File: logistic_regression.md

package info (click to toggle)
mlpack 4.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 31,272 kB
  • sloc: cpp: 226,039; python: 1,934; sh: 1,198; lisp: 414; makefile: 85
file content (409 lines) | stat: -rw-r--r-- 16,546 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
## `LogisticRegression`

The `LogisticRegression` class implements a simple L2-regularized two-class
logistic regression classifier for numerical data, by default using L-BFGS to
learn the model.  The class offers easy configurability, and arbitrary
optimizers can be used to learn the model.

Logistic regression is useful for two-class classification (i.e. classes are `0`
or `1`).  For multi-class logistic regression, see
[`SoftmaxRegression`](softmax_regression.md).

#### Simple usage example:

```c++
// Train a logistic regression model on random data and predict labels:

// All data and labels are uniform random; 5 dimensional data, 2 classes.
// Replace with a data::Load() call or similar for a real application.
arma::mat dataset(5, 1000, arma::fill::randu); // 1000 points.
arma::Row<size_t> labels =
    arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 1));
arma::mat testDataset(5, 500, arma::fill::randu); // 500 test points.

mlpack::LogisticRegression lr;         // Step 1: create model.
lr.Train(dataset, labels);             // Step 2: train model.
arma::Row<size_t> predictions;
lr.Classify(testDataset, predictions); // Step 3: classify points.

// Print some information about the test predictions.
std::cout << arma::accu(predictions == 0) << " test points classified as class "
    << "0." << std::endl;
```
<p style="text-align: center; font-size: 85%"><a href="#simple-examples">More examples...</a></p>

#### Quick links:

 * [Constructors](#constructors): create `LogisticRegression` objects.
 * [`Train()`](#training): train model.
 * [`Classify()`](#classification): classify with a trained model.
 * [Other functionality](#other-functionality) for loading, saving, and
   inspecting.
 * [Examples](#simple-examples) of simple usage and links to detailed example
   projects.
 * [Template parameters](#advanced-functionality-different-element-types) for
   using different element types for a model.

#### See also:

 * [`SoftmaxRegression`](softmax_regression.md)
 * [mlpack classifiers](../modeling.md#classification)
 * [Logistic regression on Wikipedia](https://en.wikipedia.org/wiki/Logistic_regression)

### Constructors

 * `lr = LogisticRegression()`
   - Initialize the model without training.
   - You will need to call [`Train()`](#training) later to train the model
     before calling [`Classify()`](#classification).

---

 * `lr = LogisticRegression(data, labels,               lambda=0.0, [callbacks...])`
 * `lr = LogisticRegression(data, labels, initialPoint, lambda=0.0, [callbacks...])`
   - Train model, optionally specifying an initial set of weights for the
     optimization and callbacks.

---

 * `lr = LogisticRegression(data, labels, optimizer,               lambda=0.0, [callbacks...])`
 * `lr = LogisticRegression(data, labels, optimizer, initialPoint, lambda=0.0, [callbacks...])`
   - Train model with a custom ensmallen optimizer, optionally specifying an
     initial set of weights to start the optimization from and callbacks for the
     optimizer.

---

#### Constructor Parameters:

| **name** | **type** | **description** | **default** |
|----------|----------|-----------------|-------------|
| `data` | [`arma::mat`](../matrices.md) | [Column-major](../matrices.md#representing-data-in-mlpack) training matrix. | _(N/A)_ |
| `labels` | [`arma::Row<size_t>`](../matrices.md) | Training labels, either [`0` or `1`](../core/normalizing_labels.md).  Should have length `data.n_cols`.  | _(N/A)_ |
| `initialPoint` | `arma::rowvec` | Initial model weights to start optimization from.  Should have length `data.n_rows + 1`.  The first element is the bias.  If not specified, a zero vector will be used. | zero vector |
| `optimizer` | [any ensmallen optimizer](https://www.ensmallen.org) | Instantiated ensmallen optimizer for [differentiable functions](https://www.ensmallen.org/docs.html#differentiable-functions) or [differentiable separable functions](https://www.ensmallen.org/docs.html#differentiable-separable-functions). | `ens::L_BFGS()` |
| `lambda` | `double` | L2 regularization penalty parameter.  Must be nonnegative. | `0.0` |
| `callbacks...` | [any set of ensmallen callbacks](https://www.ensmallen.org/docs.html#callback-documentation) | Optional callbacks for the ensmallen optimizer, such as e.g. `ens::ProgressBar()`, `ens::Report()`, or others. | _(N/A)_ |

