1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
|
## `LinearSVM`
The `LinearSVM` class implements an L2-regularized support vector machine for
numerical data that can train using any ensmallen optimizer. The class offers
standard classification functionality. Linear SVM is useful for multi-class
classification (i.e. classes are `0`, `1`, `2`, etc.).
#### Simple usage example:
```c++
// Train a linear SVM classifier on random data and predict labels:
// All data and labels are uniform random; 5 dimensional data, 4 classes.
// Replace with a data::Load() call or similar for a real application.
arma::mat dataset(5, 1000, arma::fill::randu); // 1000 points.
arma::Row<size_t> labels =
arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 3));
arma::mat testDataset(5, 500, arma::fill::randu); // 500 test points.
mlpack::LinearSVM svm; // Step 1: create model.
svm.Train(dataset, labels, 4); // Step 2: train model.
arma::Row<size_t> predictions;
svm.Classify(testDataset, predictions); // Step 3: classify points.
// Print some information about the test predictions.
std::cout << arma::accu(predictions == 1) << " test points classified as class "
<< "1." << std::endl;
```
<p style="text-align: center; font-size: 85%"><a href="#simple-examples">More examples...</a></p>
#### Quick links:
* [Constructors](#constructors): create `LinearSVM` objects.
* [`Train()`](#training): train model.
* [`Classify()`](#classification): classify with a trained model.
* [Other functionality](#other-functionality) for loading, saving, and
inspecting.
* [Examples](#simple-examples) of simple usage and links to detailed example
projects.
* [Template parameters](#advanced-functionality-different-element-types) for
using different element types for a model.
#### See also:
* [mlpack classifiers](../modeling.md#classification)
* [`GaussianDistribution`](../core/distributions.md#gaussiandistribution)
* [Naive Bayes classifier on Wikipedia](https://en.wikipedia.org/wiki/Naive_Bayes_classifier)
### Constructors
* `svm = LinearSVM()`
- Initialize the parameters of the model without training.
- You will need to call [`Train()`](#training) later to train the model
before calling [`Classify()`](#classification).
---
* `svm = LinearSVM(dimensionality, numClasses, lambda=0.0001, delta=1.0, fitIntercept=false)`
- Initialize the model without training, to default weights.
- [`Classify()`](#classification) can immediately be called and
`Parameters()` returns valid weights, but the model is otherwise untrained.
- The model should be trained with [`Train()`](#training) before calling
[`Classify()`](#classification).
---
* `svm = LinearSVM(data, labels, numClasses, lambda=0.0001, delta=1.0, fitIntercept=false, [callbacks...])`
- Train model, optionally specifying ensmallen callbacks for use during
optimization.
---
* `svm = LinearSVM(data, labels, numClasses, optimizer, lambda=0.0001, delta=1.0, fitIntercept=false, [callbacks...])`
- Train model with a custom ensmallen optimizer, optionally specifying
callbacks for use during optimization.
---
#### Constructor Parameters:
| **name** | **type** | **description** | **default** |
|----------|----------|-----------------|-------------|
| `data` | [`arma::mat`](../matrices.md) | [Column-major](../matrices.md#representing-data-in-mlpack) training matrix. | _(N/A)_ |
| `labels` | [`arma::Row<size_t>`](../matrices.md) | Training labels, [between `0` and `numClasses - 1`](../core/normalizing_labels.md) (inclusive). Should have length `data.n_cols`. | _(N/A)_ |
| `dimensionality` | `size_t` | Dimension of input data (if data is not specified). Should be equal to `data.n_rows`. | _(N/A)_ |
| `numClasses` | `size_t` | Number of classes in the dataset. | _(N/A)_ |
| `optimizer` | [any ensmallen optimizer](https://www.ensmallen.org) | Instantiated ensmallen optimizer for [differentiable functions](https://www.ensmallen.org/docs.html#differentiable-functions) or [differentiable separable functions](https://www.ensmallen.org/docs.html#differentiable-separable-functions). | `ens::L_BFGS()` |
| `lambda` | `double` | L2 regularization penalty parameter. Must be nonnegative. | `0.0` |
| `delta` | `double` | Margin of difference between correct class and other classes. | `1.0` |
| `fitIntercept` | `bool` | If `true`, then an intercept term is fitted to the model. | `false` |
| `callbacks...` | [any set of ensmallen callbacks](https://www.ensmallen.org/docs.html#callback-documentation) | Optional callbacks for the ensmallen optimizer, such as e.g. `ens::ProgressBar()`, `ens::Report()`, or others. | _(N/A)_ |
As an alternative to passing `lambda`, `delta`, or `fitIntercept`, these can be
set with a standalone method. The following functions can be used before
calling `Train()`:
* `svm.Lambda() = lambda;` will set the L2 regularization penalty parameter to
`lambda`.
* `svm.Delta() = delta;` will set the margin of difference to `delta`.
