File: linear_svm.md

package info (click to toggle)
mlpack 4.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 31,272 kB
  • sloc: cpp: 226,039; python: 1,934; sh: 1,198; lisp: 414; makefile: 85
file content (374 lines) | stat: -rw-r--r-- 14,991 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
## `LinearSVM`

The `LinearSVM` class implements an L2-regularized support vector machine for
numerical data that can train using any ensmallen optimizer.  The class offers
standard classification functionality.  Linear SVM is useful for multi-class
classification (i.e. classes are `0`, `1`, `2`, etc.).

#### Simple usage example:

```c++
// Train a linear SVM classifier on random data and predict labels:

// All data and labels are uniform random; 5 dimensional data, 4 classes.
// Replace with a data::Load() call or similar for a real application.
arma::mat dataset(5, 1000, arma::fill::randu); // 1000 points.
arma::Row<size_t> labels =
    arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 3));
arma::mat testDataset(5, 500, arma::fill::randu); // 500 test points.

mlpack::LinearSVM svm;                  // Step 1: create model.
svm.Train(dataset, labels, 4);          // Step 2: train model.
arma::Row<size_t> predictions;
svm.Classify(testDataset, predictions); // Step 3: classify points.

// Print some information about the test predictions.
std::cout << arma::accu(predictions == 1) << " test points classified as class "
    << "1." << std::endl;
```
<p style="text-align: center; font-size: 85%"><a href="#simple-examples">More examples...</a></p>

#### Quick links:

 * [Constructors](#constructors): create `LinearSVM` objects.
 * [`Train()`](#training): train model.
 * [`Classify()`](#classification): classify with a trained model.
 * [Other functionality](#other-functionality) for loading, saving, and
   inspecting.
 * [Examples](#simple-examples) of simple usage and links to detailed example
   projects.
 * [Template parameters](#advanced-functionality-different-element-types) for
   using different element types for a model.

#### See also:

 * [mlpack classifiers](../modeling.md#classification)
 * [`GaussianDistribution`](../core/distributions.md#gaussiandistribution)
 * [Naive Bayes classifier on Wikipedia](https://en.wikipedia.org/wiki/Naive_Bayes_classifier)

### Constructors

 * `svm = LinearSVM()`
   - Initialize the parameters of the model without training.
   - You will need to call [`Train()`](#training) later to train the model
     before calling [`Classify()`](#classification).

---

 * `svm = LinearSVM(dimensionality, numClasses, lambda=0.0001, delta=1.0, fitIntercept=false)`
   - Initialize the model without training, to default weights.
   - [`Classify()`](#classification) can immediately be called and
     `Parameters()` returns valid weights, but the model is otherwise untrained.
   - The model should be trained with [`Train()`](#training) before calling
     [`Classify()`](#classification).

---

 * `svm = LinearSVM(data, labels, numClasses, lambda=0.0001, delta=1.0, fitIntercept=false, [callbacks...])`
   - Train model, optionally specifying ensmallen callbacks for use during
     optimization.

---

 * `svm = LinearSVM(data, labels, numClasses, optimizer, lambda=0.0001, delta=1.0, fitIntercept=false, [callbacks...])`
   - Train model with a custom ensmallen optimizer, optionally specifying
     callbacks for use during optimization.

---

#### Constructor Parameters:

| **name** | **type** | **description** | **default** |
|----------|----------|-----------------|-------------|
| `data` | [`arma::mat`](../matrices.md) | [Column-major](../matrices.md#representing-data-in-mlpack) training matrix. | _(N/A)_ |
| `labels` | [`arma::Row<size_t>`](../matrices.md) | Training labels, [between `0` and `numClasses - 1`](../core/normalizing_labels.md) (inclusive).  Should have length `data.n_cols`.  | _(N/A)_ |
| `dimensionality` | `size_t` | Dimension of input data (if data is not specified).  Should be equal to `data.n_rows`. | _(N/A)_ |
| `numClasses` | `size_t` | Number of classes in the dataset. | _(N/A)_ |
| `optimizer` | [any ensmallen optimizer](https://www.ensmallen.org) | Instantiated ensmallen optimizer for [differentiable functions](https://www.ensmallen.org/docs.html#differentiable-functions) or [differentiable separable functions](https://www.ensmallen.org/docs.html#differentiable-separable-functions). | `ens::L_BFGS()` |
| `lambda` | `double` | L2 regularization penalty parameter.  Must be nonnegative. | `0.0` |
| `delta` | `double` | Margin of difference between correct class and other classes. | `1.0` |
| `fitIntercept` | `bool` | If `true`, then an intercept term is fitted to the model. | `false` |
| `callbacks...` | [any set of ensmallen callbacks](https://www.ensmallen.org/docs.html#callback-documentation) | Optional callbacks for the ensmallen optimizer, such as e.g. `ens::ProgressBar()`, `ens::Report()`, or others. | _(N/A)_ |

As an alternative to passing `lambda`, `delta`, or `fitIntercept`, these can be
set with a standalone method.  The following functions can be used before
calling `Train()`:

 * `svm.Lambda() = lambda;` will set the L2 regularization penalty parameter to
   `lambda`.
 * `svm.Delta() = delta;` will set the margin of difference to `delta`.
 * `svm.FitIntercept() = fitIntercept;` will set whether the model fits an
   intercept to `fitIntercept`.

