1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
|
<object data="../img/pipeline-top-1.svg" type="image/svg+xml" id="pipeline-top">
</object>
# Data loading and I/O
mlpack provides the `data::Load()` and `data::Save()` functions to load and save
[Armadillo matrices](matrices.md) (e.g. numeric and categorical datasets) and
any mlpack object via the [cereal](https://uscilab.github.io/cereal/)
serialization toolkit. A number of other utilities related to loading and
saving data and objects are also available.
* [Numeric data](#numeric-data)
* [Mixed categorical data](#mixed-categorical-data)
- [`data::DatasetInfo`](#datadatasetinfo)
- [Loading categorical data](#loading-categorical-data)
* [Image data](#image-data)
- [`data::ImageInfo`](#dataimageinfo)
- [Loading images](#loading-images)
* [mlpack objects](#mlpack-objects): load or save any mlpack object
* [Formats](#formats): supported formats for each load/save variant
## Numeric data
Numeric data or general numeric matrices can be loaded or saved with the
following functions.
- `data::Load(filename, matrix, fatal=false, transpose=true, format=FileType::AutoDetect)`
- `data::Save(filename, matrix, fatal=false, transpose=true, format=FileType::AutoDetect)`
* `filename` is a `std::string` with a path to the file to be loaded.
* By default the format is auto-detected based on the file extension, but can
be explicitly specified with `format`; see [Formats](#formats).
* `matrix` is an `arma::mat&`, `arma::Mat<size_t>&`, `arma::sp_mat&`, or
similar (e.g., a reference to an Armadillo object that data will be loaded
into or saved from).
* If `fatal` is `true`, a `std::runtime_error` will be thrown on failure.
* If `transpose` is `true`, then for plaintext formats (CSV/TSV/ASCII), the
matrix will be transposed on load or save. (Keep this `true` if you want a
column-major matrix to be loaded or saved with points as rows and
dimensions as columns; that is generally what is desired.)
* A `bool` is returned indicating whether the operation was successful.
---
Example usage:
```c++
// See https://datasets.mlpack.org/satellite.train.csv.
arma::mat dataset;
mlpack::data::Load("satellite.train.csv", dataset, true);
// See https://datasets.mlpack.org/satellite.train.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("satellite.train.labels.csv", labels, true);
// Print information about the data.
std::cout << "The data in 'satellite.train.csv' has: " << std::endl;
std::cout << " - " << dataset.n_cols << " points." << std::endl;
std::cout << " - " << dataset.n_rows << " dimensions." << std::endl;
std::cout << "The labels in 'satellite.train.labels.csv' have: " << std::endl;
std::cout << " - " << labels.n_elem << " labels." << std::endl;
std::cout << " - A maximum label of " << labels.max() << "." << std::endl;
std::cout << " - A minimum label of " << labels.min() << "." << std::endl;
// Modify and save the data. Add 2 to the data and drop the last column.
dataset += 2;
dataset.shed_col(dataset.n_cols - 1);
labels.shed_col(labels.n_cols - 1);
mlpack::data::Save("satellite.train.mod.csv", dataset);
mlpack::data::Save("satellite.train.labels.mod.csv", labels);
```
---
## Mixed categorical data
Some mlpack techniques support mixed categorical data, e.g., data where some
dimensions take only categorical values (e.g. `0`, `1`, `2`, etc.). When using
mlpack, string data and other non-numerical data must be mapped to categorical
values and represented as part of an `arma::mat`. Category information is
stored in an auxiliary `data::DatasetInfo` object.
### `data::DatasetInfo`
<!-- TODO: also document in core.md? -->
mlpack represents categorical data via the use of the auxiliary
`data::DatasetInfo` object, which stores information about which dimensions are
numeric or categorical and allows conversion from the original category values
to the numeric values used to represent those categories.
---
#### Constructors
- `info = data::DatasetInfo()`
* Create an empty `data::DatasetInfo` object.