* `svm.FitIntercept() = fitIntercept;` will set whether the model fits an
intercept to `fitIntercept`.
### Training
If training is not done as part of the constructor call, it can be done with the
`Train()` function:
* `svm.Train(data, labels, numClasses, [callbacks...])`
* `svm.Train(data, labels, numClasses, optimizer, [callbacks...])`
- Train model without changing any hyperparameters, optionally using a custom
ensmallen optimizer and specifying callbacks for use during optimization.
---
* `svm.Train(data, labels, numClasses, lambda=0.0001, delta=1.0, fitIntercept=false, [callbacks...])`
* `svm.Train(data, labels, numClasses, optimizer, lambda=0.0001, delta=1.0, fitIntercept=false, [callbacks...])`
- Train model on the given data, specifying hyperparameters and optionally
also a custom ensmallen optimizer and callbacks for use during
optimization.
---
Types of each argument are the same as in the table for constructors
[above](#constructor-parameters).
***Note:*** Training is not incremental. Successive calls to `Train()` will
train entirely new models.
### Classification
Once a `LinearSVM` model is trained, the `Classify()` member function
can be used to make class predictions for new data.
* `size_t predictedClass = svm.Classify(point)`
- ***(Single-point)***
- Classify a single point, returning the predicted class (`0` through
`numClasses - 1`, inclusive).
---
* `svm.Classify(point, prediction, probabilitiesVec)`
- ***(Single-point)***
- Classify a single point and compute class probabilities.
- The predicted class is stored in `prediction`.
- The probability of class `i` can be accessed with `probabilitiesVec[i]`.
---
* `svm.Classify(data, predictions)`
- ***(Multi-point)***
- Classify a set of points.
- The prediction for data point `i` can be accessed with `predictions[i]`.
---
* `svm.Classify(data, predictions, probabilities)`
- ***(Multi-point)***
- Classify a set of points and compute class probabilities.
- The prediction for data point `i` can be accessed with `predictions[i]`.
- The probability of class `j` for data point `i` can be accessed with
`probabilities(j, i)`.
---
#### Classification Parameters:
| **usage** | **name** | **type** | **description** |
|-----------|----------|----------|-----------------|
| _single-point_ | `point` | [`arma::vec`](../matrices.md) | Single point for classification. |
| _single-point_ | `prediction` | `size_t&` | `size_t` to store class prediction into. |
| _single-point_ | `probabilitiesVec` | [`arma::vec&`](../matrices.md) | `arma::vec&` to store class probabilities into; will have length 2. |
||||
| _multi-point_ | `data` | [`arma::mat`](../matrices.md) | Set of [column-major](../matrices.md) points for classification. |
| _multi-point_ | `predictions` | [`arma::Row<size_t>&`](../matrices.md) | Vector of `size_t`s to store class prediction into; will be set to length `data.n_cols`. |
| _multi-point_ | `probabilities` | [`arma::mat&`](../matrices.md) | Matrix to store class probabilities into (number of rows will be equal to 2; number of columns will be equal to `data.n_cols`). |
### Other Functionality
* A `LinearSVM` model can be serialized with
[`data::Save()` and `data::Load()`](../load_save.md#mlpack-objects).
* `svm.Parameters()` will return the parameters of the model as an `arma::mat`
with either `data.n_rows` rows (if `FitIntercept()` is `false`) or
`data.n_rows + 1` rows (if `FitIntercept()` is `true`), and `numClasses`
columns. The weight for dimension `i` for class `j` can be accessed with
`svm.Parameters()(i, j)`. If `FitIntercept()` is `true`, the last row of
`svm.Parameters()` represents the bias parameters for each class.
* `svm.FeatureSize()` will return the number of features in the model. This is
equivalent to `data.n_rows` when the model was trained. The output is only
valid if the model has been trained.
* `svm.ComputeAccuracy(data, labels)` will return the accuracy of the model on
the given `data` with the given `labels`. The returned accuracy is between 0
and 100.
### Simple Examples
See also the [simple usage example](#simple-usage-example) for a trivial usage
of the `LinearSVM` class.
---
Train a linear SVM using a custom SGD-like optimizer with callbacks.
```c++
// See https://datasets.mlpack.org/satellite.train.csv.
arma::mat dataset;
mlpack::data::Load("satellite.train.csv", dataset, true);
// See https://datasets.mlpack.org/satellite.train.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("satellite.train.labels.csv", labels, true);
mlpack::LinearSVM svm;
svm.Lambda() = 0.1;
// Create AMSGrad optimizer with custom step size and batch size.
ens::AMSGrad optimizer(0.01 /* step size */, 16 /* batch size */);
optimizer.MaxIterations() = 100 * dataset.n_cols; // Allow 100 epochs.
// Print a progress bar and an optimization report when training is finished.
svm.Train(dataset, labels, 2, optimizer, ens::ProgressBar(), ens::Report());
// Now predict on test labels and compute accuracy.
