAdd()`, `AccuLog()`,
   `LogSumExp()`, `LogSumExpT()`.

 * [`MultiplyCube2Cube()`](#multiplycube2cube): multiply each slice in a cube by each slice in another cube
 * [`MultiplyMat2Cube()`](#multiplymat2cube): multiply a matrix by each slice in a cube
 * [`MultiplyCube2Mat()`](#multiplycube2mat): multiply each slice in a cube by a matrix
 * [`Quantile()`](#quantile): compute the quantile function of the Gaussian
   distribution

 * [RNG and random number utilities](#rng-and-random-number-utilities): extended
   scalar random number generation functions
 * [`RandomBasis()`](#randombasis): generate a random orthogonal basis
 * [`ShuffleData()`](#shuffledata): shuffle a dataset and associated labels

---

## Aliases

Aliases are matrix, vector, or cube objects that share memory with another
matrix, vector, or cube.  They are often used internally inside of mlpack to
avoid copies.

***Important caveats about aliases***:

 - An alias represents the same memory block as the input.  As such, changes to
   the alias object will also be reflected in the original object.

 - The `MakeAlias()` function is not guaranteed to return an alias; it only
   returns an alias *if possible*, and makes a copy otherwise.

 - If `mat` goes out of scope or is destructed, then `a` ***becomes invalid***.
   _You are responsible for ensuring an invalid alias is not used!_

---

 * `MakeAlias(a, vector, rows, cols, offset=0, strict=true)`
   - Make `a` into an alias of `vector` with the given size.
   - If `offset` is `0`, then the alias is identical: the first element of
     `a` is the first element of `vector`. Otherwise, the first element of `a`
     is the `offset`'th element of `vector`.
   - If `strict` is `true`, the size of `a` cannot be changed.
   - `vector` and `a` should have the same vector type (e.g. `arma::vec`,
     `arma::fvec`).
   - If an alias cannot be created, the vector will be copied.

 * `MakeAlias(a, mat, rows, cols, offset=0, strict=true)`
   - Make `a` into an alias of `mat` with the given size.
   - If `offset` is `0`, then the alias is identical: the first element of
     `a` is the first element of `mat`. Otherwise, the first element of `a`
     is the `offset`'th element of `mat`; elements in `mat` are ordered in
     a [column-major way](../matrices.md#representing-data-in-mlpack).
   - If `strict` is `true`, the size of `a` cannot be changed.
   - `mat` and `a` should have the same matrix type (e.g. `arma::mat`,
     `arma::fmat`, `arma::sp_mat`).
   - If an alias cannot be created, the matrix will be copied.  Sparse types
     cannot have aliases and will be copied.

 * `MakeAlias(a, cube, rows, cols, slices, offset=0, strict=true)`
   - Make `a` into an alias of `cube` with the given size.
   - If `offset` is `0`, then the alias is identical: the first element of
     `a` is the first element of `cube`. Otherwise, the first element of `a`
     is the `offset`'th element of `cube`; elements in `cube` are ordered in
     a [column-major way](../matrices.md#representing-data-in-mlpack).
   - If `strict` is `true`, the size of `a` cannot be changed.
   - `cube` and `a` should have the same cube type (e.g. `arma::cube`,
     `arma::fcube`).
   - If an alias cannot be created, the cube will be copied.

---

 * `ClearAlias(a)`
   - If `a` is an alias, reset `a` to an empty matrix, without modifying the
     aliased memory.  `a` is no longer an alias after this call.

---

 * `UnwrapAlias(a, in)`
   - If `in` is a matrix type (e.g. `arma::mat`), make `a` into an alias of
     `in`.
   - If `in` is not a matrix type, but instead, e.g., an Armadillo expression,
     fill `a` with the results of the evaluated expression `in`.
   - This can be used in place of, e.g., `a = in`, to avoid a copy when
     possible.
   - `a` should be a matrix type that matches the type of the expression or
     matrix `in`.

## `Range`

The `Range` class represents a simple mathematical range (i.e. `[0, 3]`),
with the bounds represented as `double`s.

