File: amf.md

package info (click to toggle)
mlpack 4.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 31,272 kB
  • sloc: cpp: 226,039; python: 1,934; sh: 1,198; lisp: 414; makefile: 85
file content (897 lines) | stat: -rw-r--r-- 33,748 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
## `AMF`

The `AMF` class implements a general **a**lternating **m**atrix
**f**actorization framework, allowing numerous types of matrix decompositions.
The `AMF` class can decompose a large (potentially sparse) matrix `V` into two
smaller matrices `W` and `H`, such that `V ~= W * H`, using a variety of
strategies that involve iteratively updating first the `W` matrix, then the `H`
matrix, and so forth.  This technique may be used for dimensionality reduction,
or as part of a recommender system.

The behavior of the `AMF` class is controlled entirely by its template
parameters.  Different choices of these template parameters lead to different
algorithms for matrix decomposition.  For instance, mlpack's implementation of
non-negative matrix factorization ([`NMF`](nmf.md)) is built on the `AMF` class
with NMF-specific template parameters.

#### Simple usage example:

```c++
// Create a random sparse matrix (V) of size 10x100, with 15% nonzeros.
arma::sp_mat V;
V.sprandu(100, 100, 0.15);

// W and H will be low-rank matrices of size 100x10 and 10x100.
arma::mat W, H;

// Step 1: create object.  The choices of template parameters control the
// behavior of the decomposition.
mlpack::AMF<mlpack::SimpleResidueTermination   /* termination policy */,
            mlpack::RandomAcolInitialization<> /* policy to initialize W/H */,
            mlpack::SVDBatchLearning<>         /* alternating update rules */>
    amf;

// Step 2: apply alternating matrix factorization to decompose V.
double residue = amf.Apply(V, 10, W, H);

// Now print some information about the factorized matrices.
std::cout << "W has size: " << W.n_rows << " x " << W.n_cols << "."
    << std::endl;
std::cout << "H has size: " << H.n_rows << " x " << H.n_cols << "."
    << std::endl;
std::cout << "RMSE of reconstructed matrix: "
    << arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem) << "." << std::endl;
```
<p style="text-align: center; font-size: 85%"><a href="#simple-examples">More examples...</a></p>

#### Quick links:

 * [Template parameter overview](#template-parameter-overview): description of
   the template parameters for the `AMF` class.
   * [`TerminationPolicyType`](#terminationpolicytype): behavior for terminating
     the `AMF` optimization.
   * [`InitializationRuleType`](#initializationruletype): behavior for
     initializing the `W` and `H` matrices.
   * [`UpdateRuleType`](#updateruletype): behavior for updating `W` and `H`.
 * [Constructors](#constructors): create `AMF` objects.
 * [`Apply()`](#applying-decompositions): apply `AMF` decomposition to data.
 * [Examples](#simple-examples) of usage and links to detailed example projects.
 * [Custom `TerminationPolicyType`s](#custom-terminationpolicytypes)
 * [Custom `InitializationRuleType`s](#custom-initializationruletypes)
 * [Custom `UpdateRuleType`s](#custom-updateruletypes)

#### See also:

<!-- TODO: add these links
 * [`CF`](cf.md): collaborative filtering (recommender system)
-->

 * [`NMF`](nmf.md): non-negative matrix factorization (a version of `AMF`)
 * [`SparseCoding`](sparse_coding.md)
 * [mlpack transformations](../transformations.md)
 * [Matrix factorization on Wikipedia](https://en.wikipedia.org/wiki/Matrix_factorization_(recommender_systems))

### Template parameter overview

The behavior of the `AMF` class is controlled by its three template parameters.
The full signature of the class is:

```
AMF<TerminationPolicyType, InitializationRuleType, UpdateRuleType>
```

 * `TerminationPolicyType`: determines the strategy used to terminate the
   alternating matrix factorization.  [Details...](#terminationpolicytype)

 * `InitializationRuleType`: determines the strategy used to initialize the `W`
   and `H` matrices at the start of the factorization.
   [Details...](#initializationruletype)

 * `UpdateRuleType`: determines the rules used to update `W` and `H` at each
   iteration in the factorization.  [Details...](#updateruletype)

The `AMF` class is most useful when each of these three parameters are
intentionally chosen.  The default template parameters simply configure the
algorithm as non-negative matrix factorization (NMF), and so in that situation
the [`NMF`](nmf.md) class can be used instead.