As an alternative to passing `lambda` or `initialPoint`, these can be set with a
standalone method.  The following functions can be used before calling
`Train()`:

 * `lr.Lambda() = l;` will set the value of the L2 regularization penalty
   parameter to `l`.
 * `lr.Parameters() = initialPoint;` will set the initial point for the training
   optimization to `initialPoint`.

***Note***: Setting `lambda` too small may cause the model to overfit; however,
setting it too large may cause the model to underfit.  [Automatic hyperparameter
tuning](../hpt.md) can be used to find a good value of `lambda` instead of a
manual setting.

<!-- TODO: fix link for hyperparameter tuner -->

### Training

If training is not done as part of the constructor call, it can be done with one
of the following versions of the `Train()` member function:

 * `lr.Train(data, labels)`
 * `lr.Train(data, labels, lambda=0.0, [callbacks...])`
   - Train model, optionally specifying callbacks for the default L-BFGS
     optimizer.

---

 * `lr.Train(data, labels, optimizer)`
 * `lr.Train(data, labels, optimizer, lambda=0.0, [callbacks...])`
   - Train model with a custom ensmallen optimizer, optionally specifying
     callbacks.

---

Types of each argument are the same as in the table for constructors
[above](#constructor-parameters).

***Notes***:

 * Training is incremental.  Successive calls to `Train()` will not reinitialize
   the model, unless the given data has different dimensionality.  To
   reinitialize the model, call `Reset()` (see
   [Other Functionality](#other-functionality)).

 * To set the initial point of the optimization, call `Parameters()`; see
   [Other Functionality](#other-functionality).

 * `Train()` returns a `double` with the final logistic regression loss value
   (including L2 penalty term) of the trained model.

### Classification

Once a `LogisticRegression` model is trained, the `Classify()` member function
can be used to make class predictions for new data.

 * `size_t predictedClass = lr.Classify(point, decisionBoundary=0.5)`
   - ***(Single-point)***
   - Classify a single point, returning the predicted class (`0` or `1`).

---

 * `lr.Classify(point, prediction, probabilitiesVec, decisionBoundary=0.5)`
   - ***(Single-point)***
   - Classify a single point and compute class probabilities.
   - The predicted class is stored in `prediction`.
   - The probability of class `i` can be accessed with `probabilitiesVec[i]`.

---

 * `lr.Classify(data, predictions, decisionBoundary=0.5)`
   - ***(Multi-point)***
   - Classify a set of points.
   - The prediction for data point `i` can be accessed with `predictions[i]`.

---

 * `lr.Classify(data, predictions, probabilities, decisionBoundary=0.5)`
   - ***(Multi-point)***
   - Classify a set of points and compute class probabilities.
   - The prediction for data point `i` can be accessed with `predictions[i]`.
   - The probability of class `j` for data point `i` can be accessed with
     `probabilities(j, i)`.

---

#### Classification Parameters:

| **usage** | **name** | **type** | **description** |
|-----------|----------|----------|-----------------|
| _single-point_ | `point` | [`arma::vec`](../matrices.md) | Single point for classification. |
| _single-point_ | `prediction` | `size_t&` | `size_t` to store class prediction into. |
| _single-point_ | `probabilitiesVec` | [`arma::vec&`](../matrices.md) | `arma::vec&` to store class probabilities into; will have length 2. |
||||
| _multi-point_ | `data` | [`arma::mat`](../matrices.md) | Set of [column-major](../matrices.md#representing-data-in-mlpack) points for classification. |
| _multi-point_ | `predictions` | [`arma::Row<size_t>&`](../matrices.md) | Vector of `size_t`s to store class prediction into; will be set to length `data.n_cols`. |
| _multi-point_ | `probabilities` | [`arma::mat&`](../matrices.md) | Matrix to store class probabilities into (number of rows will be equal to 2; number of columns will be equal to `data.n_cols`). |
||||
| _all_ | `decisionBoundary` | `double` | If the logistic function value for a point is greater than `decisionBoundary`, it is classified as class `1`.  Defaults to `0.5`. |

### Other Functionality

 * A `LogisticRegression` model can be serialized with
   [`data::Save()` and `data::Load()`](../load_save.md#mlpack-objects).

