1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
# Matrices in mlpack
mlpack uses Armadillo matrices for linear algebra support. Armadillo is a fast
C++ matrix library which uses advanced template metaprogramming techniques to
provide the fastest possible linear algebra operations.
<center><p><img src="https://arma.sourceforge.net/img/armadillo_logo2.png" alt="Armadillo logo"></p></center>
Detailed documentation on Armadillo can be found on [the Armadillo
website](https://arma.sourceforge.net/docs.html).
Nonetheless, there are a few further caveats for mlpack Armadillo usage.
* [An Armadillo primer](#an-armadillo-primer)
* [Representing data in mlpack](#representing-data-in-mlpack)
* [Loading data](#loading-data)
* [Loading and using categorical data](#loading-and-using-categorical-data)
* [Alternate matrix types](#alternate-matrix-types)
* [Adapting from other toolkits (Eigen, etc.)](#adapting-from-other-toolkits-eigen-etc)
## An Armadillo primer
The Armadillo syntax is straightforward and is aimed at ease-of-use and
readability. To give a flavor of what a linear algebra program using Armadillo
looks like, see the trivial (contrived) program below that performs some basic
matrix operations.
```c++
// Create a 10x15 matrix with random elements.
arma::mat m(10, 15, arma::fill::randu);
std::cout << "Size of m: " << m.n_rows << " x " << m.n_cols << "." << std::endl;
// Sum all elements in the matrix.
const double sumVal = arma::accu(m);
std::cout << "Sum of all elements: " << sumVal << "." << std::endl;
// Sum the elements in each column.
arma::rowvec sums = arma::sum(m, 0);
std::cout << "Sums in each column: " << sums;
// Add 1 to all elements.
m += 1;
// Subtract sums from each row.
m.each_row() -= sums;
// Print an individual element.
std::cout << "m(3, 4) is: " << m(3, 4) << "." << std::endl;
```
For more information on Armadillo, see the following resources:
* [Armadillo documentation](https://arma.sourceforge.net/docs.html)
* [Armadillo example
program](https://arma.sourceforge.net/docs.html#example_prog)
* [Armadillo/MATLAB syntax conversion
table](https://arma.sourceforge.net/docs.html#syntax)
## Representing data in mlpack
Armadillo matrices, unlike numpy and some other toolkits, store data in a
***column-major*** format. This means that each column is located in contiguous
memory; i.e., `x(0, 0)` is adjacent to `x(1, 0)` in memory.
This means that, for the vast majority of machine learning methods, it is faster
to store ***observations as columns*** and ***dimensions as rows***. This is
counter to most standard machine learning texts! It also has some implications
for linear algebra operations; for instance, computing the Gram matrix of a
matrix `X` is typically expressed as `X^T X`, but when using column-major
matrices, the expression must be `X X^T`.
In general, the following Armadillo types are commonly used inside mlpack:
* `arma::mat`: datasets and general-purpose matrices
* `arma::Row<size_t>`: integer response data, e.g., labels for classification
datasets
* `arma::rowvec`: floating-point response data, e.g., responses for regression
datasets
* `arma::vec`: general-purpose column vectors
* `arma::sp_mat`, `arma::fmat`: alternate types for representing data; see
[Alternate matrix types](#alternate-matrix-types)
## Loading data
mlpack provides two simple functions for loading and saving data matrices in a
column-major form:
* `data::Load(filename, matrix, fatal=false, transpose=true, type=FileType::AutoDetect)` ([full documentation](load_save.md#numeric-data))
* `data::Save(filename, matrix, fatal=false, transpose=true, type=FileType::AutoDetect)` ([full documentation](load_save.md#numeric-data))
As an example, consider the following CSV file:
```sh
$ cat data.csv
3,3,3,3,0
3,4,4,3,0
3,4,4,3,0
3,3,4,3,0
3,6,4,3,0
2,4,4,3,0
2,4,4,1,0
3,3,3,2,0
3,4,4,2,0
3,4,4,2,0
3,3,4,2,0
3,6,4,2,0
2,4,4,2,0
```
The following program will load the data, print information about it, and save a
modified dataset to disk.
```c++
// Load data from `data.csv` into `m`. Throw an exception on failure (i.e. set
// `fatal` to `true`).
arma::mat m;
mlpack::data::Load("data.csv", m, true);
// Since mlpack uses column-major data,
//
// - each column corresponds to a data point!
// - each row corresponds to a dimension!