### Constructors

 * `r = Range()`
   - Construct an empty range.

 * `r = Range(p)`
   - Construct the range `[p, p]`.

 * `r = Range(lo, hi)`
   - Construct the range `[lo, hi]`.

### Accessing and modifying range properties

 * `r.Lo()` and `r.Hi()` return the lower and upper bounds of the range as
   `double`s.
   - A range is considered empty if `r.Lo() > r.Hi()`.
   - These can be used to modify the bounds, e.g., `r.Lo() = 3.0`.

 * `r.Width()` returns the span of the range (i.e. `r.Hi() - r.Lo()`) as a
   `double`.

 * `r.Mid()` returns the midpoint of the range as a `double`.

### Working with ranges

 * Given two ranges `r1` and `r2`,
   - `r1 | r2` returns the union of the ranges,
   - `r1 |= r2` expands `r1` to include the range `r2`,
   - `r1 & r2` returns the intersection of the ranges (possibly an empty range),
   - `r1 &= r2` shrinks `r1` to the intersection of `r1` and `r2`,
   - `r1 == r2` returns `true` if the two ranges are strictly equal (i.e. lower
     and upper bounds are equal),
   - `r1 != r2` returns `true` if the two ranges are not strictly equal,
   - `r1 < r2` returns `true` if `r1.Hi() < r2.Lo()`,
   - `r1 > r2` returns `true` if `r1.Lo() > r2.Hi()`, and
   - `r1.Contains(r2)` returns `true` if the ranges overlap at all.

 * Given a range `r` and a `double` scalar `d`,
   - `r * d` returns a new range `[d * r.Lo(), d * r.Hi()]`,
   - `r *= d` scales `r.Lo()` and `r.Hi()` by `d`, and
   - `r.Contains(d)` returns `true` if `d` is contained in the range.

---

 * To use ranges with different element types (e.g. `float`), use the type
   `RangeType<float>` or similar.

### Usage example

```c++
mlpack::Range r1(5.0, 6.0); // [5, 6]
mlpack::Range r2(7.0, 8.0); // [7, 8]

mlpack::Range r3 = r1 | r2; // [5, 8]
mlpack::Range r4 = r1 & r2; // empty range

bool b1 = r1.Contains(r2); // false
bool b2 = r1.Contains(5.5); // true
bool b3 = r1.Contains(r3); // true
bool b4 = r3.Contains(r4); // false

// Create a range of `float`s and a range of `int`s.
mlpack::RangeType<float> r5(1.0f, 1.5f); // [1.0, 1.5]
mlpack::RangeType<int> r6(3, 4); // [3, 4]
```

---

`Range` is used by:

 * [`RangeSearch`](/src/mlpack/methods/range_search/range_search.hpp)
 * [mlpack trees](../../developer/trees.md) <!-- TODO: link to local trees section -->

## `ColumnCovariance()`

 * `ColumnCovariance(X, normType=0)`
   - `X`: a [column-major](../matrices.md#representing-data-in-mlpack) data
     matrix
   - `normType`: either `0` or `1` (see below)

 * Computes the covariance of the data matrix `X`.

 * Equivalent to `arma::cov(X.t(), normType)`, but avoids computing the
   transpose and is thus slightly more efficient.

 * `normType` controls the type of normalization done when computing the
   covariance:
   - `0` will normalize with `X.n_cols - 1`, providing the best unbiased
     estimation of the covariance matrix (if the columns are from a normal
     distribution);
   - `1` will normalize with `X.n_cols`, providing the second moment about the
     mean of the columns.

 * Any dense matrix type can be used so long as it supports the Armadillo API
   (e.g., `arma::mat`, `arma::fmat`, etc.).

Example:

```c++
// Generate a random data matrix with 100 points in 5 dimensions.
arma::mat data(5, 100, arma::fill::randu);

// Compute the covariance matrix of the column-major matrix.
arma::mat cov = mlpack::ColumnCovariance(data);
cov.print("Covariance of random matrix:");
```

## `ColumnsToBlocks`

The `ColumnsToBlocks` class provides a way to transform data points (e.g.
columns in a matrix) into a block matrix format, primarily useful for
visualization as an image.