### Training

If training is not done as part of the constructor call, it can be done with the
`Train()` function:

 * `svm.Train(data, labels, numClasses,            [callbacks...])`
 * `svm.Train(data, labels, numClasses, optimizer, [callbacks...])`
   - Train model without changing any hyperparameters, optionally using a custom
     ensmallen optimizer and specifying callbacks for use during optimization.

---

 * `svm.Train(data, labels, numClasses,            lambda=0.0001, delta=1.0, fitIntercept=false, [callbacks...])`
 * `svm.Train(data, labels, numClasses, optimizer, lambda=0.0001, delta=1.0, fitIntercept=false, [callbacks...])`
   - Train model on the given data, specifying hyperparameters and optionally
     also a custom ensmallen optimizer and callbacks for use during
     optimization.

---

Types of each argument are the same as in the table for constructors
[above](#constructor-parameters).

***Note:*** Training is not incremental.  Successive calls to `Train()` will
train entirely new models.

### Classification

Once a `LinearSVM` model is trained, the `Classify()` member function
can be used to make class predictions for new data.

 * `size_t predictedClass = svm.Classify(point)`
   - ***(Single-point)***
   - Classify a single point, returning the predicted class (`0` through
     `numClasses - 1`, inclusive).

---

 * `svm.Classify(point, prediction, probabilitiesVec)`
   - ***(Single-point)***
   - Classify a single point and compute class probabilities.
   - The predicted class is stored in `prediction`.
   - The probability of class `i` can be accessed with `probabilitiesVec[i]`.

---

 * `svm.Classify(data, predictions)`
   - ***(Multi-point)***
   - Classify a set of points.
   - The prediction for data point `i` can be accessed with `predictions[i]`.

---

 * `svm.Classify(data, predictions, probabilities)`
   - ***(Multi-point)***
   - Classify a set of points and compute class probabilities.
   - The prediction for data point `i` can be accessed with `predictions[i]`.
   - The probability of class `j` for data point `i` can be accessed with
     `probabilities(j, i)`.

---

#### Classification Parameters:

| **usage** | **name** | **type** | **description** |
|-----------|----------|----------|-----------------|
| _single-point_ | `point` | [`arma::vec`](../matrices.md) | Single point for classification. |
| _single-point_ | `prediction` | `size_t&` | `size_t` to store class prediction into. |
| _single-point_ | `probabilitiesVec` | [`arma::vec&`](../matrices.md) | `arma::vec&` to store class probabilities into; will have length 2. |
||||
| _multi-point_ | `data` | [`arma::mat`](../matrices.md) | Set of [column-major](../matrices.md) points for classification. |
| _multi-point_ | `predictions` | [`arma::Row<size_t>&`](../matrices.md) | Vector of `size_t`s to store class prediction into; will be set to length `data.n_cols`. |
| _multi-point_ | `probabilities` | [`arma::mat&`](../matrices.md) | Matrix to store class probabilities into (number of rows will be equal to 2; number of columns will be equal to `data.n_cols`). |

### Other Functionality

 * A `LinearSVM` model can be serialized with
   [`data::Save()` and `data::Load()`](../load_save.md#mlpack-objects).

 * `svm.Parameters()` will return the parameters of the model as an `arma::mat`
   with either `data.n_rows` rows (if `FitIntercept()` is `false`) or
   `data.n_rows + 1` rows (if `FitIntercept()` is `true`), and `numClasses`
   columns.  The weight for dimension `i` for class `j` can be accessed with
   `svm.Parameters()(i, j)`.  If `FitIntercept()` is `true`, the last row of
   `svm.Parameters()` represents the bias parameters for each class.

 * `svm.FeatureSize()` will return the number of features in the model.  This is
   equivalent to `data.n_rows` when the model was trained.  The output is only
   valid if the model has been trained.

 * `svm.ComputeAccuracy(data, labels)` will return the accuracy of the model on
   the given `data` with the given `labels`.  The returned accuracy is between 0
   and 100.

### Simple Examples

See also the [simple usage example](#simple-usage-example) for a trivial usage
of the `LinearSVM` class.

---

Train a linear SVM using a custom SGD-like optimizer with callbacks.

```c++
// See https://datasets.mlpack.org/satellite.train.csv.
arma::mat dataset;
mlpack::data::Load("satellite.train.csv", dataset, true);
// See https://datasets.mlpack.org/satellite.train.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("satellite.train.labels.csv", labels, true);

mlpack::LinearSVM svm;
svm.Lambda() = 0.1;

// Create AMSGrad optimizer with custom step size and batch size.
ens::AMSGrad optimizer(0.01 /* step size */, 16 /* batch size */);
optimizer.MaxIterations() = 100 * dataset.n_cols; // Allow 100 epochs.

// Print a progress bar and an optimization report when training is finished.
svm.Train(dataset, labels, 2, optimizer, ens::ProgressBar(), ens::Report());

// Now predict on test labels and compute accuracy.

// See https://datasets.mlpack.org/satellite.test.csv.
arma::mat testDataset;
mlpack::data::Load("satellite.test.csv", testDataset, true);
// See https://datasets.mlpack.org/satellite.test.labels.csv.
arma::Row<size_t> testLabels;
mlpack::data::Load("satellite.test.labels.csv", testLabels, true);

std::cout << std::endl;
std::cout << "Accuracy on training set: "
    << svm.ComputeAccuracy(dataset, labels) << "\%." << std::endl;
std::cout << "Accuracy on test set:     "
    << svm.ComputeAccuracy(testDataset, testLabels) << "\%." << std::endl;
```