//
std::cout << "The matrix in 'data.csv' has: " << std::endl;
std::cout << " - " << m.n_cols << " points." << std::endl;
std::cout << " - " << m.n_rows << " dimensions." << std::endl;
std::cout << "The second point in the dataset: " << std::endl;
std::cout << m.col(1).t();
// Now modify the matrix and save to a different format (space-separated
// values).
m += 3;
mlpack::data::Save("data-mod.txt", m);
```
Although Armadillo does provide a `.load()` and `.save()` member function for
matrices, the `data::Load()` and `data::Save()` functions offer additional
flexibility, and ensure that data is saved and loaded in a column-major format.
## Loading and using categorical data
Some mlpack techniques support mixed categorical data, e.g., data where some
dimensions take only categorical values (e.g. `0`, `1`, `2`, etc.). String data
and other non-numerical data can be represented as categorical values, and
mlpack has support to load mixed categorical data:
* The `data::DatasetInfo` auxiliary class stores information about whether each
dimension is numeric or categorical. ([full
documentation](load_save.md#datadatasetinfo))
* `data::Load(filename, matrix, info, fatal=false, transpose=true)` ([full
documentation](load_save.md#loading-categorical-data))
For example, consider the following CSV file that contains strings:
```sh
$ cat mixed_string_data.csv
3,"hello",3,"f",0
3,"goodbye",4,"f",0
3,"goodbye",4,"e",0
3,"hello",4,"d",0
3,"hello",4,"d",0
2,"hello",4,"d",0
2,"hello",4,"d",0
3,"goodbye",3,"f",0
3,"goodbye",4,"f",0
3,"hello",4,"f",0
3,"hello",4,"c",0
3,"hello",4,"f",0
2,"hello",4,"c",0
```
The following program will load the data file, print information about
categorical dimensions, and prepare the data for use with an mlpack algorithm
that supports mixed categorical data.
```c++
// Load data from `mixed_string_data.csv` into `m`. Throw an exception on
// failure (i.e. set `fatal` to `true`). This populates the `info` object.
arma::mat m;
mlpack::data::DatasetInfo info;
mlpack::data::Load("mixed_string_data.csv", m, info, true);
// Print information about the data.
std::cout << "The matrix in 'mixed_string_data.csv' has: " << std::endl;
std::cout << " - " << m.n_cols << " points." << std::endl;
std::cout << " - " << info.Dimensionality() << " dimensions." << std::endl;
// Print which dimensions are categorical.
for (size_t d = 0; d < info.Dimensionality(); ++d)
{
if (info.Type(d) == mlpack::data::Datatype::categorical)
{
std::cout << " - Dimension " << d << " is categorical with "
<< info.NumMappings(d) << " distinct categories." << std::endl;
}
}
// Modify the third point to be 4,"wonderful",1,"c",0.
// Note that we manually map the string values; MapString() returns the category
// for a given value.
m(0, 2) = 4;
m(1, 2) = info.MapString<double>("wonderful", 1); // Create new third category.
m(2, 2) = 1;
m(3, 2) = info.MapString<double>("c", 1);
m(4, 2) = 0;
// `m` can now be used with any mlpack algorithm that supports categorical data.
```
Not every mlpack method supports categorical data. Below are the list of
methods that do have categorical data support:
* [`DecisionTree`](methods/decision_tree.md)
* [`DecisionTreeRegressor`](methods/decision_tree_regressor.md)
* [`RandomForest`](methods/random_forest.md)
* [`HoeffdingTree`](methods/hoeffding_tree.md)
## Alternate matrix types
mlpack's documentation focuses on the use of the `arma::mat`, `arma::vec`, and
`arma::rowvec` types, with an underlying `double` numeric type, e.g., 64-bit
floating-point. But, many mlpack algorithms and support utilities have support
for alternate matrix types and element types:
* Many methods, such as
[`LogisticRegression`](methods/logistic_regression.md#advanced-functionality-different-element-types),
allow specifying the matrix types as a template parameter.
* Some methods, such as
[`DecisionTree`](methods/decision_tree.md#using-different-element-types),
accept different matrix types to `Train()`, `Classify()`, or `Predict()`,
without needing to specify an explicit template parameter.
* In general, any matrix type that supports the Armadillo API can be used; this
includes:
- Single-precision floating point matrices (`arma::fmat`, `arma::frowvec`,
`arma::fvec`)
- Sparse matrices (`arma::sp_mat`, `arma::sp_fmat`)
- GPU matrices via [Bandicoot](https://coot.sourceforge.io) (`coot::mat`,
`coot::fmat`) --- ***(note: support is under development and still
experimental)***
---
A simple example of using single-precision floating point data to train an
[`AdaBoost`](methods/adaboost.md) model is below.
```c++
// 1000 random points in 10 dimensions, using 32-bit precision (float).
arma::fmat dataset(10, 1000, arma::fill::randu);
// Random labels for each point, totaling 5 classes.
arma::Row<size_t> labels =
arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 4));
// Train in the constructor, using floating-point data.