As a simple example, given a matrix with four columns `A`, `B`, `C`, and `D`,
`ColumnsToBlocks` can transform this matrix into the form

```
[[m m m m m]
 [m A m B m]
 [m m m m m]
 [m C m D m]
 [m m m m m]]
```

where `m` is a margin, and where each column may itself be reshaped into a
block.

### Constructors

 * `ctb = ColumnsToBlocks(rows, cols)`
   - Create a `ColumnsToBlocks` object that will reshape the input matrix into
     blocks of shape `rows` by `cols`.
   - Each input column will be reshaped into a square (e.g. `ctb.BlockHeight()`
     and `ctb.BlockWidth()` are set to `0`).

 * `ctb = ColumnsToBlocks(rows, cols, blockHeight, blockWidth)`
   - Create a `ColumnsToBlocks` object that will reshape the input matrix into
     blocks of shape `rows` by `cols`.
   - Each individual column will also be reshaped into a block of shape
     `blockHeight` by `blockWidth`.

### Properties

 * `ctb.Rows(rows)` will set the number of rows in the block output to `rows`.
   - `ctb.Rows()` will return a `size_t` with the current setting.

 * `ctb.Cols(cols)` will set the number of columns in the block output to
   `cols`.
   - `ctb.Cols()` will return a `size_t` with the current setting.

 * `ctb.BlockHeight(blockHeight)` will set the number of rows in each individual
   block to `blockHeight`.
   - `ctb.BlockHeight()` will return a `size_t` with the current setting.
   - If `ctb.BlockHeight()` is `0`, each input column will be reshaped into a
     square; if this is not possible, an exception will be thrown.

 * `ctb.BlockWidth()` will set the number of columns in each individual block to
   `blockWidth`.
   - `ctb.BlockWidth()` will return a `size_t` with the current setting.
   - If `ctb.BlockWidth()` is `0`, each input column will be reshaped into a
     square; if this is not possible, an exception will be thrown.

 * `ctb.BufSize(bufSize)` will set the number of margin elements to `bufSize`.
   - `ctb.BufSize()` will return a `size_t` with the current setting.
   - The default setting is `1`.

 * `ctb.BufValue(bufValue)` will set the element used for margins to `bufValue`.
   - `ctb.BufValue()` will return a `size_t` with the current setting.
   - The default setting is `-1.0`.

### Scaling values

`ColumnsToBlocks` also has the capability of linearly scaling values of the
inputs to a given range.

 * `ctb.Scale(true)` enables scaling values.
   - By default scaling is disabled.
   - `ctb.Scale(false)` will disable scaling.
   - `ctb.Scale()` will return a `bool` indicating whether scaling is enabled.

 * `ctb.MinRange(value)` sets the lower bound of the scaling range to `value`.
   - `ctb.MinRange()` returns the current value as a `double`.

 * `ctb.MaxRange(value)` sets the upper bound of the scaling range to `value`.
   - `ctb.MaxRange()` returns the current value as a `double`.
   - Must be greater than `ctb.MinRange()`, if `ctb.Scale() == true`.

***Note:*** the margin element (`ctb.BufValue()`) is considered during the
scaling process.

### Transforming into block format

 * `ctb.Transform(input, output)` will perform the columns-to-blocks
   transformation on the given matrix `input`, storing the result in the matrix
   `output`.
   - An exception will be thrown if `input.n_rows` is not equal to
     `ctb.BlockHeight() * ctb.BlockWidth()` (if neither of those are `0`).
   - If either `ctb.BlockHeight()` or `ctb.BlockWidth()` is `0`, each column
     will be reshaped into a square, and an exception will be thrown if
     `input.n_rows` is not a perfect square (i.e. if `sqrt(input.n_rows)` is not
     an integer).