---

A number of convenient typedefs are possible to configure the `AMF` class as a
predefined algorithm.  It may be easier to use these than to manually specify
each template parameter.

 * `SVDBatchFactorizer<WHMatType = arma::mat>`
   - Use batch SVD factorizer (Algorithm 4 from Chih-Chao Ma's
     [A Guide to Singular Value Decomposition for Collaborative Filtering](https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9d14285a32d268b69d51e7036d5a391c007df886).
   - `WHMatType` (default `arma::mat`) represents the type used to represent the
     `W` and `H` matrices.
  -  Uses [`SimpleResidueTermination`](#simpleresiduetermination-default) and
     [`RandomAcolInitialization`](#randomacolinitializationn-default).
   - See the [`SVDCompleteIncrementalLearning`](#svdcompleteincrementallearning)
     update rule.

---

 * `SVDIncompleteIncrementalFactorizer<VMatType = arma::mat>`
   - Use incomplete incremental SVD factorizer (Algorithm 2 from Chih-Chao Ma's
     [A Guide to Singular Value Decomposition for Collaborative Filtering](https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9d14285a32d268b69d51e7036d5a391c007df886).
   - `VMatType` (default `arma::mat`) represents the type of the `V` matrix that
     will be decomposed.
   - Uses
     [`IncompleteIncrementalTermination`](#incompleteincrementalterminationterminationpolicy),
     [`SimpleResidueTermination`](#simpleresiduetermination-default), and
     [`RandomAcolInitialization`](#randomacolinitializationn-default).
   - See the
     [`SVDIncompleteIncrementalLearning`](#svdincompleteincrementallearning)
     update rule.

---

 * `SVDCompleteIncrementalFactorizer<VMatType = arma::mat>`
   - Use complete incremental SVD factorizer (Algorithm 3 from Chih-Chao Ma's
     [A Guide to Singular Value Decomposition for Collaborative Filtering](https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9d14285a32d268b69d51e7036d5a391c007df886).
   - `VMatType` (default `arma::mat`) represents the type of the `V` matrix that
     will be decomposed.
   - Uses
     [`CompleteIncrementalTermination`](#completeincrementalterminationterminationpolicy),
     [`SimpleResidueTermination`](#simpleresiduetermination-default), and
     [`RandomAcolInitialization`](#randomacolinitializationn-default).
   - See the [`SVDBatchLearning`](#svdbatchlearning) update rule.

---

 * `NMF<TerminationPolicyType, InitializationRuleType, UpdateRuleType>`
   - Perform non-negative matrix factorization using multiplicative distance
     update rules.
   - See the [`NMF`](nmf.md) class documentation for more details.

---

### `TerminationPolicyType`

 * Specifies the strategy to use to choose when to stop the AMF algorithm.
 * An instantiated `TerminationPolicyType` can be passed to the `AMF`
   [constructor](#constructors).
 * The following choices are available for drop-in usage:

---

#### ***`SimpleResidueTermination`*** (default):

 - Terminates when a maximum number of iterations is reached, or when the
   residue (change in norm of `W * H` between iterations) is sufficiently small.
 - Constructor: `SimpleResidueTermination(minResidue=1e-5, maxIterations=10000)`
   * `minResidue` (a `double`) specifies the sufficiently small residue for
     termination.
   * `maxIterations` (a `size_t`) specifies the maximum number of iterations.
 - [`amf.Apply()`](#applying-decompositions) will return the residue of the last
   iteration.

---

#### ***`MaxIterationTermination`***:

 - Terminates when the maximum number of iterations is reached.
 - No other condition is checked.
 - Constructor: `MaxIterationTermination(maxIterations=1000)`
 - [`amf.Apply()`](#applying-decompositions) will return the number of
   iterations performed.