// See https://datasets.mlpack.org/satellite.test.csv.
arma::mat testDataset;
mlpack::data::Load("satellite.test.csv", testDataset, true);
// See https://datasets.mlpack.org/satellite.test.labels.csv.
arma::Row<size_t> testLabels;
mlpack::data::Load("satellite.test.labels.csv", testLabels, true);
std::cout << std::endl;
std::cout << "Accuracy on training set: "
<< svm.ComputeAccuracy(dataset, labels) << "\%." << std::endl;
std::cout << "Accuracy on test set: "
<< svm.ComputeAccuracy(testDataset, testLabels) << "\%." << std::endl;
```
---
Train a linear SVM with SGD and save the model every epoch using a [custom
ensmallen callback](https://www.ensmallen.org/docs.html#custom-callbacks):
```c++
// This callback saves the model into "model-<epoch>.bin" after every epoch.
class ModelCheckpoint
{
public:
ModelCheckpoint(mlpack::LinearSVM<>& model) : model(model) { }
template<typename OptimizerType, typename FunctionType, typename MatType>
bool EndEpoch(OptimizerType& /* optimizer */,
FunctionType& /* function */,
const MatType& /* coordinates */,
const size_t epoch,
const double /* objective */)
{
const std::string filename = "model-" + std::to_string(epoch) + ".bin";
mlpack::data::Save(filename, "svm", model, true);
return false; // Do not terminate the optimization.
}
private:
mlpack::LinearSVM<>& model;
};
```
With that callback available, the code to train the model is below:
```c++
// See https://datasets.mlpack.org/satellite.train.csv.
arma::mat dataset;
mlpack::data::Load("satellite.train.csv", dataset, true);
// See https://datasets.mlpack.org/satellite.train.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("satellite.train.labels.csv", labels, true);
mlpack::LinearSVM svm;
// Create AdaDelta optimizer with a small step size and batch size of 1.
ens::AdaDelta adaDelta(0.001, 1);
adaDelta.MaxIterations() = 100 * dataset.n_cols; // 100 epochs maximum.
// Use the custom callback and an L2 penalty parameter of 0.01, with default
// delta and fitting an intercept.
svm.Train(dataset, labels, 2, adaDelta, 0.01, 1.0, true, ModelCheckpoint(svm),
ens::ProgressBar());
// Now files like model-1.bin, model-2.bin, etc. should be saved on disk.
```
---
Load a linear SVM from disk and print some information about it.
```c++
mlpack::LinearSVM svm;
// This assumes that a model called "svm" has been saved to the file
// "model-1.bin" (as in the previous example).
mlpack::data::Load("model-1.bin", "svm", svm, true);
// Print the dimensionality of the model and some other statistics.
std::cout << "The dimensionality of the model in model-1.bin is "
<< svm.FeatureSize() << "." << std::endl;
if (svm.FitIntercept())
{
std::cout << "Intercept values for each class: " << std::endl;
for (size_t i = 0; i < svm.Parameters().n_cols; ++i)
{
std::cout << " - Class " << i << ": "
<< svm.Parameters()(svm.Parameters().n_rows - 1, i) << "." << std::endl;
}
}
else
{
std::cout << "The model does not have an intercept fitted." << std::endl;
}
std::cout << "The L2 regularization penalty parameter is: " << svm.Lambda()
<< "." << std::endl;
std::cout << "Weights for the first dimension are: "
<< svm.Parameters().row(0);
```
---
### Advanced Functionality: Different Element Types
The `LinearSVM` class has one template parameter that can be used to
control the element type of the model. The full signature of the class is:
```
LinearSVM<ModelMatType>
```
`ModelMatType` specifies the type of matrix used for training data and internal
representation of model parameters.
* Any matrix type that implements the Armadillo API can be used.
* `Train()` and `Classify()` functions themselves are templatized and can allow
any matrix type that has the same element type. So, for instance, a
`LinearSVM<arma::mat>` can accept an `arma::sp_mat` for training.
The example below trains a linear SVM on sparse 32-bit floating point
data, but uses dense 32-bit floating point matrices to store the model itself.
```c++
// Create random, sparse 100-dimensional data, with 3 classes.
arma::sp_fmat dataset;
dataset.sprandu(100, 5000, 0.3);
arma::Row<size_t> labels =
arma::randi<arma::Row<size_t>>(5000, arma::distr_param(0, 2));
mlpack::LinearSVM<arma::fmat> svm(dataset, labels, 3);
// Now classify a test point.
arma::sp_fvec point;
point.sprandu(100, 1, 0.3);
size_t prediction;
arma::fvec probabilitiesVec;
svm.Classify(point, prediction, probabilitiesVec);
std::cout << "Prediction for random test point: " << prediction << "."
<< std::endl;
std::cout << "Class probabilities for random test point: "
<< probabilitiesVec.t();
```
***Note:*** dense objects should be used for `ModelMatType`, since in general
L2-regularized models are fully dense.
|