### Examples

Reshape two 4-element vectors into one row of two blocks.

```c++
// This matrix has two columns.
arma::mat input;
input = { { -1.0000, 0.1429 },
          { -0.7143, 0.4286 },
          { -0.4286, 0.7143 },
          { -0.1429, 1.0000 } };
input.print("Input columns:");

arma::mat output;
mlpack::ColumnsToBlocks ctb(1, 2);
ctb.Transform(input, output);

// The columns of the input will be reshaped as a square which is
// surrounded by padding value -1 (this value could be changed with the
// BufValue() method):
// -1.0000  -1.0000  -1.0000  -1.0000  -1.0000  -1.0000  -1.0000
// -1.0000  -1.0000  -0.4286  -1.0000   0.1429   0.7143  -1.0000
// -1.0000  -0.7143  -0.1429  -1.0000   0.4286   1.0000  -1.0000
// -1.0000  -1.0000  -1.0000  -1.0000  -1.0000  -1.0000  -1.0000
output.print("Output using 2x2 block size:");

// Now, let's change some parameters; let's have each input column output not
// as a square, but as a 4x1 vector.
ctb.BlockWidth(1);
ctb.BlockHeight(4);
ctb.Transform(input, output);

// The output here will be similar, but each maximal input is 4x1:
// -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
// -1.0000 -1.0000 -1.0000  0.1429 -1.0000
// -1.0000 -0.7143 -1.0000  0.4286 -1.0000
// -1.0000 -0.4286 -1.0000  0.7143 -1.0000
// -1.0000 -0.1429 -1.0000  1.0000 -1.0000
// -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
output.print("Output using 4x1 block size:");
```

---

Load simple images and reshape into blocks.

```c++
// Load some favicons from websites associated with mlpack.
std::vector<std::string> images;
// See the following files:
// - https://datasets.mlpack.org/images/mlpack-favicon.png
// - https://datasets.mlpack.org/images/ensmallen-favicon.png
// - https://datasets.mlpack.org/images/armadillo-favicon.png 
// - https://datasets.mlpack.org/images/bandicoot-favicon.png
images.push_back("mlpack-favicon.png");
images.push_back("ensmallen-favicon.png");
images.push_back("armadillo-favicon.png");
images.push_back("bandicoot-favicon.png");

mlpack::data::ImageInfo info;
info.Channels() = 1; // Force loading in grayscale.

arma::mat matrix;
mlpack::data::Load(images, matrix, info, true);

// Now `matrix` has 4 columns, each of which is an individual image.
// Let's save that as its own image just for visualization.
mlpack::data::ImageInfo outInfo(matrix.n_cols, matrix.n_rows, 1);
mlpack::data::Save("favicons-matrix.png", matrix, outInfo, true);

// Use ColumnsToBlocks to create a 2x2 block matrix holding each image.
mlpack::ColumnsToBlocks ctb(2, 2);
ctb.BufValue(0.0); // Use 0 for the margin value.
ctb.BufSize(2); // Use 2-pixel margins.

arma::mat blocks;
ctb.Transform(matrix, blocks);

mlpack::data::ImageInfo blockOutInfo(blocks.n_cols, blocks.n_rows, 1);
mlpack::data::Save("favicons-blocks.png", blocks, blockOutInfo, true);
```

The resulting images (before and after using `ColumnsToBlocks`) are shown below.

*Before*:

<center>
<img src="../../img/favicons-matrix.png" alt="four favicons each as a column in a matrix, unintelligible">
</center>

*After*:

<center>
<img src="../../img/favicons-blocks.png" alt="four favicons each as a block in a larger image, much better">
</center>

### See also

 * [Loading and saving image data](../load_save.md#image-data)
 * [`SparseAutoencoder`](/src/mlpack/methods/sparse_autoencoder/sparse_autoencoder.hpp)

## Distribution utilities

 * `Digamma(x)` returns the logarithmic derivative of the gamma function (see
   [Wikipedia](https://en.wikipedia.org/wiki/Digamma_function)).
    - `x` should have type `double`.
    - The return type is `double`.