* Use this constructor if you intend to populate the `data::DatasetInfo` via
a `data::Load()` call.
- `info = data::DatasetInfo(dimensionality)`
* Create a `data::DatasetInfo` object with the given dimensionality
* All dimensions are assumed to be numeric (not categorical).
---
#### Accessing and setting properties
- `info.Type(d)`
* Get the type (categorical or numeric) of dimension `d`.
* Returns a `data::Datatype`, either `data::Datatype::numeric` or
`data::Datatype::categorical`.
* Calling `info.Type(d) = t` will set a dimension to type `t`, but this
should only be done before `info` is used with `data::Load()` or
`data::Save()`.
- `info.NumMappings(d)`
* Get the number of categories in dimension `d` as a `size_t`.
* Returns `0` if dimension `d` is numeric.
- `info.Dimensionality()`
* Return the dimensionality of the object as a `size_t`.
---
#### Map to and from numeric values
- `info.MapString<double>(value, d)`
* Given `value` (a `std::string`), return the `double` representing the
categorical mapping (an integer value) of `value` in dimension `d`.
* If a mapping for `value` does not exist in dimension `d`, a new mapping is
created, and `info.NumMappings(d)` is increased by one.
* If dimension `d` is numeric and `value` cannot be parsed as a numeric
value, then dimension `d` is changed to categorical and a new mapping is
returned.
- `info.UnmapString(mappedValue, d)`
* Given `mappedValue` (a `size_t`), return the `std::string` containing the
original category that mapped to the value `mappedValue` in dimension `d`.
* If dimension `d` is not categorical, a `std::invalid_argument` is thrown.
---
### Loading categorical data
With a `data::DatasetInfo` object, categorical data can be loaded:
- `data::Load(filename, matrix, info, fatal=false, transpose=true)`
* `filename` is a `std::string` with a path to the file to be loaded.
* The format is auto-detected based on the extension of the filename and the
contents of the file:
- `.csv`, `.tsv`, or `.txt` for CSV/TSV (tab-separated)/ASCII
(space-separated)
- `.arff` for [ARFF](https://ml.cms.waikato.ac.nz/weka/arff.html)
* `matrix` is an `arma::mat&`, `arma::Mat<size_t>&`, or similar (e.g., a
reference to an Armadillo object that data will be loaded into or saved
from).
* `info` is a `data::DatasetInfo&` object. This will be populated with the
category information of the file when loading, and used to unmap values
when saving.
* If `fatal` is `true`, a `std::runtime_error` will be thrown on failure.
* If `transpose` is `true`, then for plaintext formats (CSV/TSV/ASCII), the
matrix will be transposed on save. (Keep this `true` if you want a
column-major matrix to be saved with points as rows and dimensions as
columns; that is generally what is desired.)
* A `bool` is returned indicating whether the operation was successful.
Saving should be performed with the [numeric](#numeric-data) `data::Load()`
variant.
---
Example usage to load and manipulate an ARFF file.
```c++
// Load a categorical dataset.
arma::mat dataset;
mlpack::data::DatasetInfo info;
// See https://datasets.mlpack.org/covertype.train.arff.
mlpack::data::Load("covertype.train.arff", dataset, info, true);
arma::Row<size_t> labels;
// See https://datasets.mlpack.org/covertype.train.labels.csv.
mlpack::data::Load("covertype.train.labels.csv", labels, true);
// Print information about the data.
std::cout << "The data in 'covertype.train.arff' has: " << std::endl;
std::cout << " - " << dataset.n_cols << " points." << std::endl;
std::cout << " - " << info.Dimensionality() << " dimensions." << std::endl;
// Print information about each dimension.
for (size_t d = 0; d < info.Dimensionality(); ++d)
{
if (info.Type(d) == mlpack::data::Datatype::categorical)
{
std::cout << " - Dimension " << d << " is categorical with "
<< info.NumMappings(d) << " categories." << std::endl;
}
else
{
std::cout << " - Dimension " << d << " is numeric." << std::endl;
}
}
// Modify the 5th point. Increment any numeric values, and set any categorical
// values to the string "hooray!".
for (size_t d = 0; d < info.Dimensionality(); ++d)
{
if (info.Type(d) == mlpack::data::Datatype::categorical)
{
// This will create a new mapping if the string "hooray!" does not already
// exist as a category for dimension d..
dataset(d, 4) = info.MapString<double>("hooray!", d);
}
else
{
dataset(d, 4) += 1.0;
}
}
```
---
Example usage to manually create a `data::DatasetInfo` object.