---

#### ***`SimpleToleranceTermination<MatType, WHMatType>`***:

 - Terminates when the nonzero residual decreases a sufficiently small relative
   amount between iterations (e.g.
   `(lastNonzeroResidual - nonzeroResidual) / lastNonzeroResidual` is below a
   threshold), or when the maximum number of iterations is reached.
 - The residual must remain below the threshold for a specified number of
   iterations.
 - The nonzero residual is defined as the root of the sum of squared elements in
   the reconstruction error matrix `(V - WH)`, limited to locations where `V` is
   nonzero.
 - Constructor: `SimpleToleranceTermination<MatType, WHMatType>(tol=1e-5, maxIter=10000, extraSteps=3)`
   * `MatType` should be set to the type of `V` (see
     [`Apply()` Parameters](#apply-parameters)).
   * `WHMatType` (default `arma::mat`) should be set to the type of `W` and `H`
     (see [`Apply()` Parameters](#apply-parameters)).
   * `tol` (a `double`) specifies the relative nonzero residual tolerance for
     convergence.
   * `maxIter` (a `size_t`) specifies the maximum number of iterations
     before termination.
   * `extraSteps` (a `size_t`) specifies the number of iterations
     where the relative nonzero residual must be below the tolerance for
     convergence.
 - The best `W` and `H` matrices (according to the nonzero residual) from the
   final `extraSteps` iterations are returned by
   [`amf.Apply()`](#applying-decompositions).
 - [`amf.Apply()`](#applying-decompositions) will return the nonzero residue of
   the iteration corresponding to the best `W` and `H` matrices.

---

#### ***`CompleteIncrementalTermination<TerminationPolicy>`***

 - Meant to be used with the
   [`SVDCompleteIncrementalLearning`](#svdcompleteincrementallearning)
   update rules.
 - Checks for convergence only after the entire `V` matrix has been used to
   update `W` and `H`, instead of checking after the updates for each element of
   `V`.
 - `TerminationPolicy` specifies the actual convergence condition to check.
 - Constructors:
    * `CompleteIncrementalTermination<TerminationPolicy>()`
    * `CompleteIncrementalTermination<TerminationPolicy>(terminationPolicy)`

---

#### ***`IncompleteIncrementalTermination<TerminationPolicy>`***

 - Meant to be used with the
   [`SVDIncompleteIncrementalLearning`](#svdincompleteincrementallearning)
   update rules.
 - Checks for convergence only after the entire `V` matrix has been used to
   update `W` and `H`, instead of checking after the updates for each column of
   `V`.
 - `TerminationPolicy` specifies the actual convergence condition to check.
 - Constructors:
    * `IncompleteIncrementalTermination<TerminationPolicy>()`
    * `IncompleteIncrementalTermination<TerminationPolicy>(terminationPolicy)`

---

For custom termination policies, see
[Custom `TerminationPolicyType`s](#custom-terminationpolicytypes).

---

### `InitializationRuleType`

 * Specifies the strategy to use to initialize `W` and `H` at the beginning of
   the NMF algorithm.
 * An initialized `InitializationRuleType` can be passed to the
   [`AMF` constructor](#constructors).
 * The following choices are available for drop-in usage:

---

#### ***`RandomAcolInitialization<N>`*** (default):

 - Initialize `W` by averaging `N` randomly chosen columns of `V`.
 - Initialize `H` as uniform random in the range `[0, 1]`.
 - The default value for `N` is 5.
 - See also [the paper](https://arxiv.org/abs/1407.7299) describing the
   strategy.

---

#### ***`NoInitialization`***:

 - When [`amf.Apply(V, rank, W, H)`](#applying-decompositions), the existing
   values of `W` and `H` will be used.
 - If `W` is not of size `V.n_rows` x `rank`, or if `H` is not of size `rank` x
   `V.n_cols`, a `std::invalid_argument` exception will be thrown.

---

#### ***`GivenInitialization<MatType>`***:

 - Set `W` and/or `H` to the given matrices when `Apply()` is called.
 - `MatType` should be set to the type of `W` or `H` (default `arma::mat`); see
   [`Apply()` Parameters](#apply-parameters).
 - Constructors:
   * `GivenInitialization<MatType>(W, H)`
     - Specify both initial `W` and `H` matrices.
   * `GivenInitialization<MatType>(M, isW=true)`
     - If `isW` is `true`, then set initial `W` to `M`.
     - If `isW` is `false`, then set initial `H` to `M`.
     - This constructor is meant to only be used with `MergeInitialization`
       (below).

---

#### ***`RandomAMFInitialization`***:

 - Initialize `W` and `H` as uniform random in the range `[0, 1]`.

---

#### ***`AverageInitialization`***:

 - Initialize each element of `W` and `H` to the square root of the average
   value of `V`, adding uniform random noise in the range `[0, 1]`.