 * `Trigamma(x)` returns the
   [trigamma function](https://en.wikipedia.org/wiki/Trigamma_function) at the
   value `x`.
    - `x` should have type `double`.
    - The return type is `double`.

 * Both of these functions are used internally by the
   [`GammaDistribution`](distributions.md#gammadistribution) class.

*Example*:

```
const double d1 = mlpack::Digamma(0.25);
const double d2 = mlpack::Digamma(1.0);

const double t1 = mlpack::Trigamma(0.25);
const double t2 = mlpack::Trigamma(1.0);

std::cout << "Digamma(0.25):  " << d1 << "." << std::endl;
std::cout << "Digamma(1.0):   " << d2 << "." << std::endl;
std::cout << "Trigamma(0.25): " << t1 << "." << std::endl;
std::cout << "Trigamma(1.0):  " << t2 << "." << std::endl;
```

## `RandVector()`

 * `RandVector(v)` generates a random vector on the unit sphere (i.e. with an
   L2-norm of 1) and stores it in the vector `v`.

 * `v` should be a dense floating-point Armadillo vector (e.g. `arma::vec` or
   `arma::fvec`).

 * The [Box-Muller transform](https://en.wikipedia.org/wiki/Box-Muller_transform)
   is used to generate the vector.

 * `v` is not resized, and should have size equal to the desired dimensionality
   when `RandVector()` is called.

*Example*:

```
// Generate a random 10-dimensional vector.
arma::vec v;
v.set_size(10);
RandVector(v);
v.print("Random 10-dimensional vector: ");

std::cout << "Random 10-dimensional vector: " << std::endl;
std::cout << v.t();
std::cout << "L2-norm of vector (should be 1): " << arma::norm(v, 2) << "."
    << std::endl;
```

## Logarithmic utilities

mlpack contains a few functions that are useful for working with logarithms, or
vectors containing logarithms.

 * `LogAdd(x, y)` for scalars `x` and `y` (e.g. `double`, `float`, `int`, etc.)
   will return `log(e^x + e^y)`.

 * `AccuLog(v)`, given a vector `v` containing log values, will return the
   scalar log-sum of those values:
   `log(e^(v[0]) + e^(v[1]) + ... + e^(v[v.n_elem - 1]))`.

---

 * `LogSumExp(m, out)`, given a matrix `m` (`arma::mat`) containing log values,
   will compute the scalar log-sum of each *column*, storing the result in the
   column vector `out` (type `arma::vec`).
   - `out` will be set to size `m.n_cols`.
   - `out[i]` will be equal to `AccuLog(m.col(i))`.
   - Different element types can be used for `m` and `out` (e.g. `arma::fmat`
     and `arma::fvec`).

 * `LogSumExpT(m, out)`, given a matrix `m` (type `arma::mat`) containing log
   values, will compute the scalar log-sum of each *row*, storing the result in
   the column vector `out` (type `arma::vec`)
   - `out` will be set to size `m.n_rows`.
   - `out[i]` will be equal to `AccuLog(m.row(i))`.
   - Different element types can be used for `m` and `out` (e.g. `arma::fmat`
     and `arma::fvec`).

---

 * `LogSumExp<eT, true>(m, out)` performs an incremental sum, otherwise
   identical to `LogSumExp()`.
   - The input values of `out` are not ignored.
   - `out[i]` will be equal to `log(e^(out[i]) + e^(AccuLog(m.col(i))))`.
   - `eT` represents the element type of `m` and `out` (e.g., `double` if `m` is
     `arma::mat` and `out` is `arma::vec`).

 * `LogSumExpT<eT, true>(m, out)` performs an incremental sum, otherwise
   identical to `LogSumExpT()`.
   - The input values of `out` are not ignored.
   - `out[i]` will be equal to `log(e^(out[i]) + e^(AccuLog(m.row(i))))`.
   - `eT` represents the element type of `m` and `out` (e.g., `double` if `m` is
     `arma::mat` and `out` is `arma::vec`).