```c++
// This will manually create the following data matrix (shown as it would appear
// in a CSV):
//
// 1, TRUE, "good", 7.0, 4
// 2, FALSE, "good", 5.6, 3
// 3, FALSE, "bad", 6.1, 4
// 4, TRUE, "bad", 6.1, 1
// 5, TRUE, "unknown", 6.3, 0
// 6, FALSE, "unknown", 5.1, 2
//
// Although the last dimension is numeric, we will take it as a categorical
// dimension.
arma::mat dataset(5, 6); // 6 data points in 5 dimensions.
mlpack::data::DatasetInfo info(5);
// Set types of dimensions. By default they are numeric so we only set
// categorical dimensions.
info.Type(1) = mlpack::data::Datatype::categorical;
info.Type(2) = mlpack::data::Datatype::categorical;
info.Type(4) = mlpack::data::Datatype::categorical;
// The first dimension is numeric.
dataset(0, 0) = 1;
dataset(0, 1) = 2;
dataset(0, 2) = 3;
dataset(0, 3) = 4;
dataset(0, 4) = 5;
dataset(0, 5) = 6;
// The second dimension is categorical.
dataset(1, 0) = info.MapString<double>("TRUE", 1);
dataset(1, 1) = info.MapString<double>("FALSE", 1);
dataset(1, 2) = info.MapString<double>("FALSE", 1);
dataset(1, 3) = info.MapString<double>("TRUE", 1);
dataset(1, 4) = info.MapString<double>("TRUE", 1);
dataset(1, 5) = info.MapString<double>("FALSE", 1);
// The third dimension is categorical.
dataset(2, 0) = info.MapString<double>("good", 2);
dataset(2, 1) = info.MapString<double>("good", 2);
dataset(2, 2) = info.MapString<double>("bad", 2);
dataset(2, 3) = info.MapString<double>("bad", 2);
dataset(2, 4) = info.MapString<double>("unknown", 2);
dataset(2, 5) = info.MapString<double>("unknown", 2);
// The fourth dimension is numeric.
dataset(3, 0) = 7.0;
dataset(3, 1) = 5.6;
dataset(3, 2) = 6.1;
dataset(3, 3) = 6.1;
dataset(3, 4) = 6.3;
dataset(3, 5) = 5.1;
// The fifth dimension is categorical. Note that `info` will choose to assign
// category values in the order they are seen, even if the category can be
// parsed as a number. So, here, the value '4' will be assigned category '0',
// since it is seen first.
dataset(4, 0) = info.MapString<double>("4", 4);
dataset(4, 1) = info.MapString<double>("3", 4);
dataset(4, 2) = info.MapString<double>("4", 4);
dataset(4, 3) = info.MapString<double>("1", 4);
dataset(4, 4) = info.MapString<double>("0", 4);
dataset(4, 5) = info.MapString<double>("2", 4);
// Print the dataset with mapped categories.
dataset.print("Dataset with mapped categories");
// Print the mappings for the third dimension.
std::cout << "Mappings for dimension 3: " << std::endl;
for (size_t i = 0; i < info.NumMappings(2); ++i)
{
std::cout << " - \"" << info.UnmapString(i, 2) << "\" maps to " << i << "."
<< std::endl;
}
// Now `dataset` is ready for use with an mlpack algorithm that supports
// categorical data.
