File: local_coordinate_coding.md

package info (click to toggle)
mlpack 4.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 31,272 kB
  • sloc: cpp: 226,039; python: 1,934; sh: 1,198; lisp: 414; makefile: 85
file content (375 lines) | stat: -rw-r--r-- 14,573 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
## `LocalCoordinateCoding`

The `LocalCoordinateCoding` class implements local coordinate coding, a
variation of [sparse coding](sparse_coding.md) with dictionary learning.  Local
coordinate coding is a form of representation learning, and can be used to
represent each point in a dataset as a linear combination of a few nearby
*atoms* in the learned dictionary.

#### Simple usage example:

```c++
// Create a random dataset with 100 points in 40 dimensions, and then a random
// test dataset with 50 points.
arma::mat data(40, 100, arma::fill::randn);
arma::mat testData(40, 50, arma::fill::randn);

// Perform local coordinate coding with 20 atoms and an L1 penalty of 0.1.
mlpack::LocalCoordinateCoding lcc(20, 0.1); // Step 1: create object.
double objective = lcc.Train(data);         // Step 2: learn dictionary.
arma::mat codes;
lcc.Encode(testData, codes);                // Step 3: encode new data.

// Print some information about the test encoding.
std::cout << "Average density of encoded test data: "
    << 100.0 * arma::mean(arma::sum(codes != 0)) / codes.n_rows << "\%."
    << std::endl;
```
<p style="text-align: center; font-size: 85%"><a href="#simple-examples">More examples...</a></p>

#### Quick links:

 * [Constructors](#constructors): create `LocalCoordinateCoding` objects.
 * [`Train()`](#training): train model (learn dictionary).
 * [`Encode()`](#encoding): encode points with a trained model.
 * [Other functionality](#other-functionality) for loading, saving, and
   inspecting.
 * [Examples](#simple-examples) of simple usage and links to detailed example
   projects.
 * [Template parameters](#advanced-functionality-template-parameters) for
   advanced functionality: different element types and dictionary initialization
   strategies.

#### See also:

 * [`SparseCoding`](sparse_coding.md)
 * [`LARS`](lars.md) (used internally by `LocalCoordinateCoding`)
 * [mlpack transformations](../transformations.md)
 * [Sparse dictionary learning on Wikipedia](https://en.wikipedia.org/wiki/Sparse_dictionary_learning)
 * [Nonlinear learning using local coordinate coding (pdf)](https://proceedings.neurips.cc/paper_files/paper/2009/file/2afe4567e1bf64d32a5527244d104cea-Paper.pdf)

### Constructors

 * `lcc = LocalCoordinateCoding()`
 * `lcc = LocalCoordinateCoding(atoms=0, lambda=0.0, maxIter=0, tol=0.01)`
   - Create a `LocalCoordinateCoding` object without learning a dictionary on
     data.
   - If `atoms` is set to `0` (the default), it will need to be set to a value
     greater than `0` before `Train()` is called (`lcc.Atoms() = atoms` can be
     used for this).

 * `lcc = LocalCoordinateCoding(data, atoms, lambda=0.0, maxIter=0, tol=0.01)`
   - Create a `LocalCoordinateCoding` object and train the dictionary on the
     given `data`.
   - The dictionary will contain `atoms` elements.

 * `lcc = LocalCoordinateCoding(data, atoms, lambda, maxIter, tol, initializer)`
   - *Advanced constructor*: create a `LocalCoordinateCoding` object that will
     use a custom dictionary initializer and train on the given `data`.
   - The dictionary will contain `atoms` elements.
   - `initializer` will be used to initialize the dictionary; see [Advanced
     Functionality: Different Dictionary Initialization
     Strategies](#dictionaryinitializer-different-dictionary-initialization-strategies)
     for details.

#### Constructor Parameters:

| **name** | **type** | **description** | **default** |
|----------|----------|-----------------|-------------|
| `data` | [`arma::mat`](../matrices.md) | [Column-major](../matrices.md#representing-data-in-mlpack) training matrix. | _(N/A)_ |
| `atoms` | `size_t` | Number of atoms in dictionary. | _(N/A)_ |
| `lambda` | `double` | L1 regularization penalty.  Used in both `Train()` and `Encode()` steps. | `0.0` |
| `maxIter` | `size_t` | Maximum number of iterations for dictionary learning.  `0` means no limit. | `0` |
| `tol` | `double` | Objective function tolerance for terminating dictionary learning. | `0.01` |

As an alternative to passing `atoms`, `lambda`, `maxIter`, or `tol`, these can
be set with a standalone method.  The following functions can be used before
calling `Train()`:

 * `lcc.Atoms() = a;` will set the number of atoms to use in the dictionary to
   `a`.  Changing this after calling `Train()` will not make a difference to the
   dictionary size.

 * `lcc.Lambda() = l;` will set the L1 regularization penalty to `l1`.  This can
   be set after `Train()` to force sparser encodings when `Encode()` is called.

