1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
|
## `DecisionTree`
The `DecisionTree` class implements a decision tree classifier that supports
numerical and categorical features, by default using Gini gain to choose which
feature to split on. The class offers several template parameters and several
runtime options that can be used to control the behavior of the tree.
Decision trees are useful for classifying points with _discrete labels_ (i.e.
`0`, `1`, `2`). For predicting _continuous values_ (regression), see
[`DecisionTreeRegressor`](decision_tree_regressor.md).
#### Simple usage example:
```c++
// Train a decision tree on random numeric data and predict labels on test data:
// All data and labels are uniform random; 10 dimensional data, 5 classes.
// Replace with a data::Load() call or similar for a real application.
arma::mat dataset(10, 1000, arma::fill::randu); // 1000 points.
arma::Row<size_t> labels =
arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 4));
arma::mat testDataset(10, 500, arma::fill::randu); // 500 test points.
mlpack::DecisionTree tree; // Step 1: create model.
tree.Train(dataset, labels, 5); // Step 2: train model.
arma::Row<size_t> predictions;
tree.Classify(testDataset, predictions); // Step 3: classify points.
// Print some information about the test predictions.
std::cout << arma::accu(predictions == 2) << " test points classified as class "
<< "2." << std::endl;
```
<p style="text-align: center; font-size: 85%"><a href="#simple-examples">More examples...</a></p>
#### Quick links:
* [Constructors](#constructors): create `DecisionTree` objects.
* [`Train()`](#training): train model.
* [`Classify()`](#classification): classify with a trained model.
* [Other functionality](#other-functionality) for loading, saving, and
inspecting.
* [Examples](#simple-examples) of simple usage and links to detailed example
projects.
* [Template parameters](#advanced-functionality-template-parameters) for custom
behavior.
#### See also:
* [`DecisionTreeRegressor`](decision_tree_regressor.md)
* [Random forests](random_forest.md)
* [mlpack classifiers](../modeling.md#classification)
* [Decision tree on Wikipedia](https://en.wikipedia.org/wiki/Decision_tree)
* [Decision tree learning on Wikipedia](https://en.wikipedia.org/wiki/Decision_tree_learning)
### Constructors
* `tree = DecisionTree()`
- Initialize tree without training.
- You will need to call [`Train()`](#training) later to train the tree before
calling [`Classify()`](#classification).
---
* `tree = DecisionTree(data, labels, numClasses, minLeafSize=10, minGainSplit=1e-7, maxDepth=0)`
* `tree = DecisionTree(data, labels, numClasses, weights, minLeafSize=10, minGainSplit=1e-7, maxDepth=0)`
- Train on numerical-only data (optionally with instance weights).
---
* `tree = DecisionTree(data, datasetInfo, labels, numClasses, minLeafSize=10, minGainSplit=1e-7, maxDepth=0)`
* `tree = DecisionTree(data, datasetInfo, labels, numClasses, weights, minLeafSize=10, minGainSplit=1e-7, maxDepth=0)`
- Train on mixed categorical data (optionally with instance weights).
---
#### Constructor Parameters:
| **name** | **type** | **description** | **default** |
|----------|----------|-----------------|-------------|
| `data` | [`arma::mat`](../matrices.md) | [Column-major](../matrices.md#representing-data-in-mlpack) training matrix. | _(N/A)_ |
| `datasetInfo` | [`data::DatasetInfo`](../load_save.md#loading-categorical-data) | Dataset information, specifying type information for each dimension. | _(N/A)_ |
| `labels` | [`arma::Row<size_t>`](../matrices.md) | Training labels, [between `0` and `numClasses - 1`](../core/normalizing_labels.md) (inclusive). Should have length `data.n_cols`. | _(N/A)_ |
| `weights` | [`arma::rowvec`](../matrices.md) | Weights for each training point. Should have length `data.n_cols`. | _(N/A)_ |
| `numClasses` | `size_t` | Number of classes in the dataset. | _(N/A)_ |
| `minLeafSize` | `size_t` | Minimum number of points in each leaf node. | `10` |
| `minGainSplit` | `double` | Minimum gain for a node to split. | `1e-7` |
| `maxDepth` | `size_t` | Maximum depth for the tree. (0 means no limit.) | `0` |
* Setting `minLeafSize` too small (e.g. `1`) may cause the tree to overfit to
its training data, and may create a very large tree. However, setting it too
large may cause the tree to be very small and underfit.
* `minGainSplit` has similar behavior: if it is too small, the tree may
overfit; if too large, it may underfit.