```
---
## Image data
If the STB image library is available on the system (`stb_image.h` and
`stb_image_write.h` must be available on the compiler's include search path),
then mlpack will define the `MLPACK_HAS_STB` macro, and support for loading
individual images or sets of images will be available.
Supported formats for loading are `jpg`, `png`, `tga`, `bmp`, `psd`, `gif`, `hdr`, `pic`, and `pnm`.
Supported formats for saving are `jpg`, `png`, `tga`, `bmp`, and `hdr`.
When loading images, each image is represented as a flattened single column
vector in a data matrix; each row of the resulting vector will correspond to a
single pixel value in a single channel. An auxiliary `data::ImageInfo` class is
used to store information about the images.
### `data::ImageInfo`
The `data::ImageInfo` class contains the metadata of the images.
---
#### Constructors
- `info = data::ImageInfo()`
* Create a `data::ImageInfo` object with no data.
* Use this constructor if you intend to populate the `data::ImageInfo` via a
`data::Load()` call.
- `info = data::ImageInfo(width, height, channels)`
* Create a `data::ImageInfo` object with the given image specifications.
* `width` and `height` are specified as pixels.
---
#### Accessing and modifying image metadata
- `info.Quality() = q` will set the compression quality (e.g. for saving JPEGs)
to `q`.
* `q` should take values between `0` and `100`.
* The quality value is ignored unless calling `data::Save()` with `info`.
- Calling `info.Channels() = 1` before loading will cause images to be loaded
in grayscale.
- Metadata stored in the `data::ImageInfo` can be accessed with the following
members:
* `info.Width()` returns the image width in pixels.
* `info.Height()` returns the image height in pixels.
* `info.Channels()` returns the number of color channels in the image.
* `info.Quality()` returns the compression quality that will be used to save
images (between 0 and 100).
---
### Loading images
With a `data::ImageInfo` object, image data can be loaded or saved, handling
either one or multiple images at a time:
<!-- TODO: add parameter to force use of what's in `info` -->
- `data::Load(filename, matrix, info, fatal=false)`
* Load a ***single image*** from `filename` into `matrix`.
- Format is chosen by extension (e.g. `image.png` will load as PNG).
* `matrix` will have one column representing the image as a flattened vector.
* `info` will be populated with information from the image in `filename`.
* If `fatal` is `true`, a `std::runtime_error` will be thrown upon load
failure.
* Returns a `bool` indicating the success of the operation.
---
- `data::Load(files, matrix, info, fatal=false)`
* Load ***multiple images*** from `files` into `matrix`.
- `files` is of type `std::vector<std::string>` and should contain the list
of images to be loaded.
- `matrix` will have `files.size()` columns, each representing the
corresponding image as a flattened vector.
* `info` will be populated with information from the images in `files`.
* If `fatal` is `true`, a `std::runtime_error` will be thrown if any files
fail to load.
* Returns a `bool` indicating the success of the operation.
---
- `data::Save(filename, matrix, info, fatal=false)`
* Save a ***single image*** from `matrix` into the file `filename`.
- Format is chosen by extension (e.g. `image.png` will save as PNG).
* `matrix` is expected to have only one column representing the image as a
flattened vector.
* If `fatal` is `true`, a `std::runtime_error` will be thrown in the event of
save failure.
* Returns a `bool` indicating the success of the operation.
---
- `data::Save(files, matrix, info, fatal=false)`
* Save ***multiple images*** from `matrix` into `files`.
- `files` is of type `std::vector<std::string>` and should contain the list
of files to save to.
- The format of each file is chosen by extension (e.g. `image.png` will
save as PNG); it is allowed for filenames in `files` to have different
extensions.
* `matrix` is expected to have `files.size()` columns representing images as
flattened vectors.
* If `fatal` is `true`, a `std::runtime_error` will be thrown if any images
fail to save.
* Returns a `bool` indicating the success of the operation.
---
Images are flattened along rows, with channel values interleaved, starting from
the top left. Thus, the value of the pixel at position `(x, y)` in channel `c`
will be contained in element/row `y * (width * channels) + x * (channels) + c`
of the flattened vector.