## `MultiplyCube2Cube()`

 * `z = MultiplyCube2Cube(x, y, transX=false, transY=false)`
   - Inputs `x` and `y` are cubes (e.g. `arma::cube`), and must have the same
     number of slices
   - `z` is a cube whose slices are the slices of `x` and `y` multiplied
   - `transX` and `transY` indicate whether each slice of `x` and `y` should be
     transposed before multiplication.

 * If `transX` and `transY` are `false`, then
   `z.slice(i) = x.slice(i) * y.slice(i)`.

 * If `transX` is `false` and `transY` is `true`, then
   `z.slice(i) = x.slice(i) * y.slice(i).t()`.

 * The inner dimensions of `x` and `y` must match for multiplication, or an
   exception will be thrown.

*Example usage:*

```c++
// Generate two random cubes.
arma::cube x(10, 100, 5, arma::fill::randu); // 5 matrices, each 10x100.
arma::cube y(12, 100, 5, arma::fill::randu); // 5 matrices, each 12x100.

arma::cube z = mlpack::MultiplyCube2Cube(x, y, false, true);

// Output size should be 10x12x5.
std::cout << "Output size: " << z.n_rows << "x" << z.n_cols << "x" << z.n_slices
    << "." << std::endl;
```

## `MultiplyMat2Cube()`

 * `z = MultiplyMat2Cube(x, y, transX=false, transY=false)`
   - Input `x` is a matrix and `y` is a cube (e.g. `arma::cube`).
   - `z` is a cube whose slices are `x` multiplied by the slices of `y`.
   - `transX` and `transY` indicate whether `x` and each slice of `y` should be
     transposed before multiplication.

 * If `transX` and `transY` are `false`, then `z.slice(i) = x * y.slice(i)`.

 * If `transX` is `false` and `transY` is `true`, then
   `z.slice(i) = x * y.slice(i).t()`.

 * The inner dimensions of `x` and `y` must match for multiplication, or an
   exception will be thrown.

*Example usage:*

```c++
// Generate random inputs.
arma::mat  x(10, 100,    arma::fill::randu); // Random 10x100 matrix.
arma::cube y(12, 100, 5, arma::fill::randu); // 5 matrices, each 12x100.

arma::cube z = mlpack::MultiplyMat2Cube(x, y, false, true);

// Output size should be 10x12x5.
std::cout << "Output size: " << z.n_rows << "x" << z.n_cols << "x" << z.n_slices
    << "." << std::endl;
```

## `MultiplyCube2Mat()`

 * `z = MultiplyCube2Mat(x, y, transX=false, transY=false)`
   - Input `x` is a cube (e.g. `arma::cube`) and `y` is a matrix.
   - `z` is a cube whose slices are the slices of `x` multiplied with `y`.
   - `transX` and `transY` indicate whether each slice of `x` and `y` should be
     transposed before multiplication.

 * If `transX` and `transY` are `false`, then `z.slice(i) = x.slice(i) * y`.

 * If `transX` is `true` and `transY` is `false`, then
   `z.slice(i) = x.slice(i).t() * y`.

 * The inner dimensions of `x` and `y` must match for multiplication, or an
   exception will be thrown.

*Example usage:*

```c++
// Generate two random cubes.
arma::cube x(12, 50, 5, arma::fill::randu); // 5 matrices, each 12x50.
arma::mat  y(12, 60,    arma::fill::randu); // Random 12x60 matrix.

arma::cube z = mlpack::MultiplyCube2Mat(x, y, true, false);

// Output size should be 50x60x5.
std::cout << "Output size: " << z.n_rows << "x" << z.n_cols << "x" << z.n_slices
    << "." << std::endl;
```

## `Quantile()`

 * Compute the quantile function of the Gaussian distribution at the given
   probability.

 * `double q = Quantile(p, mu=0.0, sigma=1.0)`
   - `q` is the computed quantile.
   - `p` is the probability to compute the quantile of (between 0 and 1).
   - `mu` is the (optional) mean of the Gaussian distribution.
   - `sigma` is the (optional) standard deviation of the Gaussian distribution.
   - All arguments are `double`s.