---

#### ***`MergeInitialization<WRule, HRule>`***:

 - Use two different initialization rules, one for `W` (`WRule`) and one for `H`
   (`HRule`).
 - Constructors:
   * `MergeInitialization<WRule, HRule>()`
     - Create the merge initialization with default-constructed rules for `W`
       and `H`.
   * `MergeInitialization<WRule, HRule>(wRule, hRule)`
     - Create the merge initialization with instantiated rules for `W` and `H`.
     - `wRule` and `hRule` will be copied.
 - Any `WRule` and `HRule` classes must implement the `InitializeOne()`
   function.

---

For custom initialization rules, see
[Custom `InitializationRuleType`s](#custom-initializationruletypes).

---

### `UpdateRuleType`

 * Specifies the rules to use for the `W` update step and the `H` update step.
 * These rules are applied iteratively until convergence (controlled by
   [`TerminationPolicyType`](#terminationpolicytype).
 * The following choices are available for drop-in usage:

---

#### `NMF` updates

Non-negative matrix factorization (NMF) can be expressed with the `AMF` class
using any of the following `UpdateRuleType`s.

 - `NMFMultiplicativeDistanceUpdate`: update rule that ensure the Frobenius
   norm of the reconstruction error is decreasing at each iteration.
 - `NMFMultiplicativeDivergenceUpdate`: update rules that ensure
   Kullback-Leibler divergence is decreasing at each iteration.
 - `NMFALSUpdate`: alternating least-squares projections for `W` and `H`.

***Note***: when using these update rules, it may be more convenient to use the
more specific [`NMF`](nmf.md) class.  `NMF` is just a typedef for
`AMF<SimpleResidueTermination, RandomAcolInitialization<5>, NMFMultiplicativeDistanceUpdate>`.

---

#### `SVDBatchLearning`

 - Use gradient descent with momentum on the full matrix `V` to iteratively
   update `W` and then `H`.
 - Takes one template parameter: `SVDBatchLearning<WHMatType>`.
   * `WHMatType` specifies the type of matrix that will be used to store `W` and
     `H` (default: `arma::mat`).
 - Implements Algorithm 4 from Chih-Chao Ma's [A Guide to Singular Value
   Decomposition for Collaborative Filtering](https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9d14285a32d268b69d51e7036d5a391c007df886).
 - Constructor: `SVDBatchLearning<WHMatType>(u=0.0002, kw=0.0, kh=0.0, momentum=0.9)`
   * `u` (a `double`) is the learning rate (step size).
   * `kw` (a `double`) is the regularization penalty for the `W` matrix.
   * `kh` (a `double`) is the regularization penalty for the `H` matrix.
   * `momentum` (a `double`) is the momentum rate for each gradient descent
     step.

---

#### `SVDCompleteIncrementalLearning`

 - Use gradient descent on individual values of the full matrix `V` to
   iteratively update `W` and then `H`.
 - Takes one template parameter: `MatType`
   * `MatType` specifies the type of the `V` matrix (e.g. `arma::mat` or
     `arma::sp_mat`).
 - Each update to `W` and `H` is done by computing the gradient using a single
   nonzero value from `V` (similar to stochastic gradient descent with a batch
   size of 1).
 - Implements Algorithm 3 from Chih-Chao Ma's [A Guide to Singular Value
   Decomposition for Collaborative Filtering](https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9d14285a32d268b69d51e7036d5a391c007df886).
 - Constructor: `SVDCompleteIncrementalLearning(u=0.001, kw=0.0, kh=0.0)`
   * `u` (a `double`) is the learning rate (step size).
   * `kw` (a `double`) is the regularization penalty for the `W` matrix.
   * `kh` (a `double`) is the regularization penalty for the `H` matrix.

---

#### `SVDIncompleteIncrementalLearning`

 - Use gradient descent on individual columns of the full matrix `V` to
   iteratively update `W` and then `H`.
 - Takes one template parameter: `MatType`
   * `MatType` specifies the type of the `V` matrix (e.g. `arma::mat` or
     `arma::sp_mat`).
 - Each update to `W` and `H` is done by computing the gradient using all
   nonzero values in a single column of `V`.
 - Implements Algorithm 2 from Chih-Chao Ma's [A Guide to Singular Value
   Decomposition for Collaborative Filtering](https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9d14285a32d268b69d51e7036d5a391c007df886).
 - Constructor: `SVDIncompleteIncrementalLearning(u=0.001, kw=0.0, kh=0.0)`
   * `u` (a `double`) is the learning rate (step size).
   * `kw` (a `double`) is the regularization penalty for the `W` matrix.
   * `kh` (a `double`) is the regularization penalty for the `H` matrix.