Pixels take values between 0 and 255.
---
Example of loading and saving a single image:
```c++
// See https://www.mlpack.org/static/img/numfocus-logo.png.
mlpack::data::ImageInfo info;
arma::mat matrix;
mlpack::data::Load("numfocus-logo.png", matrix, info, true);
// `matrix` should now contain one column.
// Print information about the image.
std::cout << "Information about the image in 'numfocus-logo.png': "
<< std::endl;
std::cout << " - " << info.Width() << " pixels in width." << std::endl;
std::cout << " - " << info.Height() << " pixels in height." << std::endl;
std::cout << " - " << info.Channels() << " color channels." << std::endl;
std::cout << "Value at pixel (x=3, y=4) in the first channel: ";
const size_t index = (4 * info.Width() * info.Channels()) +
(3 * info.Channels());
std::cout << matrix[index] << "." << std::endl;
// Increment each pixel value, but make sure they are still within the bounds.
matrix += 1;
matrix = arma::clamp(matrix, 0, 255);
mlpack::data::Save("numfocus-logo-mod.png", matrix, info);
```
---
Example of loading and saving multiple images:
```c++
// Load some favicons from websites associated with mlpack.
std::vector<std::string> images;
// See the following files:
// - https://datasets.mlpack.org/images/mlpack-favicon.png
// - https://datasets.mlpack.org/images/ensmallen-favicon.png
// - https://datasets.mlpack.org/images/armadillo-favicon.png
// - https://datasets.mlpack.org/images/bandicoot-favicon.png
images.push_back("mlpack-favicon.png");
images.push_back("ensmallen-favicon.png");
images.push_back("armadillo-favicon.png");
images.push_back("bandicoot-favicon.png");
mlpack::data::ImageInfo info;
info.Channels() = 1; // Force loading in grayscale.
arma::mat matrix;
mlpack::data::Load(images, matrix, info, true);
// Print information about what we loaded.
std::cout << "Loaded " << matrix.n_cols << " images. Images are of size "
<< info.Width() << " x " << info.Height() << " with " << info.Channels()
<< " color channel." << std::endl;
// Invert images.
matrix = (255.0 - matrix);
// Save as compressed JPEGs with low quality.
info.Quality() = 75;
std::vector<std::string> outImages;
outImages.push_back("mlpack-favicon-inv.jpeg");
outImages.push_back("ensmallen-favicon-inv.jpeg");
outImages.push_back("armadillo-favicon-inv.jpeg");
outImages.push_back("bandicoot-favicon-inv.jpeg");
mlpack::data::Save(outImages, matrix, info);
```
### Resize images
It is possible to resize images in mlpack with the following function:
- `ResizeImages(images, info, newWidth, newHeight)`
* `images` is a [column-major matrix](matrices.md) containing a set of
images; each image is represented as a flattened vector in one column.
* `info` is a [`data::ImageInfo&`](#dataimageinfo) containing details about
the images in `images`, and will be modified to contain the new size of the
images.
* `newWidth` and `newHeight` (of type `size_t`) are the desired new
dimensions of the resized images.
* This function returns `void` and modifies `info` and `images`.
* ***NOTE:*** if the element type of `images` is not `unsigned char` or
`float` (e.g. if `image` is not `arma::Mat<unsigned char>` or
`arma::fmat`), the matrix will be temporarily converted during resizing;
therefore, using `unsigned char` or `float` as the element type is the most
efficient.
* This function expects all the images to have identical
dimensions. If this is not the case, iteratively call `ResizeImages()` with
a single image/column in `images`.