***Note:*** different types can be used for `data` and `weights` (e.g.,
`arma::fmat`, `arma::sp_mat`). However, the element type of `data` and
`weights` must match; for example, if `data` has type `arma::fmat`, then
`weights` must have type `arma::frowvec`.
### Training
If training is not done as part of the constructor call, it can be done with one
of the following versions of the `Train()` member function:
* `tree.Train(data, labels, numClasses, minLeafSize=10, minGainSplit=1e-7, maxDepth=0)`
* `tree.Train(data, labels, numClasses, weights, minLeafSize=10, minGainSplit=1e-7, maxDepth=0)`
- Train on numerical-only data (optionally with instance weights).
---
* `tree.Train(data, datasetInfo, labels, numClasses, minLeafSize=10, minGainSplit=1e-7, maxDepth=0)`
* `tree.Train(data, datasetInfo, labels, numClasses, weights, minLeafSize=10, minGainSplit=1e-7, maxDepth=0)`
- Train on mixed categorical data (optionally with instance weights).
---
Types of each argument are the same as in the table for constructors
[above](#constructor-parameters).
***Notes***:
* Training is not incremental. A second call to `Train()` will retrain the
decision tree from scratch.
* `Train()` returns a `double` with the final gain of the tree (the Gini gain,
unless a different
[`FitnessFunction` template parameter](#fully-custom-behavior) is specified.
### Classification
Once a `DecisionTree` is trained, the `Classify()` member function can be used
to make class predictions for new data.
* `size_t predictedClass = tree.Classify(point)`
- ***(Single-point)***
- Classify a single point, returning the predicted class.
---
* `tree.Classify(point, prediction, probabilitiesVec)`
- ***(Single-point)***
- Classify a single point and compute class probabilities.
- The predicted class is stored in `prediction`.
- The probability of class `i` can be accessed with `probabilitiesVec[i]`.
---
* `tree.Classify(data, predictions)`
- ***(Multi-point)***
- Classify a set of points.
- The prediction for data point `i` can be accessed with `predictions[i]`.
---
* `tree.Classify(data, predictions, probabilities)`
- ***(Multi-point)***
- Classify a set of points and compute class probabilities for each point.
- The prediction for data point `i` can be accessed with `predictions[i]`.
- The probability of class `j` for data point `i` can be accessed with
`probabilities(j, i)`.
---
#### Classification Parameters:
| **usage** | **name** | **type** | **description** |
|-----------|----------|----------|-----------------|
| _single-point_ | `point` | [`arma::vec`](../matrices.md) | Single point for classification. |
| _single-point_ | `prediction` | `size_t&` | `size_t` to store class prediction into. |
| _single-point_ | `probabilitiesVec` | [`arma::vec&`](../matrices.md) | `arma::vec&` to store class probabilities into. Will be set to length `numClasses`. |
||||
| _multi-point_ | `data` | [`arma::mat`](../matrices.md) | Set of [column-major](../matrices.md#representing-data-in-mlpack) points for classification. |
| _multi-point_ | `predictions` | [`arma::Row<size_t>&`](../matrices.md) | Vector of `size_t`s to store class prediction into. Will be set to length `data.n_cols`. |
| _multi-point_ | `probabilities` | [`arma::mat&`](../matrices.md) | Matrix to store class probabilities into (number of rows will be equal to number of classes, number of columns will be equal to `data.n_cols`). |
***Note:*** different types can be used for `data` and `point` (e.g.
`arma::fmat`, `arma::sp_mat`, `arma::sp_vec`, etc.). However, the element type
that is used should be the same type that was used for training.
### Other Functionality
* A `DecisionTree` can be serialized with
[`data::Save()` and `data::Load()`](../load_save.md#mlpack-objects).
* `tree.NumChildren()` will return a `size_t` indicating the number of children
in the node `tree`. If there was no split, zero is returned.
* `tree.Child(i)` will return a `DecisionTree` object representing the `i`th
child of the node `tree`.
* `tree.SplitDimension()` returns a `size_t` indicating which dimension the
node `tree` splits on.
* `tree.NumClasses()` returns a `size_t` indicating the number of classes the
tree was trained on.
For complete functionality, the [source
code](/src/mlpack/methods/decision_tree/decision_tree.hpp) can be consulted.
Each method is fully documented.
### Simple Examples
See also the [simple usage example](#simple-usage-example) for a trivial use of
`DecisionTree`.