---

For custom update rules, see
[Custom `UpdateRuleType`s](#custom-updateruletypes).

---

### Constructors

 * `amf = AMF<TerminationPolicyType, InitializationRuleType, UpdateRuleType>()`
   - Create an `AMF` object.
   - The rank of the decomposition is specified in the call to
     [`Apply()`](#applying-decompositions).

---

 * `amf = AMF<TerminationPolicyType, InitializationRuleType, UpdateRuleType>(terminationPolicy, initializeRule, updateRule)`
   - Create an AMF object with custom termination parameters.
   - `minResidue` (a `double`) specifies the minimum difference of the norm of
     `W * H` between iterations for termination.
   - `maxIterations` specifies the maximum number of iterations before
     decomposition terminates.

---

### Applying Decompositions

 * `double residue = amf.Apply(V, rank, W, H)`
   - Decompose the matrix `V` into two non-negative matrices `W` and `H` with
     rank `rank`.
   - `W` will be set to size `V.n_rows` x `rank`.
   - `H` will be set to size `rank` x `V.n_cols`.
   - `W` and `H` are initialized using the specified
     [`InitializationRuleType`](#initializationruletype).
   - The return value is determined by the
     [`TerminationPolicyType`](#terminationpolicytype); termination policies
     typically return residue or a similar measure of goodness-of-fit.

---

***Notes***:

 - Low values of `rank` will give smaller matrices `W` and `H`, but the
   decomposition will be less accurate.  Larger values of `rank` will give more
   accurate decompositions, but will take longer to compute.  Every problem is
   different, so `rank` must be specified manually.

 - The expression `W * H` can be used to reconstruct the matrix `V`.

---

#### `Apply()` Parameters:

| **name** | **type** | **description** |
|----------|----------|-----------------|
| `V` | [`arma::sp_mat` or `arma::mat`](../matrices.md) | Input matrix to be factorized. |
| `rank` | `size_t` | Rank of decomposition; lower is smaller, higher is more accurate. |
| `W` | [`arma::mat`](../matrices.md) | Output matrix in which `W` will be stored. |
| `H` | [`arma::mat`](../matrices.md) | Output matrix in which `H` will be stored. |

***Note:*** Matrices with different element types can be used for `V`, `W`, and
`H`; e.g., `arma::fmat`.  While `V` can be sparse or dense, `W` and `H` must be
dense matrices.

### Simple Examples

See also the [simple usage example](#simple-usage-example) for a trivial use of
`AMF`.

---

Decompose a dense matrix with simple residue termination using custom
parameters.

```c++
// Create a low-rank V matrix by multiplying together two random matrices.
arma::mat V = arma::randu<arma::mat>(500, 25) *
              arma::randn<arma::mat>(25, 5000);

// Create the AMF object with a looser tolerance of 1e-3 and a maximum of 100
// iterations only.
// Since we have not specified the update rules, this will by default use the
// NMF multiplicative distance update.
mlpack::AMF<mlpack::SimpleResidueTermination> amf(
    mlpack::SimpleResidueTermination(1e-3, 500));

arma::mat W, H;

// Decompose with a rank of 25.
// W will have size 500 x 25, and H will have size 25 x 5000.
const double residue = amf.Apply(V, 25, W, H);

std::cout << "Residue of decomposition: " << residue << "." << std::endl;

// Compute RMSE of decomposition.
const double rmse = arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem);
std::cout << "RMSE of decomposition: " << rmse << "." << std::endl;
```