 * `lcc.MaxIterations() = m;` will set the maximum number of iterations for
   dictionary learning to `m`.  `0` means that the algorithm will run until
   convergence.

 * `lcc.Tolerance() = t;` will set the objective tolerance for convergence of
   the dictionary learning algorithm to `t`.

***Caveats***:

 * Larger settings of `atoms` (i.e. larger dictionary sizes) will be able to
   more accurately represent the data, but may take longer to learn.

 * Larger values of `lambda` will cause the model to use sparser encodings for
   data (e.g. fewer nearby anchor points) when `Train()` and `Encode()` are
   called, but when `lambda` is too large, the codings may be inaccurate
   representations of the original points.

<!-- TODO: indicate that you can get this info with MLPACK_PRINT_INFO and
MLPACK_PRINT_WARN, once those are documented -->

 * If `lambda` is set too large, encodings may be empty (e.g. all zeros).

 * Training is not incremental; a second call to `Train()` will reinitialize the
   dictionary and restart the learning process.

### Training

If training the dictionary is not done as part of the constructor call, it can
be done with one of the following versions of the `Train()` member function:

 * `lcc.Train(data)`
 * `lcc.Train(data, initializer)`
   - Train the local coordinate coding dictionary on the given `data`.
   - Optionally, use the given `initializer` to initialize the dictionary (see
     [`DictionaryInitializer`](#dictionaryinitializer-different-dictionary-initialization-strategies)
     for more details).

### Encoding

Once a `LocalCoordinateCoding` model has a trained dictionary, the `Encode()`
member function can be used to encode new data points.

 * `lcc.Encode(data, codes)`
   - Encode `data` (a [column-major data
     matrix](../matrices.md#representing-data-in-mlpack)) as a sparse set of
     local atoms of the dictionary, storing the result in `codes`.
   - Both `data` and `codes` should be the same matrix type (e.g. `arma::mat`);
     see [Different Element Types](#mattype-different-element-types) for more
     details.
   - `codes` will be set to have `atoms` rows and `data.n_cols` columns.
   - Column `i` of `codes` corresponds to the coding of the `i`'th column of
     `data`.  Each row represents the weight associated with each atom in the
     dictionary.

After encoding, the original data can be recovered (approximately) as
`lcc.Dictionary() * data`.

### Other Functionality

 * A `LocalCoordinateCoding` model can be serialized with
   [`data::Save()` and `data::Load()`](../load_save.md#mlpack-objects).

 * `lcc.Dictionary()` will return an `arma::mat&` containing the dictionary
   matrix.  The matrix has `data.n_rows` rows and `atoms` columns; each column
   corresponds to an atom in the dictionary.  Dictionary atoms are regularized
   to be close to the manifold that data lie on.

 * `double obj = lcc.Objective(data, codes)` computes the local coordinate
   coding objective function on the given `data` and encodings `codes`.  This
   can be used after `Encode()` to test the quality of the encodings (a smaller
   objective is better).

### Simple Examples

See also the [simple usage example](#simple-usage-example) for a trivial usage
of the `LocalCoordinateCoding` class.

---

Train a local coordinate coding model on the cloud dataset and print the
reconstruction error.

```c++
// See https://datasets.mlpack.org/cloud.csv.
arma::mat dataset;
mlpack::data::Load("cloud.csv", dataset, true);

mlpack::LocalCoordinateCoding lcc;
lcc.Atoms() = 50;
lcc.Lambda() = 1e-5;
lcc.MaxIterations() = 25;
lcc.Train(dataset);

// Encode the training dataset.
arma::mat codes;
lcc.Encode(dataset, codes);

std::cout << "Input matrix size: " << dataset.n_rows << " x " << dataset.n_cols
    << "." << std::endl;
std::cout << "Codes matrix size: " << codes.n_rows << " x " << codes.n_cols
    << "." << std::endl;

// Reconstruct the original matrix.
arma::mat recon = lcc.Dictionary() * codes;
double error = std::sqrt(arma::norm(dataset - recon, "fro") / dataset.n_elem);
std::cout << "RMSE of reconstructed matrix: " << error << "." << std::endl;
```

---

Train a local coordinate coding model on the iris dataset and save the model to
disk.

```c++
// See https://datasets.mlpack.org/iris.train.csv.
arma::mat dataset;
mlpack::data::Load("iris.train.csv", dataset, true);

// Train the model in the constructor.
mlpack::LocalCoordinateCoding lcc(dataset,
                                  10 /* atoms */,
                                  0.1 /* L1 penalty */);

// Save the model to disk.
mlpack::data::Save("lcc.bin", "lcc", lcc);
```