 * `lr.Parameters()` will return an `arma::rowvec` filled with the weights of
   the model.  This vector has length equal to the dimensionality plus one, and
   the first element is the bias.

 * `lr.Lambda()` will return the L2 regularization penalty parameter.

 * `lr.ComputeAccuracy(data, labels, decisionBoundary=0.5)` will return the
   accuracy of the model on the given `data` with the given `labels`.  The
   returned accuracy is between 0 and 100.

 * `lr.ComputeError(data, labels)` will return the loss of the logistic
   regression objective function on the given `data` with the given `labels`.

 * `lr.Reset()` will reset the weights of the model to zeros.

For complete functionality, the [source
code](/src/mlpack/methods/logistic_regression/logistic_regression.hpp) can be
consulted.  Each method is fully documented.

### Simple Examples

See also the [simple usage example](#simple-usage-example) for a trivial usage
of the `LogisticRegression` class.

---

Train a logistic regression model using a custom SGD-like optimizer with
callbacks.

```c++
// See https://datasets.mlpack.org/satellite.train.csv.
arma::mat dataset;
mlpack::data::Load("satellite.train.csv", dataset, true);
// See https://datasets.mlpack.org/satellite.train.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("satellite.train.labels.csv", labels, true);

mlpack::LogisticRegression lr;
lr.Lambda() = 0.1;

// Create AMSGrad optimizer with custom step size and batch size.
ens::AMSGrad optimizer(0.01 /* step size */, 16 /* batch size */);
optimizer.MaxIterations() = 100 * dataset.n_cols; // Allow 100 epochs.

// Print a progress bar and an optimization report when training is finished.
lr.Train(dataset, labels, optimizer, ens::ProgressBar(), ens::Report());

// Now predict on test labels and compute accuracy.

// See https://datasets.mlpack.org/satellite.test.csv.
arma::mat testDataset;
mlpack::data::Load("satellite.test.csv", testDataset, true);
// See https://datasets.mlpack.org/satellite.test.labels.csv.
arma::Row<size_t> testLabels;
mlpack::data::Load("satellite.test.labels.csv", testLabels, true);

std::cout << std::endl;
std::cout << "Accuracy on training set: "
    << lr.ComputeAccuracy(dataset, labels) << "\%." << std::endl;
std::cout << "Accuracy on test set:     "
    << lr.ComputeAccuracy(testDataset, testLabels) << "\%." << std::endl;
std::cout << "Objective on training set: "
    << lr.ComputeError(dataset, labels) << "." << std::endl;
std::cout << "Objective on test set:     "
    << lr.ComputeError(testDataset, testLabels) << "." << std::endl;
```

---

Train a logistic regression model with SGD and save the model every epoch using
a [custom ensmallen
callback](https://www.ensmallen.org/docs.html#custom-callbacks):

```c++
// This callback saves the model into "model-<epoch>.bin" after every epoch.
class ModelCheckpoint
{
 public:
  ModelCheckpoint(mlpack::LogisticRegression<>& model) : model(model) { }

  template<typename OptimizerType, typename FunctionType, typename MatType>
  bool EndEpoch(OptimizerType& /* optimizer */,
                FunctionType& /* function */,
                const MatType& /* coordinates */,
                const size_t epoch,
                const double /* objective */)
  {
    const std::string filename = "model-" + std::to_string(epoch) + ".bin";
    mlpack::data::Save(filename, "lr_model", model, true);
    return false; // Do not terminate the optimization.
  }

 private:
  mlpack::LogisticRegression<>& model;
};
```