---

Decompose the sparse MovieLens dataset using batch SVD learning, a rank-12
decomposition, and `float` element type.

```c++
// See https://datasets.mlpack.org/movielens-100k.csv.
arma::sp_fmat V;
mlpack::data::Load("movielens-100k.csv", V, true);

// Create the AMF object.  Use default parameters for the termination policy,
// initialization rule, and update rules.
mlpack::AMF<mlpack::SimpleResidueTermination,
            mlpack::RandomAcolInitialization<5>,
            mlpack::SVDBatchLearning<arma::fmat>> amf;

arma::fmat W, H;

// Decompose the Movielens dataset with rank 12.
const double residue = amf.Apply(V, 12, W, H);

std::cout << "Residue of MovieLens decomposition: " << residue << "."
    << std::endl;

// Compute RMSE of decomposition.
const double rmse = arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem);
std::cout << "RMSE of decomposition: " << rmse << "." << std::endl;
```

---

Compare quality of decompositions of MovieLens with different update rules.

```c++
// See https://datasets.mlpack.org/movielens-100k.csv.
arma::sp_mat V;
mlpack::data::Load("movielens-100k.csv", V, true);

// Create four AMF objects using different update rules:
//  - SVDBatchLearning
//  - SVDCompleteIncrementalLearning
//  - SVDIncompleteIncrementalLearning
//  - NMFALSUpdate
// We use MaxIterationTermination for each, wrapped in incremental terminators
// if appropriate.

mlpack::AMF<mlpack::MaxIterationTermination,
            mlpack::RandomAcolInitialization<5>,
            mlpack::SVDBatchLearning<>>
    svdBatchAMF(mlpack::MaxIterationTermination(500),
                mlpack::RandomAcolInitialization<5>(),
                mlpack::SVDBatchLearning<>(0.0005 /* step size */));

mlpack::AMF<mlpack::CompleteIncrementalTermination<
                mlpack::MaxIterationTermination
            >,
            mlpack::RandomAcolInitialization<5>,
            mlpack::SVDCompleteIncrementalLearning<arma::sp_mat>>
    svdCompleteAMF(mlpack::CompleteIncrementalTermination<
                       mlpack::MaxIterationTermination>(500),
                   mlpack::RandomAcolInitialization<5>(),
                   mlpack::SVDCompleteIncrementalLearning<
                       arma::sp_mat>(0.0002));

mlpack::AMF<mlpack::IncompleteIncrementalTermination<
                mlpack::MaxIterationTermination>,
            mlpack::RandomAcolInitialization<5>,
            mlpack::SVDIncompleteIncrementalLearning<arma::sp_mat>>
    svdIncompleteAMF(mlpack::IncompleteIncrementalTermination<
                         mlpack::MaxIterationTermination>(500),
                     mlpack::RandomAcolInitialization<5>(),
                     mlpack::SVDIncompleteIncrementalLearning<
                         arma::sp_mat>(0.0002));

// NMFALSUpdate does not have any template parameters, so we don't need to pass
// it to the constructor.
mlpack::AMF<mlpack::MaxIterationTermination,
            mlpack::RandomAcolInitialization<5>,
            mlpack::NMFALSUpdate>
    nmf(mlpack::MaxIterationTermination(500));

// Decompose with the given rank.
arma::mat W, H;
const size_t rank = 15;

const double svdBatchResidue = svdBatchAMF.Apply(V, rank, W, H);
const double svdBatchRMSE = arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem);
std::cout << "RMSE for SVD batch learning: " << svdBatchRMSE << "."
    << std::endl;

const double svdCompleteResidue = svdCompleteAMF.Apply(V, rank, W, H);
const double svdCompleteRMSE = arma::norm(V - W * H, "fro") /
    std::sqrt(V.n_elem);
std::cout << "RMSE for SVD complete incremental learning: " << svdCompleteRMSE
    << "." << std::endl;

const double svdIncompleteResidue = svdIncompleteAMF.Apply(V, rank, W, H);
const double svdIncompleteRMSE = arma::norm(V - W * H, "fro") /
    std::sqrt(V.n_elem);
std::cout << "RMSE for SVD incomplete incremental learning: "
    << svdIncompleteRMSE << "." << std::endl;

const double nmfResidue = nmf.Apply(V, rank, W, H);
const double nmfRMSE = arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem);
std::cout << "RMSE for NMF with ALS update rules: " << nmfRMSE << "."
    << std::endl;
```