---
Train a decision tree on mixed categorical data and save it:
```c++
// Load a categorical dataset.
arma::mat dataset;
mlpack::data::DatasetInfo info;
// See https://datasets.mlpack.org/covertype.train.arff.
mlpack::data::Load("covertype.train.arff", dataset, info, true);
arma::Row<size_t> labels;
// See https://datasets.mlpack.org/covertype.train.labels.csv.
mlpack::data::Load("covertype.train.labels.csv", labels, true);
// Create the tree.
mlpack::DecisionTree tree;
// Train on the given dataset, specifying a minimum leaf size of 5.
tree.Train(dataset, info, labels, 7 /* classes */, 5 /* minimum leaf size */);
// Load categorical test data.
arma::mat testDataset;
// See https://datasets.mlpack.org/covertype.test.arff.
mlpack::data::Load("covertype.test.arff", testDataset, info, true);
// Predict class of first test point.
const size_t firstPrediction = tree.Classify(testDataset.col(0));
std::cout << "Predicted class of first test point is " << firstPrediction << "."
<< std::endl;
// Predict class and probabilities of second test point.
size_t secondPrediction;
arma::vec secondProbabilities;
tree.Classify(testDataset.col(1), secondPrediction, secondProbabilities);
std::cout << "Class probabilities of second test point: " <<
secondProbabilities.t();
// Save the tree to `tree.bin`.
mlpack::data::Save("tree.bin", "tree", tree);
```
---
Load a tree and print some information about it.
```c++
mlpack::DecisionTree tree;
// This call assumes a tree called "tree" has already been saved to `tree.bin`
// with `data::Save()`.
mlpack::data::Load("tree.bin", "tree", tree, true);
if (tree.NumChildren() > 0)
{
std::cout << "The split dimension of the root node of the tree in `tree.bin` "
<< "is dimension " << tree.SplitDimension() << "." << std::endl;
}
else
{
std::cout << "The tree in `tree.bin` is a leaf (it has no children)."
<< std::endl;
}
```
---
See also the following fully-working examples:
- [Loan default prediction with `DecisionTree`](https://github.com/mlpack/examples/blob/master/jupyter_notebook/decision_tree/loan_default_prediction/loan-default-prediction-cpp.ipynb)
### Advanced Functionality: Template Parameters
#### Using different element types.
`DecisionTree`'s constructors, `Train()`, and `Classify()` functions support
any data type, so long as it supports the Armadillo matrix API. So, for
instance, learning can be done on single-precision floating-point data:
```c++
// 1000 random points in 10 dimensions.
arma::fmat dataset(10, 1000, arma::fill::randu);
// Random labels for each point, totaling 5 classes.
arma::Row<size_t> labels =
arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 4));
// Train in the constructor.
mlpack::DecisionTree tree(dataset, labels, 5);
// Create test data (500 points).
arma::fmat testDataset(10, 500, arma::fill::randu);
arma::Row<size_t> predictions;
tree.Classify(testDataset, predictions);
// Now `predictions` holds predictions for the test dataset.
// Print some information about the test predictions.
std::cout << arma::accu(predictions == 2) << " test points classified as class "
<< "2." << std::endl;
```
---
#### Fully custom behavior.
The `DecisionTree` class also supports several template parameters, which can
be used for custom behavior during learning. The full signature of the class is
as follows:
```
DecisionTree<FitnessFunction,
NumericSplitType,
CategoricalSplitType,
DimensionSelectionType,
NoRecursion>
```
* `FitnessFunction`: the measure of goodness to use when deciding on tree
splits
* `NumericSplitType`: the strategy used for finding splits on numeric data
dimensions
* `CategoricalSplitType`: the strategy used for finding splits on categorical
data dimensions
* `DimensionSelectionType`: the strategy used for proposing dimensions to
attempt to split on
* `NoRecursion`: a boolean indicating whether to build a tree or a stump
(one level tree)
Below, details are given for the requirements of each of these template types.
---
#### `FitnessFunction`
* Specifies the fitness function to use when learning a decision tree.
* The `GiniGain` _(default)_ and `InformationGain` classes are available for
drop-in usage.
* A custom class must implement three functions:
```c++
// You can use this as a starting point for implementation.
class CustomFitnessFunction
{
// Return the range (difference between maximum and minimum gain values).
double Range(const size_t numClasses);
// Compute the gain for the given vector of labels, where `labels[i]` has an
// associated instance weight `weights[i]`.
