File: nca.md

package info (click to toggle)
mlpack 4.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 31,272 kB
  • sloc: cpp: 226,039; python: 1,934; sh: 1,198; lisp: 414; makefile: 85
file content (441 lines) | stat: -rw-r--r-- 18,452 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
## NCA

The `NCA` class implements neighborhood components analysis, which can be used
as both a linear dimensionality reduction technique and a distance learning
technique (also called metric learning).  Neighborhood components analysis finds
a linear transformation of the dataset that improves `k`-nearest-neighbor
classification performance.

Note that `NCA` is a computationally intensive technique (each optimization
iteration takes time quadratic in the data size!), and may be slow to run even
for datasets of only moderate size.  See [`LMNN`](lmnn.md) for another distance
learning technique that scales better to larger datasets.

#### Simple usage example:

```c++
// Learn a distance metric that improves kNN classification performance.

// All data and labels are uniform random; 10 dimensional data, 5 classes.
// Replace with a data::Load() call or similar for a real application.
arma::mat dataset(10, 1000, arma::fill::randu); // 1000 points.
arma::Row<size_t> labels =
    arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 4));

mlpack::NCA nca;                              // Step 1: create object.
arma::mat distance;
nca.LearnDistance(dataset, labels, distance); // Step 2: learn distance.

// `distance` can now be used as a transformation matrix for the data.
arma::mat transformedData = distance * dataset;
// Or, you can create a MahalanobisDistance to evaluate points in the
// transformed dataset space.
arma::mat q = distance.t() * distance;
mlpack::MahalanobisDistance d(std::move(q));

std::cout << "Distance between points 0 and 1:" << std::endl;
std::cout << " - Before NCA: "
    << mlpack::EuclideanDistance::Evaluate(dataset.col(0), dataset.col(1))
    << "." << std::endl;
std::cout << " - After NCA:  "
    << d.Evaluate(dataset.col(0), dataset.col(1)) << "." << std::endl;
```
<p style="text-align: center; font-size: 85%"><a href="#simple-examples">More examples...</a></p>

#### Quick links:

 * [Constructors](#constructors): create `NCA` objects.
 * [`LearnDistance()`](#learning-distances): learn distance metrics.
 * [Other functionality](#other-functionality) for loading and saving.
 * [Examples](#simple-examples) of simple usage and integration with other
   techniques.

#### See also:

<!-- TODO: link to kNN -->

 * [mlpack distance metrics](../core/distances.md)
 * [`LMNN`](lmnn.md)
 * [Metric learning on Wikipedia](https://en.wikipedia.org/wiki/Similarity_learning#Metric_learning)
 * [Neighborhood Components Analysis on Wikipedia](https://en.wikipedia.org/wiki/Neighbourhood_components_analysis)
 * [Neighbourhood Components Analysis (pdf)](https://proceedings.neurips.cc/paper_files/paper/2004/file/42fe880812925e520249e808937738d2-Paper.pdf)

### Constructors

 * `nca = NCA()`
   - Create an `NCA` object with default parameters.

---

 * `nca = NCA<DistanceType>()`
 * `nca = NCA<DistanceType>(distance)`
   - Create an `NCA` object using a custom
     [`DistanceType`](../core/distances.md).
   - An instantiated `DistanceType` can optionally be passed with the `distance`
     parameter.
   - Using a custom `DistanceType` means that `LearnDistance()` will learn a
     linear transformation for the data *in the metric space of the custom
     `DistanceType`*.
     * This means any learned distance may not necessarily improve
       classification performance with the
       [Euclidean distance](../core/distances.md#lmetric).
     * Instead, classification performance will be improved when the learned
       distance is used with the given `DistanceType` only.
   - Any mlpack `DistanceType` can be used as a drop-in replacement, or a
     [custom `DistanceType`](../../developer/distances.md).
     * A list of mlpack's provided distance metrics can be found
       [here](../core/distances.md).
   - ***Note: be sure that you understand the implications of a custom
     `DistanceType` before using this version.***

---

### Learning Distances

Once an `NCA` object has been created, the `LearnDistance()` method can be used
to learn a distance.

 * `nca.LearnDistance(data, labels, distance,            [callbacks...])`
 * `nca.LearnDistance(data, labels, distance, optimizer, [callbacks...])`
   - Learn a distance metric on the given `data` and `labels`, filling
     `distance` with a transformation matrix that can be used to map the data
     into the space of the learned distance.
   - Optionally, pass an instantiated
     [ensmallen optimizer](https://www.ensmallen.org) and/or
     [ensmallen callbacks](https://www.ensmallen.org/docs.html#callback-documentation)
     to be used for the learning process.
   - If `distance` already has size `r` x `data.n_rows` for some `r` less than
     or equal to `data.n_rows`, it will be used as the starting point for
     optimization.  Otherwise, the identity matrix with size `data.n_rows` x
     `data.n_rows` will be used.
   - When optimization is complete, `distance` will have size `r` x
     `data.n_rows`, where `r` is less than or equal to `data.n_rows`.
     * *Note*: If `r < data.n_rows`, then NCA has learned a distance metric that
       also reduces the dimensionality of the data.  See the
       [last example](#simple-examples).