---

Train a linear SVM with SGD and save the model every epoch using a [custom
ensmallen callback](https://www.ensmallen.org/docs.html#custom-callbacks):

```c++
// This callback saves the model into "model-<epoch>.bin" after every epoch.
class ModelCheckpoint
{
 public:
  ModelCheckpoint(mlpack::LinearSVM<>& model) : model(model) { }

  template<typename OptimizerType, typename FunctionType, typename MatType>
  bool EndEpoch(OptimizerType& /* optimizer */,
                FunctionType& /* function */,
                const MatType& /* coordinates */,
                const size_t epoch,
                const double /* objective */)
  {
    const std::string filename = "model-" + std::to_string(epoch) + ".bin";
    mlpack::data::Save(filename, "svm", model, true);
    return false; // Do not terminate the optimization.
  }

 private:
  mlpack::LinearSVM<>& model;
};
```

With that callback available, the code to train the model is below:

```c++
// See https://datasets.mlpack.org/satellite.train.csv.
arma::mat dataset;
mlpack::data::Load("satellite.train.csv", dataset, true);
// See https://datasets.mlpack.org/satellite.train.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("satellite.train.labels.csv", labels, true);

mlpack::LinearSVM svm;

// Create AdaDelta optimizer with a small step size and batch size of 1.
ens::AdaDelta adaDelta(0.001, 1);
adaDelta.MaxIterations() = 100 * dataset.n_cols; // 100 epochs maximum.

// Use the custom callback and an L2 penalty parameter of 0.01, with default
// delta and fitting an intercept.
svm.Train(dataset, labels, 2, adaDelta, 0.01, 1.0, true, ModelCheckpoint(svm),
    ens::ProgressBar());

// Now files like model-1.bin, model-2.bin, etc. should be saved on disk.
```

---

Load a linear SVM from disk and print some information about it.

```c++
mlpack::LinearSVM svm;
// This assumes that a model called "svm" has been saved to the file
// "model-1.bin" (as in the previous example).
mlpack::data::Load("model-1.bin", "svm", svm, true);

// Print the dimensionality of the model and some other statistics.
std::cout << "The dimensionality of the model in model-1.bin is "
    << svm.FeatureSize() << "." << std::endl;
if (svm.FitIntercept())
{
  std::cout << "Intercept values for each class: " << std::endl;
  for (size_t i = 0; i < svm.Parameters().n_cols; ++i)
  {
    std::cout << "  - Class " << i << ": "
        << svm.Parameters()(svm.Parameters().n_rows - 1, i) << "." << std::endl;
  }
}
else
{
  std::cout << "The model does not have an intercept fitted." << std::endl;
}

std::cout << "The L2 regularization penalty parameter is: " << svm.Lambda()
    << "." << std::endl;

std::cout << "Weights for the first dimension are: "
    << svm.Parameters().row(0);
```

---

### Advanced Functionality: Different Element Types

The `LinearSVM` class has one template parameter that can be used to
control the element type of the model.  The full signature of the class is:

```
LinearSVM<ModelMatType>
```

`ModelMatType` specifies the type of matrix used for training data and internal
representation of model parameters.

 * Any matrix type that implements the Armadillo API can be used.

 * `Train()` and `Classify()` functions themselves are templatized and can allow
   any matrix type that has the same element type.  So, for instance, a
   `LinearSVM<arma::mat>` can accept an `arma::sp_mat` for training.

The example below trains a linear SVM on sparse 32-bit floating point
data, but uses dense 32-bit floating point matrices to store the model itself.

```c++
// Create random, sparse 100-dimensional data, with 3 classes.
arma::sp_fmat dataset;
dataset.sprandu(100, 5000, 0.3);
arma::Row<size_t> labels =
    arma::randi<arma::Row<size_t>>(5000, arma::distr_param(0, 2));

mlpack::LinearSVM<arma::fmat> svm(dataset, labels, 3);

// Now classify a test point.
arma::sp_fvec point;
point.sprandu(100, 1, 0.3);

size_t prediction;
arma::fvec probabilitiesVec;
svm.Classify(point, prediction, probabilitiesVec);

std::cout << "Prediction for random test point: " << prediction << "."
    << std::endl;
std::cout << "Class probabilities for random test point: "
    << probabilitiesVec.t();
```

***Note:*** dense objects should be used for `ModelMatType`, since in general
L2-regularized models are fully dense.