 * See also [Quantile function on Wikipedia](https://en.wikipedia.org/wiki/Quantile_function).

*Example usage:*

```c++
// 70% of points from N(0, 1) are less than q1 = 0.524.
double q1 = mlpack::Quantile(0.7);

// 90% of points from N(0, 1) are less than q2 = 1.282.
double q2 = mlpack::Quantile(0.9);

// 50% of points from N(1, 1) are less than q3 = 1.0.
double q3 = mlpack::Quantile(0.5, 1.0); // Quantile of 1.0 for N(1, 1) is 1.0.

// 10% of points from N(1, 0.1) are less than q4 = 0.871.
double q4 = mlpack::Quantile(0.1, 1.0, 0.1);

std::cout << "Quantile(0.7): " << q1 << "." << std::endl;
std::cout << "Quantile(0.9): " << q2 << "." << std::endl;
std::cout << "Quantile(0.5, 1.0): " << q3 << "." << std::endl;
std::cout << "Quantile(0.1, 1.0, 0.1): " << q4 << "." << std::endl;
```

## RNG and random number utilities

On top of the random number generation support that Armadillo provides via
[randu()](https://arma.sourceforge.net/docs.html#randu),
[randn()](https://arma.sourceforge.net/docs.html#randn), and
[randi()](https://arma.sourceforge.net/docs.html#randi), mlpack provides
a few additional thread-safe random number generation functions for generating
random scalar values.

 * `RandomSeed(seed)` will set the random seed of mlpack's RNGs ***and***
   Armadillo's RNG to `seed`.
   - This internally calls `arma::arma_rng::set_seed()`.
   - In a multithreaded application, each thread's RNG will be deterministically
     set to a different value based on `seed`.

 * `Random()` returns a random `double` uniformly distributed between `0` and
   `1`, *not including 1*.

 * `Random(lo, hi)` returns a random `double` uniformly distributed between `lo`
   and `hi`, *not including `hi`*.

 * `RandBernoulli(p)` samples from a Bernoulli distribution with parameter `p`:
   with probability `p`, `1` is returned; with probability `1 - p`, `0` is
   returned.

 * `RandInt(hiExclusive)` returns a random `int` uniformly distributed in the
   range `[0, hiExclusive)`.

 * `RandInt(lo, hiExclusive)` returns a random `int` uniformly distributed in
   the range `[lo, hiExclusive)`.

 * `RandNormal()` returns a random `double` normally distributed with mean `0`
   and standard deviation `1`.

 * `RandNormal(mean, stddev)` returns a random `double` normally distributed
   with mean `mean` and standard deviation `stddev`.

*Examples*:

```c++
mlpack::RandomSeed(123); // Set a specific random seed.

const double r1 = mlpack::Random();             // In the range [0, 1).
const double r2 = mlpack::Random(3, 4);         // In the range [3, 4).
const double r3 = mlpack::RandBernoulli(0.25);  // P(1) = 0.25.
const int    r4 = mlpack::RandInt(10);          // In the range [0, 10).
const int    r5 = mlpack::RandInt(5, 10);       // In the range [5, 10).
const double r6 = mlpack::RandNormal();         // r6 ~ N(0, 1).
const double r7 = mlpack::RandNormal(2.0, 3.0); // r7 ~ N(2, 3).

std::cout << "Random():            " << r1 << "." << std::endl;
std::cout << "Random(3, 4):        " << r2 << "." << std::endl;
std::cout << "RandBernoulli(0.25): " << r3 << "." << std::endl;
std::cout << "RandInt(10):         " << r4 << "." << std::endl;
std::cout << "RandInt(5, 10):      " << r5 << "." << std::endl;
std::cout << "RandNormal():        " << r6 << "." << std::endl;
std::cout << "RandNormal(2, 3):    " << r7 << "." << std::endl;
```

## `RandomBasis()`

The `RandomBasis()` function generates a random d-dimensional orthogonal basis.