To use `distance`, either:

 * Compute a new transformed dataset as `distance * data`, or
 * Use an instantiated
   [`MahalanobisDistance`](../core/distances.md#mahalanobisdistance)
   with `distance.t() * distance` as the `Q` matrix.

See the [examples section](#simple-examples) for more details.

***Caveat:*** NCA operates by repeatedly computing expressions of the form
`exp(-distance.Evaluate(data.col(i), data.col(j)))` (that is, the exponential of
the negative distance between two points).  When distances are very large, this
***quantity underflows to 0*** and results will not be reasonable.

 - This situation can be detected, usually by a result where `distance` is equal
   to the identity matrix.
 - Alternately, if the [`ens::ProgressBar()`
   callback](https://www.ensmallen.org/docs.html#progressbar) is used, a loss of
   0 often means this situation has occurred.
 - To mitigate the problem, consider scaling data such that the maximum pairwise
   distance is less than 10.  See the [simple examples](#simple-examples) that
   use the `vehicle` dataset.

#### `LearnDistance()` Parameters:

| **name** | **type** | **description** |
|----------|----------|-----------------|
| `data` | [`arma::mat`](../matrices.md) | [Column-major](../matrices.md#representing-data-in-mlpack) training matrix. |
| `labels` | [`arma::Row<size_t>`](../matrices.md) | Training labels, [between `0` and `numClasses - 1`](../core/normalizing_labels.md) (inclusive).  Should have length `data.n_cols`.  |
| `distance` | [`arma::mat`](../matrices.md) | Output matrix to store transformation matrix representing learned distance. |
| `optimizer` | [any ensmallen optimizer](https://www.ensmallen.org) | Instantiated ensmallen optimizer for [differentiable functions](https://www.ensmallen.org/docs.html#differentiable-functions) or [differentiable separable functions](https://www.ensmallen.org/docs.html#differentiable-separable-functions). | `ens::StandardSGD()` |
| `callbacks...` | [any set of ensmallen callbacks](https://www.ensmallen.org/docs.html#callback-documentation) | Optional callbacks for the ensmallen optimizer, such as e.g. `ens::ProgressBar()`, `ens::Report()`, or others. | _(N/A)_ |

***Note***: any matrix type can be used for `data` and `distance`, so long as
that type implements the Armadillo API.  So, e.g., `arma::fmat` can be used.

### Other Functionality

 * An `NCA` object can be serialized with
   [`data::Save()` and `data::Load()`](../load_save.md#mlpack-objects).
   Note that this is only meaningful if a custom `DistanceType` is being used,
   and that custom `DistanceType` has state to be saved.

 * `nca.Distance()` will return the `DistanceType` being used for learning.
   Unless a custom `DistanceType` was specified in the constructor,
   this simply returns a
   [`SquaredEuclideanDistance`](../core/distances.md#lmetric) object.

### Simple Examples

Learn a distance metric to improve classification performance on the iris
dataset, and show improved performance when using
[`NaiveBayesClassifier`](naive_bayes_classifier.md).

```c++
// See https://datasets.mlpack.org/iris.csv.
arma::mat dataset;
mlpack::data::Load("iris.csv", dataset, true);
// See https://datasets.mlpack.org/iris.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("iris.labels.csv", labels, true);

// Create an NCA object and learn a distance.
arma::mat distance;
mlpack::NCA nca;
nca.LearnDistance(dataset, labels, distance);

// The distance matrix has size equal to the dimensionality of the data.
std::cout << "Learned distance size: " << distance.n_rows << " x "
    << distance.n_cols << "." << std::endl;

// Learn a NaiveBayesClassifier model on the data and print the performance.
mlpack::NaiveBayesClassifier nbc1(dataset, labels, 3);
arma::Row<size_t> predictions;
nbc1.Classify(dataset, predictions);
std::cout << "Naive Bayes Classifier without NCA: "
    << arma::accu(labels == predictions) << " of " << labels.n_elem
    << " correct." << std::endl;

// Now transform the data and learn another NaiveBayesClassifier.
arma::mat transformedDataset = distance * dataset;
mlpack::NaiveBayesClassifier nbc2(transformedDataset, labels, 3);
nbc2.Classify(transformedDataset, predictions);
std::cout << "Naive Bayes Classifier with NCA:    "
    << arma::accu(labels == predictions) << " of " << labels.n_elem
    << " correct." << std::endl;
```