//
// `RowType` and `WeightVecType` will be vector types following the Armadillo
// API. If `UseWeights` is `false`, then the `weights` vector should be
// ignored (e.g. the labels are not weighted).
template<bool UseWeights, typename RowType, typename WeightVecType>
double Evaluate(const RowType& labels,
const size_t numClasses,
const WeightVecType& weights);
// Compute the gain for the given counted set of labels, where `counts[i]`
// contains the number of points with label `i`. There are `totalCount`
// labels total, and `counts` has length `numClasses`.
//
// `UseWeights` is ignored, and `CountType` will be an integral type (e.g.
// `size_t`).
template<bool UseWeights, typename CountType>
double EvaluatePtr(const CountType* counts,
const size_t numClasses,
const CountType totalCount);
};
```
---
#### `NumericSplitType`
* Specifies the strategy to be used during training when splitting a numeric
feature.
* The `BestBinaryNumericSplit` _(default)_ class is available for drop-in
usage and finds the best binary (two-way) split among all possible binary
splits.
* The `RandomBinaryNumericSplit` class is available for drop-in usage and
will select a split randomly between the minimum and maximum values of a
dimension. It is very efficient but does not yield splits that maximize
the gain. (Used by the `ExtraTrees` variant of
[`RandomForest`](random_forest.md).)
* A custom class must take a [`FitnessFunction`](#fitnessfunction) as a
template parameter, implement three functions, and have an internal
structure `AuxiliarySplitInfo` that is used at classification time:
```c++
template<typename FitnessFunction>
class CustomNumericSplit
{
public:
// If a split with better resulting gain than `bestGain` is found, then
// information about the new, better split should be stored in `splitInfo` and
// `aux`. Specifically, a split is better than `bestGain` if the sum of the
// gains that the children will have (call this `sumChildrenGains`) is
// sufficiently better than the gain of the unsplit node (call this
// `unsplitGain`):
//
// split if `sumChildrenGains - unsplitGain > bestGain`, and
// `sumChildrenGains - unsplitGain > minGainSplit`, and
// each child will have at least `minLeafSize` points
//
// The new best split value should be returned (or anything greater than or
// equal to `bestGain` if no better split is found).
//
// If a new best split is found, then `splitInfo` and `aux` should be
// populated with the information that will be needed for
// `CalculateDirection()` to successfully choose the child for a given point.
// `splitInfo` should be set to a vector of length 1. The format of `aux` is
// arbitrary and is detailed more below.
//
// If `UseWeights` is false, the vector `weights` should be ignored.
// Otherwise, they are instance weighs for each value in `data` (one dimension
// of the input data).
template<bool UseWeights, typename VecType, typename WeightVecType>
double SplitIfBetter(const double bestGain,
const VecType& data,
const arma::Row<size_t>& labels,
const size_t numClasses,
const WeightVecType& weights,
const size_t minLeafSize,
const double minGainSplit,
arma::vec& splitInfo,
AuxiliarySplitInfo& aux);
// Return the number of children for a given split. If there was no split,
// return zero. `splitInfo` and `aux` contain the split information, as set
// in `SplitIfBetter`.
size_t NumChildren(const arma::vec& splitInfo,
const AuxiliarySplitInfo& aux);
// Given a point with value `point`, and split information `splitInfo` and
// `aux`, return the index of the child that corresponds to the point. So,
// e.g., if the split type was a binary split on the value `splitInfo`, you
// might return `0` if `point < splitInfo`, and `1` otherwise.
template<typename ElemType>
static size_t CalculateDirection(
const ElemType& point,
const double& splitInfo,
const AuxiliarySplitInfo& /* aux */);
// This class can hold any extra data that is necessary to encode a split. It
// should only be non-empty if a single `double` value cannot be used to hold
// the information corresponding to a split.
class AuxiliarySplitInfo { };
};
```
---
#### `CategoricalSplitType`
* Specifies the strategy to be used during training when splitting a
categorical feature.
* The `AllCategoricalSplit` _(default)_ and `BestBinaryCategoricalSplit` are~
available for drop-in usage.
* `AllCategoricalSplit`, the default ID3 split
algorithm, splits all categories into their own node. This variant is simple,
and has complexity `O(n)`, where `n` is the number of samples.
* `BestBinaryCategoricalSplit` is the preferred algorithm of
[the CART system](https://www.taylorfrancis.com/books/mono/10.1201/9781315139470/classification-regression-trees-leo-breiman-jerome-friedman-olshen-charles-stone).
It will find the the best (entropy-minimizing) binary partition of the
categories. This algorithm has complexity `O(n lg n)` in the case of binary
outcomes, but is exponential in the number of _categories_ when there are
more than two _classes_.~
- ***Note***: `BestBinaryCategoricalSplit` should not be chosen when there
are multiple classes and many categories.