---

Train a local coordinate coding model on the satellite dataset, trying several
different regularization parameters and checking the objective value on a
held-out test dataset.

```c++
// See https://datasets.mlpack.org/satellite.train.csv.
arma::mat trainData;
mlpack::data::Load("satellite.train.csv", trainData, true);
// See https://datasets.mlpack.org/satellite.test.csv.
arma::mat testData;
mlpack::data::Load("satellite.test.csv", testData, true);

for (double lambdaPow = -6; lambdaPow <= -2; lambdaPow += 1)
{
  const double lambda = std::pow(10.0, lambdaPow);
  mlpack::LocalCoordinateCoding lcc(50 /* atoms */);
  lcc.Lambda() = lambda;
  lcc.MaxIterations() = 25; // Keep iterations low so this runs relatively fast.

  const double trainObj = lcc.Train(trainData);

  // Compute the objective on the test set.
  arma::mat codes;
  lcc.Encode(testData, codes);
  const double testObj = lcc.Objective(testData, codes);

  std::cout << "Lambda: " << std::setfill(' ') << std::setw(3) << lambda
      << "; ";
  std::cout << "training set objective: " << std::setw(6) << trainObj << "; ";
  std::cout << "test set objective: " << std::setw(6) << testObj << "."
      << std::endl;
}
```

### Advanced Functionality: Template Parameters

The `LocalCoordinateCoding` class has one class template parameter that can be
used for custom behavior.  The full signature of the class is:

```
LocalCoordinateCoding<MatType>
```

In addition, the [constructors](#constructors) and [`Train()`
functions](#training) have a template parameter `DictionaryInitializer` that can
be used for custom behavior.

 * `MatType`: the type of the matrix to use (e.g. `arma::mat`, `arma::fmat`,
   etc.).  The given `MatType` must support the Armadillo API and hold a
   floating-point element type (e.g. `float`, `double`, etc.).

 * `DictionaryInitializer`: the strategy used to initialize the dictionary.  By
   default, `DataDependentRandomInitializer` is used.

#### `MatType`: Different Element Types

`MatType` specifies the type of matrix used for training data and internal
representation of the dictionary.  Any matrix type that implements the Armadillo
API can be used.  The example below trains a local coordinate coding model on
32-bit floating point data.

```c++
// See https://datasets.mlpack.org/cloud.csv.
arma::fmat dataset;
mlpack::data::Load("cloud.csv", dataset, true);

mlpack::LocalCoordinateCoding<arma::fmat> lcc;
lcc.Atoms() = 30;
lcc.Lambda() = 1e-5;
lcc.MaxIterations() = 100;
lcc.Train(dataset);

// Encode the training dataset.
arma::fmat codes;
lcc.Encode(dataset, codes);

std::cout << "Input matrix size: " << dataset.n_rows << " x " << dataset.n_cols
    << "." << std::endl;
std::cout << "Codes matrix size: " << codes.n_rows << " x " << codes.n_cols
    << "." << std::endl;

// Reconstruct the original matrix.
arma::fmat recon = lcc.Dictionary() * codes;
double error = std::sqrt(arma::norm(dataset - recon, "fro") / dataset.n_elem);
std::cout << "RMSE of reconstructed matrix: " << error << "." << std::endl;
```

#### `DictionaryInitializer`: Different Dictionary Initialization Strategies

The `DictionaryInitializer` template class specifies the strategy to be used to
initialize the dictionary when `Train()` is called.

 * The `DataDependentRandomInitalizer` class (the default) uses the average of
   three random points in the dataset to initialize each atom in the dictionary.

 * The `NothingInitializer` class does not modify the dictionary matrix in any
   way, and could be used either to set a specific dictionary before training
   with `sc.Dictionary()`, or to allow incremental training that does not modify
   the existing dictionary when `Train()` is called a second time.

 * The `RandomInitializer` class initializes the dictionary by sampling norm-1
   atoms from a normal distribution.

***Note:*** none of the classes above have any members, and as such it is not
necessary to use the constructor or `Train()` variants that take an initialized
`initializer` object.  That would only be necessary for a custom
`DictionaryInitializer` class that stored internal members.

---

The example below uses `NothingInitializer` to set a specific initial
dictionary.

```c++
// See https://datasets.mlpack.org/satellite.train.csv.
arma::mat trainData;
mlpack::data::Load("satellite.train.csv", trainData, true);

const size_t atoms = 25;
const double lambda = 1e-5;
const size_t maxIterations = 50;

// Use a uniform random matrix as the initial dictionary.
arma::mat initialDictionary(trainData.n_rows, atoms, arma::fill::randu);

mlpack::LocalCoordinateCoding lcc(atoms, lambda, maxIterations);
lcc.Dictionary() = initialDictionary;

const double obj = lcc.Train<mlpack::NothingInitializer>(trainData);
std::cout << "Training set objective: " << obj << "." << std::endl;
```

---

 * An entirely custom class can also be implemented.  The class must implement
   one method, `Initialize()`:

```c++
// You can use this as a starting point for implementation.
class CustomDictionaryInitializer
{
 public:
  // Initialize the dictionary to have the given number of atoms, given the
  // dataset.  MatType will be the matrix type used by the local coordinate
  // coding model (e.g. `arma::mat`, `arma::fmat`, etc.).
  template<typename MatType>
  void Initialize(const MatType& data,
                  const size_t atoms,
                  MatType& dictionary);
};
```