---

Learn a distance metric on the ionosphere dataset, using 32-bit floating point
to represent the data and metric.

```c++
// See https://datasets.mlpack.org/ionosphere.csv.
arma::fmat dataset;
mlpack::data::Load("ionosphere.csv", dataset, true);

// The labels are the last row of the dataset.
arma::Row<size_t> labels =
    arma::conv_to<arma::Row<size_t>>::from(dataset.row(dataset.n_rows - 1));
dataset.shed_row(dataset.n_rows - 1);

// Create an NCA object and learn distance on float32 data.
// To keep computation time down, we use an instantiated optimizer that will
// only perform 10 epochs of training.  (In a real application you may want to
// train for longer!)
arma::fmat distance;
mlpack::NCA nca;

ens::StandardSGD opt;
opt.MaxIterations() = 10 * dataset.n_cols;
nca.LearnDistance(dataset, labels, distance, opt, ens::ProgressBar());

// We want to compute six quantities:
//
//  - Average distance to points of the same class before NCA.
//  - Average distance to points of the same class after NCA, using
//    MahalanobisDistance.
//  - Average distance to points of the same class after NCA, using the
//    transformed dataset.
//
//  - The same three quantities above, but for points of the other class.
//
// NCA should reduce the average distance to points in the same class, while
// increasing the average distance to points in other classes.
float distSums[6] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
size_t sameCount = 0;
arma::fmat q = distance.t() * distance;
mlpack::MahalanobisDistance md(std::move(q));
arma::fmat transformedDataset = distance * dataset;
for (size_t i = 1; i < dataset.n_cols; ++i)
{
  const double d1 = mlpack::EuclideanDistance::Evaluate(
      dataset.col(0), dataset.col(i));
  const double d2 = md.Evaluate(dataset.col(0), dataset.col(i));
  const double d3 = mlpack::EuclideanDistance::Evaluate(
      transformedDataset.col(0), transformedDataset.col(i));

  // Determine whether the point has the same label as point 0.
  if (labels[i] == labels[0])
  {
    distSums[0] += d1;
    distSums[1] += d2;
    distSums[2] += d3;
    ++sameCount;
  }
  else
  {
    distSums[3] += d1;
    distSums[4] += d2;
    distSums[5] += d3;
  }
}

// Turn the results into average distances across the class.
distSums[0] /= sameCount;
distSums[1] /= sameCount;
distSums[2] /= sameCount;
distSums[3] /= (dataset.n_cols - sameCount);
distSums[4] /= (dataset.n_cols - sameCount);
distSums[5] /= (dataset.n_cols - sameCount);

// Print the results.
std::cout << "Average distance between point 0 and other points of the same "
    << "class:" << std::endl;
std::cout << " - Before NCA:                           " << distSums[0] << "."
    << std::endl;
std::cout << " - After NCA (with MahalanobisDistance): " << distSums[1] << "."
    << std::endl;
std::cout << " - After NCA (with transformed dataset): " << distSums[2] << "."
    << std::endl;
std::cout << std::endl;

std::cout << "Average distance between point 0 and points of other classes: "
    << std::endl;
std::cout << " - Before NCA:                           " << distSums[3] << "."
    << std::endl;
std::cout << " - After NCA (with MahalanobisDistance): " << distSums[4] << "."
    << std::endl;
std::cout << " - After NCA (with transformed dataset): " << distSums[5] << "."
    << std::endl;
std::cout << std::endl;

std::cout << "Ratio of other-class to same-class distances:" << std::endl;
std::cout << "(We expect this to go up.)" << std::endl;
std::cout << " - Before NCA: " << (distSums[3] / distSums[0]) << "."
    << std::endl;
std::cout << " - After NCA:  " << (distSums[5] / distSums[2]) << "."
    << std::endl;
```

---

Learn a distance metric on the iris dataset, using the L-BFGS optimizer with
callbacks.

```c++
// See https://datasets.mlpack.org/iris.csv.
arma::mat dataset;
mlpack::data::Load("iris.csv", dataset, true);
// See https://datasets.mlpack.org/iris.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("iris.labels.csv", labels, true);

// Learn a distance with ensmallen's L-BFGS optimizer.
ens::L_BFGS lbfgs;
lbfgs.NumBasis() = 5;
lbfgs.MaxIterations() = 1000;

arma::mat distance;
mlpack::NCA nca;

// Use a callback that prints a final optimization report.
nca.LearnDistance(dataset, labels, distance, lbfgs, ens::Report());
```