 * `RandomBasis(basis, d)` fills the matrix `basis` with `d` orthogonal vectors,
   each of dimension `d`.
   - `basis.col(i)` represents the `i`th basis vector.
   - `basis` will have size `d` rows by `d` cols.

 * The random basis is generated using the QR decomposition.

*Example*:

```c++
arma::mat basis;

// Generate a 10-dimensional random basis.
mlpack::RandomBasis(basis, 10);

// Each two vectors are orthogonal.
std::cout << "Dot product of basis vectors 2 and 4: "
    << arma::dot(basis.col(2), basis.col(4))
    << " (should be zero or very close!)." << std::endl;
```

## `ShuffleData()`

Shuffle a [column-major](../matrices.md#representing-data-in-mlpack) dataset and
associated labels/responses, optionally with weights.  This preserves the
connection of each data point to its label (and optionally its weight).

 * `ShuffleData(inputData, inputLabels, outputData, outputLabels)`
   - Randomly permute data points and labels from `inputData` and `inputLabels`
     into `outputData` and `outputLabels`.
   - `outputData` will be set to the same size as `inputData`.
   - `outputLabels` will be set to the same size as `inputLabels`.
   - `inputData` can be a dense matrix, a sparse matrix, or a cube, with any
     element type.  (That is, `inputData` may have type `arma::mat`,
     `arma::fmat`, `arma::sp_mat`, `arma::cube`, etc.)
   - `inputLabels` must be a dense vector type but may hold any element type
     (e.g.  `arma::Row<size_t>`, `arma::uvec`, `arma::vec`, etc.).
   - `outputData` must have the same type as `inputData`, and `outputLabels`
     must have the same type as `inputLabels`.

 * `ShuffleData(inputData, inputLabels, inputWeights, outputData, outputLabels, outputWeights)`
   - Identical to the previous overload, but also handles weights via
     `inputWeights` and `outputWeights`.
   - `inputWeights` must be a dense vector type but may hold any element type
     (e.g.  `arma::rowvec`, `arma::frowvec`, `arma::vec`, etc.)
   - `outputWeights` must have the same type as `inputWeights`.

***Note:*** when `inputData` is a cube (e.g. `arma::cube` or similar), the
columns of the cube will be shuffled.

*Example usage:*

```c++
// See https://datasets.mlpack.org/iris.csv.
arma::mat dataset;
mlpack::data::Load("iris.csv", dataset, true);
// See https://datasets.mlpack.org/iris.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("iris.labels.csv", labels, true);

// Now shuffle the points in the iris dataset.
arma::mat shuffledDataset;
arma::Row<size_t> shuffledLabels;
mlpack::ShuffleData(dataset, labels, shuffledDataset, shuffledLabels);

std::cout << "Before shuffling, the first point was: " << std::endl;
std::cout << "  " << dataset.col(0).t();
std::cout << "with label " << labels[0] << "." << std::endl;
std::cout << std::endl;
std::cout << "After shuffling, the first point is: " << std::endl;
std::cout << "  " << shuffledDataset.col(0).t();
std::cout << "with label " << shuffledLabels[0] << "." << std::endl;

// Generate random weights, then shuffle those also.
arma::rowvec weights(dataset.n_cols, arma::fill::randu);
arma::rowvec shuffledWeights;
mlpack::ShuffleData(dataset, labels, weights, shuffledDataset, shuffledLabels,
    shuffledWeights);

std::cout << std::endl << std::endl;
std::cout << "Before shuffling with weights, the first point was: "
    << std::endl;
std::cout << "  " << dataset.col(0).t();
std::cout << "with label " << labels[0] << " and weight " << weights[0] << "."
    << std::endl;
std::cout << std::endl;
std::cout << "After shuffling with weights, the first point is: " << std::endl;
std::cout << "  " << shuffledDataset.col(0).t();
std::cout << "with label " << shuffledLabels[0] << " and weight "
    << shuffledWeights[0] << "." << std::endl;
```