Example usage of the `ResizeImages()` function on a set of images with
different dimensions:
```c++
// See https://datasets.mlpack.org/sheep.tar.bz2
arma::Mat<unsigned char> image;
mlpack::data::ImageInfo info;
// The images are located in our test/data directory. However, any image could
// be used instead.
std::vector<std::string> files =
{"sheep_1.jpg", "sheep_2.jpg", "sheep_3.jpg", "sheep_4.jpg",
"sheep_5.jpg", "sheep_6.jpg", "sheep_7.jpg", "sheep_8.jpg",
"sheep_9.jpg"};
// The resized images will be saved locally. We are declaring the vector that
// contains the names of the resized images.
std::vector<std::string> reSheeps =
{"re_sheep_1.jpg", "re_sheep_2.jpg", "re_sheep_3.jpg", "re_sheep_4.jpg",
"re_sheep_5.jpg", "re_sheep_6.jpg", "re_sheep_7.jpg", "re_sheep_8.jpg",
"re_sheep_9.jpg"};
// Load and Resize each one of them individually, because they do not have
// the same dimensions. The `info` will contain the dimension for each one.
for (size_t i = 0; i < files.size(); i++)
{
mlpack::data::Load(files.at(i), image, info, false);
mlpack::data::ResizeImages(image, info, 320, 320);
mlpack::data::Save(reSheeps.at(i), image, info, false);
}
```
Example usage of `ResizeImages()` function on a set of images that have the
same dimensions.
```c++
// All images have the same dimension, It would be possible to load all of
// them into one matrix
// See https://datasets.mlpack.org/sheep.tar.bz2
arma::Mat<unsigned char> images;
mlpack::data::ImageInfo info;
std::vector<std::string> reSheeps =
{"re_sheep_1.jpg", "re_sheep_2.jpg", "re_sheep_3.jpg", "re_sheep_4.jpg",
"re_sheep_5.jpg", "re_sheep_6.jpg", "re_sheep_7.jpg", "re_sheep_8.jpg",
"re_sheep_9.jpg"};
mlpack::data::Load(reSheeps, images, info, false);
// Now let us resize all these images at once, to specific dimensions.
mlpack::data::ResizeImages(images, info, 160, 160);
// The resized images will be saved locally. We are declaring the vector that
// contains the names of the resized images.
std::vector<std::string> smSheeps =
{"sm_sheep_1.jpg", "sm_sheep_2.jpg", "sm_sheep_3.jpg", "sm_sheep_4.jpg",
"sm_sheep_5.jpg", "sm_sheep_6.jpg", "sm_sheep_7.jpg", "sm_sheep_8.jpg",
"sm_sheep_9.jpg"};
mlpack::data::Save(smSheeps, images, info, false);
```
### Resize and crop images
In addition to resizing images, mlpack also provides resize-and-crop
functionality. This is useful when the desired aspect ratio of an image differs
largely from the original image.
The resize-and-crop operation, given a target size `outputWidth` x
`outputHeight`, first resizes the image while preserving the aspect ratio such
that the width and height of the image both no smaller than `outputWidth` and
`outputHeight`. Then, the image is cropped to have size `outputWidth` by
`outputHeight`, keeping the center pixels only. This process is shown below.
*Original image:*
<p align="center">
<img src="../img/cat.jpg" alt="cat">
</p>
*Original image with target size of* `220`x`220` *pixels:*
<p align="center">
<img src="../img/cat_rect.jpg" alt="cat with rectangle overlaid">
</p>
*First step: resize while preserving aspect ratio:*
<p align="center">
<img src="../img/cat_scaled_rect.jpg"
alt="scaled cat with rectangle overlaid">
</p>
*Second step: crop to desired final size:*
<p align="center">
<img src="../img/cat_cropped.jpg" alt="cropped cat">
</p>
- `ResizeCropImages(images, info, newWidth, newHeight)`
* `images` is a [column-major matrix](matrices.md) containing a set of
images; each image is represented as a flattened vector in one column.
* `info` is a [`data::ImageInfo&`](#dataimageinfo) containing details about
the images in `images`.
* `images` and `info` are modified in-place.
* `newWidth` and `newHeight` (of type `size_t`) are the desired new
dimensions of the resized images.
- If the output size is larger than the input image size, the images will
be upscaled the minimum amount necessary before cropping.