---

Use a pre-specified initialization for `W` and `H`.

```c++
// See https://datasets.mlpack.org/movielens-100k.csv.
arma::sp_mat V;
mlpack::data::Load("movielens-100k.csv", V, true);

arma::mat W, H;

// Pre-initialize W and H.
// W will be filled with random values from a normal distribution.
// H will be filled with 1s.
W.randn(V.n_rows, 15);
H.set_size(15, V.n_cols);
H.fill(0.2);

mlpack::AMF<mlpack::MaxIterationTermination,
            mlpack::NoInitialization,
            mlpack::SVDBatchLearning<>>
    amf(mlpack::MaxIterationTermination(1000));
const double residue = amf.Apply(V, 15, W, H);
const double rmse = arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem);

std::cout << "RMSE of SVDBatchLearning decomposition with pre-specified W and "
    << "H: " << rmse << "." << std::endl;
```

---

Use `MergeInitialization` to specify different strategies to initialize the `W`
and `H` matrices.

```c++
// See https://datasets.mlpack.org/movielens-100k.csv.
arma::sp_mat V;
mlpack::data::Load("movielens-100k.csv", V, true);

arma::mat W, H;

// This will initialize the W matrix.
mlpack::RandomAcolInitialization<5> initW;

// This will initialize the H matrix.
mlpack::RandomAMFInitialization initH;

// Combine the two initializations so we can pass it to the AMF class.
using InitType =
    mlpack::MergeInitialization<mlpack::RandomAcolInitialization<5>,
                                mlpack::RandomAMFInitialization>;
InitType init(initW, initH);

// Create an AMF object with the custom initialization.
mlpack::AMF<mlpack::CompleteIncrementalTermination<
                mlpack::SimpleResidueTermination
            >,
            InitType,
            mlpack::SVDCompleteIncrementalLearning<arma::sp_mat>>
    amf(mlpack::CompleteIncrementalTermination<
            mlpack::SimpleResidueTermination>(), init);

// Perform AMF with a rank of 10.
const double residue = amf.Apply(V, 10, W, H);

std::cout << "Residue after training: " << residue << "." << std::endl;
```

---

Use `ValidationRMSETermination` to decompose the MovieLens dataset until the
RMSE of the held-out validation set is sufficiently low.

```c++
// See https://datasets.mlpack.org/movielens-100k.csv.
arma::sp_mat V;
mlpack::data::Load("movielens-100k.csv", V, true);

arma::mat W, H;

// Create a ValidationRMSETermination class that will hold out 3k points from V.
// This will remove 3000 nonzero entries from V.
mlpack::ValidationRMSETermination<arma::sp_mat> t(V, 3000);

// Create the AMF object with the instantiated termination policy.
mlpack::AMF<mlpack::ValidationRMSETermination<arma::sp_mat>,
            mlpack::RandomAcolInitialization<5>,
            mlpack::SVDBatchLearning<>> amf(t);

// Perform AMF with a rank of 20.
// Note the RMSE returned here is the RMSE on the validation set.
const double rmse = amf.Apply(V, 20, W, H);
const double rmseTrain = arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem);

std::cout << "Training RMSE:   " << rmseTrain << "." << std::endl;
std::cout << "Validation RMSE: " << rmse << "." << std::endl;
```

---

### Custom `TerminationPolicyType`s

See also the [list of available `TerminationPolicyType`s](#terminationpolicytype).

If custom functionality is desired for controlling the termination of the `AMF`
algorithm, a custom class may be implemented that must implement the following
functions:

```c++
// You can use this as a starting point for implementation.
class CustomTerminationPolicy
{
 public:
  // Initialize the termination policy for the given matrix V.  (It is okay to
  // do nothing.)  This function is called at the beginning of Apply().
  //
  // If the termination policy requires V to compute convergence, store a
  // reference or pointer to it in this function.
  template<typename MatType>
  void Initialize(const MatType& V);

  // Check if convergence has occurred for the given W and H matrices.  Return
  // `true` if so.
  //
  // Note that W and H may have different types than V (i.e. V may be sparse,
  // and W and H must be dense.)
  template<typename WHMatType>
  bool IsConverged(const MatType& H, const MatType& W);

  // Return the value that should be returned for the `amf.Apply()` function
  // when convergence has been reached.  This is called at the end of
  // `amf.Apply()`.
  const double Index();

  // Return the number of iterations that have been completed.  This is called
  // at the end of `amf.Apply()`.
  const size_t Iteration();
};
```

---

### Custom `InitializationRuleType`s

See also the [list of available `InitializationRuleType`s](#initializationruletype).