---

<!-- TODO: actually use a kNN classifier here... once we have it implemented! -->

Learn a distance metric on the vehicle dataset, but instead of using the
Euclidean distance as the underlying metric, use the Manhattan distance.  This
means that NCA is optimizing k-NN performance under the Manhattan distance, not
under the Euclidean distance.

```c++
// See https://datasets.mlpack.org/vehicle.csv.
arma::mat dataset;
mlpack::data::Load("vehicle.csv", dataset, true);

// The labels are contained as the last row of the dataset.
arma::Row<size_t> labels =
    arma::conv_to<arma::Row<size_t>>::from(dataset.row(dataset.n_rows - 1));
dataset.shed_row(dataset.n_rows - 1);

// Because typical distances between points in the vehicle dataset are large,
// we will center the dataset and scale it to have points in the unit ball.
// (That is, all points will have values in each dimension between -1 and 1.)
// This means that the maximum pairwise distance is 2.
dataset.each_col() -= arma::mean(dataset, 1);
dataset /= arma::max(arma::max(arma::abs(dataset)));

// Create the NCA object and optimize.  Use Nesterov momentum SGD, printing a
// progress bar during optimization.
mlpack::NCA<mlpack::ManhattanDistance> nca;
arma::mat distance;
ens::NesterovMomentumSGD opt(0.01 /* step size */,
                             32 /* batch size */,
                             20 * dataset.n_cols /* 20 epochs */);
nca.LearnDistance(dataset, labels, distance, opt, ens::ProgressBar());

// Now inspect distances between points with the Euclidean distance and with the
// inner product distance.
arma::mat transformedDataset = distance * dataset;

// Points 0 and 1 have the same label (0).  See their original distance---with
// both the Euclidean and Manhattan distances---and their transformed distances.
// We expect these points to get closer together, in the Manhattan distance.
const double d1 = mlpack::ManhattanDistance::Evaluate(
    dataset.col(0), dataset.col(1));
const double d2 = mlpack::ManhattanDistance::Evaluate(
    transformedDataset.col(0), transformedDataset.col(1));

std::cout << "Distance between points 0 and 1 (same class):" << std::endl;
std::cout << " - Manhattan distance:" << std::endl;
std::cout << "   * Before NCA: " << d1 << std::endl;
std::cout << "   * After NCA:  " << d2 << std::endl;
std::cout << std::endl;

// Point 3 has a different label.  We therefore expect this point to get further
// from point 0 with the Manhattan distance, but not necessarily with the
// Euclidean distance.
const double d3 = mlpack::ManhattanDistance::Evaluate(
    dataset.col(0), dataset.col(3));
const double d4 = mlpack::ManhattanDistance::Evaluate(
    transformedDataset.col(0), transformedDataset.col(3));

std::cout << "Distance between points 0 and 3 (different class):" << std::endl;
std::cout << " - Manhattan distance:" << std::endl;
std::cout << "   * Before NCA: " << d3 << std::endl;
std::cout << "   * After NCA:  " << d4 << std::endl;

// Note that point 3 has been moved further away from point 0 than point 1.
```

---

Learn a distance metric while also performing dimensionality reduction, reducing
the dimensionality of the vehicle dataset by 2 dimensions.

```c++
// See https://datasets.mlpack.org/vehicle.csv.
arma::mat dataset;
mlpack::data::Load("vehicle.csv", dataset, true);

// The labels are contained as the last row of the dataset.
arma::Row<size_t> labels =
    arma::conv_to<arma::Row<size_t>>::from(dataset.row(dataset.n_rows - 1));
dataset.shed_row(dataset.n_rows - 1);

// Because typical distances between points in the vehicle dataset are large,
// we will center the dataset and scale it to have points in the unit ball.
// (That is, all points will have values in each dimension between -1 and 1.)
// This means that the maximum pairwise distance is 2.
dataset.each_col() -= arma::mean(dataset, 1);
dataset /= arma::max(arma::max(arma::abs(dataset)));

// Use a random initialization for the distance transformation, with the
// specified output dimensionality.
arma::mat distance(dataset.n_rows - 2, dataset.n_rows, arma::fill::randu);
mlpack::NCA nca;
ens::L_BFGS opt;
opt.MaxIterations() = 10; // You may want more in a real application.
nca.LearnDistance(dataset, labels, distance, opt);

// Now transform the dataset.
arma::mat transformedData = distance * dataset;

std::cout << std::endl << std::endl;
std::cout << "Original data has size " << dataset.n_rows << " x "
    << dataset.n_cols << "." << std::endl;
std::cout << "Transformed data has size " << transformedData.n_rows << " x "
    << transformedData.n_cols << "." << std::endl;
```