- If the aspect ratio is not changed from the input aspect ratio, no
cropping is performed.
* ***NOTE:*** if the element type of `images` is not `unsigned char` or
`float` (e.g. if `image` is not `arma::Mat<unsigned char>` or
`arma::fmat`), the matrix will be temporarily converted during resizing;
therefore, using `unsigned char` or `float` as the element type is the most
efficient.
* This function expects all the images to have identical dimensions. If this
is not the case, iteratively call `ResizeCropImages()` with a single
image/column in `images`.
Example usage of the `ResizeCropImages()` function on a set of images with
different dimensions:
```c++
// See https://datasets.mlpack.org/sheep.tar.bz2.
arma::Mat<unsigned char> image;
mlpack::data::ImageInfo info;
// The images are located in our test/data directory. However, any image could
// be used instead.
std::vector<std::string> files =
{"sheep_1.jpg", "sheep_2.jpg", "sheep_3.jpg", "sheep_4.jpg",
"sheep_5.jpg", "sheep_6.jpg", "sheep_7.jpg", "sheep_8.jpg",
"sheep_9.jpg"};
// The resized images will be saved locally. We are declaring the vector that
// contains the names of the resized and cropped images.
std::vector<std::string> cropSheeps =
{"crop_sheep_1.jpg", "crop_sheep_2.jpg", "crop_sheep_3.jpg",
"crop_sheep_4.jpg", "crop_sheep_5.jpg", "crop_sheep_6.jpg",
"crop_sheep_7.jpg", "crop_sheep_8.jpg", "crop_sheep_9.jpg"};
// Load and resize-and-crop each image individually, because they do not have
// the same dimensions. The `info` will contain the dimension for each one.
for (size_t i = 0; i < files.size(); i++)
{
mlpack::data::Load(files.at(i), image, info, false);
mlpack::data::ResizeCropImages(image, info, 320, 320);
mlpack::data::Save(cropSheeps.at(i), image, info, false);
std::cout << "Resized and cropped " << files.at(i) << " to "
<< cropSheeps.at(i) << " with output size 320x320." << std::endl;
}
```
## mlpack objects
All mlpack objects can be saved with `data::Save()` and loaded with
`data::Load()`. Serialization is performed using the
[cereal](https://uscilab.github.io/cereal/) serialization toolkit.
Each object must be given a logical name.
- `data::Load(filename, name, object, fatal=false, format=data::format::autodetect)`
- `data::Save(filename, name, object, fatal=false, format=data::format::autodetect)`
* Load/save `object` to/from `filename` with the logical name `name`.
* If `fatal` is `true`, a `std::runtime_error` will be thrown in the event of
load or save failure.
* The format is autodetected based on extension (`.bin`, `.json`, or `.xml`),
but can be manually specified:
- `data::format::binary`: binary blob (smallest and fastest). No checks;
assumes all data is correct.
- `data::format::json`: JSON.
- `data::format::xml`: XML (largest and slowest).
* For JSON and XML types, when loading, `name` must match the name used to
save the object.
* Returns a `bool` indicating the success of the operation.
***Note:*** when loading an object that was saved as a binary blob, the C++ type
of the object must be ***exactly the same*** (including template parameters) as
the type used to save the object. If not, undefined behavior will occur---most
likely a crash.
---
Simple example: create a `math::Range` object, then save and load it.
```c++
mlpack::math::Range r(3.0, 6.0);
// Save the Range to 'range.bin', using the name "range".
mlpack::data::Save("range.bin", "range", r, true);
// Load the range into a new object.
mlpack::math::Range r2;
mlpack::data::Load("range.bin", "range", r2, true);
std::cout << "Loaded range: [" << r2.Lo() << ", " << r2.Hi() << "]."