// The weak learner type is now a floating-point Perceptron.
using PerceptronType = mlpack::Perceptron<
mlpack::SimpleWeightUpdate,
mlpack::ZeroInitialization,
arma::fmat>;
mlpack::AdaBoost<PerceptronType, arma::fmat> ab(dataset, labels, 5);
// Create test data (500 points).
arma::fmat testDataset(10, 500, arma::fill::randu);
arma::Row<size_t> predictions;
ab.Classify(testDataset, predictions);
// Now `predictions` holds predictions for the test dataset.
// Print some information about the test predictions.
std::cout << arma::accu(predictions == 3) << " test points classified as class "
<< "3." << std::endl;
```
---
A simple example of using sparse 32-bit floating point data to train a
[`LogisticRegression`](methods/logistic_regression.md) model is below.
```c++
// Create random, sparse 100-dimensional data.
arma::sp_fmat dataset;
dataset.sprandu(100, 5000, 0.3);
arma::Row<size_t> labels =
arma::randi<arma::Row<size_t>>(5000, arma::distr_param(0, 1));
// Train with L2 regularization penalty parameter of 0.1.
mlpack::LogisticRegression<arma::sp_fmat> lr(dataset, labels, 0.1);
// Now classify a test point.
arma::sp_fvec point;
point.sprandu(100, 1, 0.3);
size_t prediction;
arma::fvec probabilitiesVec;
lr.Classify(point, prediction, probabilitiesVec);
std::cout << "Prediction for random test point: " << prediction << "."
<< std::endl;
std::cout << "Class probabilities for random test point: "
<< probabilitiesVec.t();
```
<!-- TODO: a simple Bandicoot example! -->
## Adapting from other toolkits (Eigen, etc.)
In general, C++ linear algebra toolkits store data in a column-major
representation, and transitioning between toolkits is a matter of getting access
to the underlying memory.
---
Copy an [Eigen](https://eigen.tuxfamily.org/index.php?title=Main_Page) matrix
into an Armadillo matrix.
```c++
// Note: this will only work if the Eigen matrix is stored in column-major
// order. See https://eigen.tuxfamily.org/dox/group__TopicStorageOrders.html
// for more details.
Eigen::MatrixXd m;
const size_t rows = 10;
const size_t cols = 20;
m.setRandom(rows, cols); // 10x20 random matrix.
// Copy into an Armadillo matrix.
arma::mat mCopy(&m(0, 0), rows, cols);
```
---
Copy an [XTensor](https://xtensor.readthedocs.io/en/latest/) matrix into an
Armadillo matrix.
```c++
// Note: this will only work correctly if the layout_type of the XTensor matrix
// is column-major (i.e. xt::layout_type::column_major). See
// https://xtensor.readthedocs.io/en/latest/container.html for more details.
const size_t rows = 10;
const size_t cols = 20;
// Create a random 10 x 20 matrix with normally distributed values.
// Note that we must ensure that the matrix is laid out in column-major form.
xt::xarray<double, xt::layout_type::column_major> m =
xt::random::randn<double>({ rows, cols });
// Copy into an Armadillo matrix.
arma::mat mCopy(m.data(), rows, cols);
```
---
Make an Armadillo matrix that is an alias of an
[Eigen](https://eigen.tuxfamily.org/index.php?title=Main_Page) matrix. Note
that changes to the Eigen matrix will be reflected in the Armadillo matrix, and
vice versa.
*If the Eigen matrix is deallocated, the Armadillo matrix will become invalid.
Be careful! [More details
here](https://arma.sourceforge.net/docs.html#adv_constructors_mat).*
```c++
// Note: this will only work if the Eigen matrix is stored in column-major
// order. See https://eigen.tuxfamily.org/dox/group__TopicStorageOrders.html
// for more details.
Eigen::MatrixXd m;
const size_t rows = 10;
const size_t cols = 20;
m.setRandom(rows, cols); // 10x20 random matrix.
// Make an Armadillo matrix that is an alias of the Eigen matrix. This avoids
// the copy, but is potentially dangerous: be careful that the Eigen matrix is
// not deleted while the Armadillo matrix is in use!
//
// See https://arma.sourceforge.net/docs.html#adv_constructors_mat
arma::mat mAlias(&m(0, 0), rows, cols, false, true);
```
---
Copy an Armadillo matrix to an Eigen matrix.
```c++
const size_t rows = 10;
const size_t cols = 20;
arma::mat m(10, 20, arma::fill::randu);
// Construct the Eigen matrix by using a map of the Armadillo memory.
Eigen::MatrixXd eigenM(Eigen::Map<Eigen::MatrixXd>(m.memptr(), rows, cols));
```
|