* A custom class must take a [`FitnessFunction`](#fitnessfunction) as a
template parameter, implement three functions, and have an internal
structure `AuxiliarySplitInfo` that is used at classification time:
```c++
template<typename FitnessFunction>
class CustomCategoricalSplit
{
public:
// If a split with better resulting gain than `bestGain` is found, then
// information about the new, better split should be stored in `splitInfo` and
// `aux`. Specifically, a split is better than `bestGain` if the sum of the
// gains that the children will have (call this `sumChildrenGains`) is
// sufficiently better than the gain of the unsplit node (call this
// `unsplitGain`):
//
// split if `sumChildrenGains - unsplitGain > bestGain`, and
// `sumChildrenGains - unsplitGain > minGainSplit`, and
// each child will have at least `minLeafSize` points
//
// The new best split value should be returned (or anything greater than or
// equal to `bestGain` if no better split is found).
//
// If a new best split is found, then `splitInfo` and `aux` should be
// populated with the information that will be needed for
// `CalculateDirection()` to successfully choose the child for a given point.
// `splitInfo` should be set to a non-empty vector. The format of `aux` is
// arbitrary and is detailed more below.
//
// If `UseWeights` is false, the vector `weights` should be ignored.
// Otherwise, they are instance weighs for each value in `data` (one
// categorical dimension of the input data, which takes values between `0` and
// `numCategories - 1`).
template<bool UseWeights, typename VecType, typename LabelsType,
typename WeightVecType>
static double SplitIfBetter(
const double bestGain,
const VecType& data,
const size_t numCategories,
const LabelsType& labels,
const size_t numClasses,
const WeightVecType& weights,
const size_t minLeafSize,
const double minGainSplit,
arma::vec& splitInfo,
AuxiliarySplitInfo& aux);
// Return the number of children for a given split. If there was no split,
// return zero. `splitInfo` and `aux` contain the split information, as set
// in `SplitIfBetter`.
size_t NumChildren(const arma::vec& splitInfo,
const AuxiliarySplitInfo& aux);
// Given a point with (categorical) value `point`, and split information
// `splitInfo` and `aux`, return the index of the child that corresponds to
// the point. So, e.g., for `AllCategoricalSplit`, which splits a categorical
// dimension into one child for each category, this simply returns `point`.
template<typename ElemType>
static size_t CalculateDirection(
const ElemType& point,
const double& splitInfo,
const AuxiliarySplitInfo& /* aux */);
// This class can hold any extra data that is necessary to encode a split. It
// should only be non-empty if a single `double` value cannot be used to hold
// the information corresponding to a split.
class AuxiliarySplitInfo { };
};
```
---
#### `DimensionSelectionType`
* When splitting a decision tree, `DimensionSelectionType` proposes possible
dimensions to try splitting on.
* `AllDimensionSplit` _(default)_ is available for drop-in usage and proposes
all dimensions for splits.
* `MultipleRandomDimensionSelect` proposes a different random subset of
dimensions at each decision tree node.
- By default each random subset is of size `sqrt(d)` where `d` is the number
of dimensions in the data.
- If constructed as `MultipleRandomDimensionSelect(n)` and passed to the
constructor of `DecisionTree` or the `Train()` function, each random
subset will be of size `n`.
* Each `DecisionTree` [constructor](#constructors) and each version of the
[`Train()`](#training) function optionally accept an instantiated
`DimensionSelectionType` object as the very last parameter (after
`maxDepth`), in case some internal state in the dimension selection mechanism
is required.
* A custom class must implement three simple functions:
```c++
class CustomDimensionSelect
{
public:
// Get the first dimension to try.
// This should return a value between `0` and `data.n_rows`.
size_t Begin();
// Get the next dimension to try. Note that internal state can be used to
// track which candidate dimension is currently being looked at.
// This should return a value between `0` and `data.n_rows`.
size_t Next();
// Get a value indicating that all dimensions have been tried.
size_t End() const;
// The usage pattern of `DimensionSelectionType` by `DecisionTree` is as
// follows, assuming that `dim` is an instantiated `DimensionSelectionType`
// object:
//
// for (size_t dim = dim.Begin(); dim != dim.End(); dim = dim.Next())
// {
// // ... try to split on dimension `dim` ...
// }
};
```
---
#### `NoRecursion`
* A `bool` value that indicates whether a decision tree should be
constructed recursively.
* If `true`, only the root node will be split (producing a decision
stump).
* If `false` _(default)_, a full decision tree will be built.
|