<< std::endl;
// Modify and save the range as JSON.
r2.Lo() = 4.0;
mlpack::data::Save("range.json", "range", r2, true);
// Now 'range.json' will contain the following:
//
// {
// "range": {
// "cereal_class_version": 0,
// "hi": 6.0,
// "lo": 4.0
// }
// }
```
---
## Formats
mlpack's `data::Load()` and `data::Save()` functions support a variety of
different formats in different contexts.
---
#### [Numeric data](#numeric-data)
By default, load/save format is ***autodetected***, but can be manually
specified with the `format` parameter using one of the options below:
- `FileType::AutoDetect` (default): auto-detects the format as one of the
formats below using the extension of the filename and inspecting the file
contents.
- `FileType::CSVASCII` (autodetect extensions `.csv`, `.tsv`): CSV format
with no header. If loading a sparse matrix and the CSV has three columns,
the data is interpreted as a
[coordinate list](https://arma.sourceforge.net/docs.html#save_load_mat).
- `FileType::RawASCII` (autodetect extensions `.csv`, `.txt`):
space-separated values or tab-separated values (TSV) with no header.
- `FileType::ArmaASCII` (autodetect extension `.txt`): space-separated
values as saved by Armadillo with the
[`arma_ascii`](https://arma.sourceforge.net/docs.html#save_load_mat)
format.
- `FileType::CoordASCII` (autodetect extensions `.txt`, `.tsv`; must be
loading a sparse matrix type): coordinate list format for sparse data (see
[`coord_ascii`](https://arma.sourceforge.net/docs.html#save_load_mat)).
- `FileType::ArmaBinary` (autodetect extension `.bin`): Armadillo's
efficient binary matrix format
([`arma_binary`](https://arma.sourceforge.net/docs.html#save_load_mat)).
- `FileType::HDF5Binary` (autodetect extensions `.h5`, `.hdf5`, `.hdf`,
`.he5`): [HDF5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format)
binary format; only available if Armadillo is configured with
[HDF5 support](https://arma.sourceforge.net/docs.html#config_hpp).
- `FileType::RawBinary` (autodetect extension `.bin`): packed binary data
with no header and no size information; data will be loaded as a single
column vector _(not recommended)_.
- `FileType::PGMBinary` (autodetect extension `.pgm`): PGM image format
***Notes:***
- ASCII formats (`CSVASCII`, `RawASCII`, `ArmaASCII`) are human-readable but
large; to reduce dataset size, consider a binary format such as
`ArmaBinary` or `HDF5Binary`.
- Sparse data (`arma::sp_mat`, `arma::sp_fmat`, etc.) should be saved in a
binary format (`ArmaBinary` or `HDF5Binary`) or as a coordinate list
(`CoordASCII`).
---
#### [Mixed categorical data](#mixed-categorical-data)
The format of mixed categorical data is detected automatically based on the
file extension and inspecting the file contents:
- `.csv`, `.txt`, or `.tsv` indicates CSV/TSV/ASCII format
- `.arff` indicates [ARFF](https://ml.cms.waikato.ac.nz/weka/arff.html)
---
#### [Image data](#image-data)
The format of images are detected automatically based on the file extension.
- The following formats are supported for loading: `.jpg`, `.jpeg`, `.png`,
`.tga`, `.bmp`, `.psd`, `.gif`, `.hdr`, `.pic`, `.pnm`
- The following formats are supported for saving: `.jpg`, `.png`, `.tga`,
`.bmp`, `.hdr`
---
#### [mlpack objects](#mlpack-objects)
By default, load/save format for mlpack objects is autodetected, but can be
manually specified with the `format` parameter using one of the options below:
- `format::autodetect` (default): auto-detects the format as one of the
formats below using the extension of the filename
- `format::json` (autodetect extension `.json`)
- `format::xml` (autodetect extension `.xml`)
- `format::binary` (autodetect extension `.bin`)
***Notes:***
- `format::json` (`.json`) and `format::xml` (`.xml`) produce human-readable
files, but they may be quite large.
- `format::binary` (`.bin`) is recommended for the sake of size; objects in
binary format may be an order of magnitude or more smaller than JSON!
|