If custom functionality is desired for initializing `W` and `H`, a custom class
may be implemented that must implement the following functions:

```c++
// You can use this as a starting point for implementation.
class CustomInitialization
{
 public:
  // Initialize the W and H matrices, given V and the rank of the decomposition.
  // This is called at the start of `Apply()`.
  //
  // Note that `MatType` may be different from `WHMatType`; e.g., `V` could be
  // sparse, but `W` and `H` must be dense.
  template<typename MatType, typename WHMatType>
  void Initialize(const MatType& V,
                  const size_t rank,
                  WHMatType& W,
                  WHMatType& H);

  // Initialize one of the W or H matrices, given V and the rank of the
  // decomposition.
  //
  // If `isW` is `true`, then `M` should be treated as though it is `W`;
  // if `isW` is `false`, then `M` should be treated as thought it is `H`.
  //
  // This function only needs to be implemented if it is intended to use the
  // custom initialization strategy with `MergeInitialization`.
  template<typename MatType, typename WHMatType>
  void InitializeOne(const MatType& V,
                     const size_t rank,
                     WHMatType& M,
                     const bool isW);
};
```

For example, the code below implements a custom termination policy that sets a
limit on how long AMF is allowed to take:

```c++
class CustomTimeTermination
{
 public:
  CustomTimeTermination(const double totalAllowedTime) :
      totalAllowedTime(totalAllowedTime) { }

  template<typename MatType>
  void Initialize(const MatType& /* V */)
  {
    totalTime = 0.0;
    iteration = 0;
    c.tic();
  }

  template<typename WHMatType>
  bool IsConverged(const WHMatType& /* W */, const WHMatType& /* H */)
  {
    totalTime += c.toc();
    c.tic();
    ++iteration;
    return (totalTime > totalAllowedTime);
  }

  const double Index() const { return totalTime; }
  const size_t Iteration() const { return iteration; }

 private:
  double totalAllowedTime;
  double totalTime;
  size_t iteration;
  arma::wall_clock c; // used for convenient timing
};
```

Then we can use it in a program:

```c++
// See https://datasets.mlpack.org/movielens-100k.csv.
arma::sp_fmat V;
mlpack::data::Load("movielens-100k.csv", V, true);

CustomTimeTermination t(5 /* seconds */);
mlpack::AMF<CustomTimeTermination,
            mlpack::RandomAcolInitialization<5>,
            mlpack::SVDBatchLearning<arma::fmat>> amf(t);

arma::fmat W, H;
const double actualTime = amf.Apply(V, 10, W, H);
const double rmse = arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem);

std::cout << "Actual time used for decomposition: " << actualTime << "."
    << std::endl;
std::cout << "RMSE after ~5 seconds: " << rmse << "." << std::endl;
```

---

### Custom `UpdateRuleType`s

See also the [list of available `UpdateRuleType`s](#updateruletype).

If custom functionality is desired for the update rules to be applied to `W` and
`H`, a custom class may be implemented that must implement the following
functions:

```c++
// You can use this as a starting point for implementation.
class CustomUpdateRule
{
 public:
  // Set initial values for the factorization.  This is called at the beginning
  // of Apply(), before WUpdate() or HUpdate() are called.
  //
  // `MatType` will be the type of `V` (an Armadillo dense or sparse matrix).
  //
  template<typename MatType>
  void Initialize(const MatType& V, const size_t rank);

  // Update the `W` matrix given `V` and the current `H` matrix.
  //
  // `MatType` will be the type of `V`, and `WHMatType` will be the type of `W`
  // and `H`.  Both will be matrix types matching the Armadillo API.
  template<typename MatType, typename WHMatType>
  void WUpdate(const MatType& V, WHMatType& W, const WHMatType& H);

  // Update the `H` matrix given `V` and the current `W` matrix.
  //
  // `MatType` will be the type of `V`, and `WHMatType` will be the type of `W`
  // and `H`.  Both will be matrix types matching the Armadillo API.
  template<typename MatType, typename WHMatType>
  void HUpdate(const MatType& V, const WHMatType& W, WHMatType& H);

  // Serialize the update rule using the cereal library.
  // This is only necessary if the update rule will be used with an AMF object
  // that is saved or loaded with data::Save() or data::Load().
  template<typename Archive>
  void serialize(Archive& ar, const uint32_t version);
};
```