With that callback available, the code to train the model is below:

```c++
// See https://datasets.mlpack.org/satellite.train.csv.
arma::mat dataset;
mlpack::data::Load("satellite.train.csv", dataset, true);
// See https://datasets.mlpack.org/satellite.train.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("satellite.train.labels.csv", labels, true);

mlpack::LogisticRegression lr;

// Create AdaDelta optimizer with a small step size and batch size of 1.
ens::AdaDelta adaDelta(0.001, 1);
adaDelta.MaxIterations() = 100 * dataset.n_cols; // 100 epochs maximum.

// Use the custom callback and an L2 penalty parameter of 0.01.
lr.Train(dataset, labels, adaDelta, 0.01, ModelCheckpoint(lr),
    ens::ProgressBar());

// Now files like model-1.bin, model-2.bin, etc. should be saved on disk.
```

---

Load an existing logistic regression model and print some information about it.

```c++
mlpack::LogisticRegression lr;
// This assumes that a model called "lr_model" has been saved to the file
// "model-1.bin" (as in the previous example).
mlpack::data::Load("model-1.bin", "lr_model", lr, true);

// Print the dimensionality of the model and some other statistics.
std::cout << "The dimensionality of the model in model-1.bin is "
    << (lr.Parameters().n_elem - 1) << "." << std::endl;
std::cout << "The bias parameter for the model is " << lr.Parameters()[0]
    << "." << std::endl;

arma::vec point(lr.Parameters().n_elem - 1, arma::fill::randu);
std::cout << "The predicted class for a random point, using a decision boundary"
    << " of 0.2, is " << lr.Classify(point, 0.2) << "." << std::endl;
```

---

Perform incremental training on multiple datasets with multiple calls to
`Train()`.

```c++
// Generate two random datasets.
arma::mat firstDataset(5, 1000, arma::fill::randu); // 1000 points.
arma::Row<size_t> firstLabels =
    arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 1));

arma::mat secondDataset(5, 1500, arma::fill::randu); // 1500 points.
arma::Row<size_t> secondLabels =
    arma::randi<arma::Row<size_t>>(1500, arma::distr_param(0, 1));

// Train a model on the first dataset with an L2 regularization penalty
// parameter of 0.01.
mlpack::LogisticRegression lr(firstDataset, firstLabels, 0.01);

// Now compute the objective on the second dataset and print it.
std::cout << "Objective on second dataset: "
    << lr.ComputeError(secondDataset, secondLabels) << "." << std::endl;

// Train for a second round on the second dataset.
lr.Train(secondDataset, secondLabels);

// Now compute the objective on the second dataset again and print it.
// (Note that it may not be all that much better because this is random data!)
std::cout << "Objective on second dataset after second training: "
    << lr.ComputeError(secondDataset, secondLabels) << "." << std::endl;
```

---

### Advanced Functionality: Different Element Types

The `LogisticRegression` class has one template parameter that can be used to
control the element type of the model.  The full signature of the class is:

```
LogisticRegression<MatType>
```

`MatType` specifies the type of matrix used for training data and internal
representation of model parameters.  Any matrix type that implements the
Armadillo API can be used.  The example below trains a logistic regression model
on sparse 32-bit floating point data.

```c++
// Create random, sparse 100-dimensional data.
arma::sp_fmat dataset;
dataset.sprandu(100, 5000, 0.3);
arma::Row<size_t> labels =
    arma::randi<arma::Row<size_t>>(5000, arma::distr_param(0, 1));

// Train with L2 regularization penalty parameter of 0.1.
mlpack::LogisticRegression<arma::sp_fmat> lr(dataset, labels, 0.1);

// Now classify a test point.
arma::sp_fvec point;
point.sprandu(100, 1, 0.3);

size_t prediction;
arma::fvec probabilitiesVec;
lr.Classify(point, prediction, probabilitiesVec);

std::cout << "Prediction for random test point: " << prediction << "."
    << std::endl;
std::cout << "Class probabilities for random test point: "
    << probabilitiesVec.t();
```

***Note***: if `MatType` is a sparse object (e.g. `sp_fmat`), the internal
parameter representation will be a *dense* vector containing elements of the
same type (e.g. `frowvec`).  This is because L2-regularized logistic regression,
even when training on sparse data, does not necessarily produce sparse models.