1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
|
## `NMF`
The `NMF` class implements non-negative matrix factorization, a technique to
decompose a large (potentially sparse) matrix `V` into two smaller matrices `W`
and `H`, such that `V ~= W * H`, and `W` and `H` only contain nonnegative
elements. This technique may be used for dimensionality reduction, or as part
of a recommender system.
The `NMF` class allows fully configurable behavior via [template
parameters](#advanced-functionality-template-parameters). For more general
matrix factorization strategies, see the [`AMF`](amf.md) (alternating matrix
factorization) class documentation.
#### Simple usage example:
```c++
// Create a random sparse matrix (V) of size 10x100, with 15% nonzeros.
arma::sp_mat V;
V.sprandu(100, 100, 0.15);
// W and H will be low-rank matrices of size 100x10 and 10x100.
arma::mat W, H;
mlpack::NMF nmf; // Step 1: create object.
double residue = nmf.Apply(V, 10, W, H); // Step 2: apply NMF to decompose V.
// Now print some information about the factorized matrices.
std::cout << "W has size: " << W.n_rows << " x " << W.n_cols << "."
<< std::endl;
std::cout << "H has size: " << H.n_rows << " x " << H.n_cols << "."
<< std::endl;
std::cout << "RMSE of reconstructed matrix: "
<< arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem) << "." << std::endl;
```
<p style="text-align: center; font-size: 85%"><a href="#simple-examples">More examples...</a></p>
#### Quick links:
* [Constructors](#constructors): create `NMF` objects.
* [`Apply()`](#applying-decompositions): apply `NMF` decomposition to data.
* [Examples](#simple-examples) of simple usage and links to detailed example
projects.
* [Template parameters](#advanced-functionality-template-parameters) for
using different update rules, initialization strategies, and termination
criteria.
* [Advanced template examples](#advanced-functionality-examples) of use with
custom template parameters.
#### See also:
<!-- * [`CF`](cf.md): collaborative filtering (recommender system) -->
* [`AMF`](amf.md): alternating matrix factorization
* [`SparseCoding`](sparse_coding.md)
* [mlpack transformations](../transformations.md)
* [Non-negative matrix factorization on Wikipedia](https://en.wikipedia.org/wiki/Non-negative_matrix_factorization)
* [Learning the parts of objects by non-negative matrix factorization](https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=29bae9472203546847ec1352a604566d0f602728) (original NMF paper, pdf)
### Constructors
* `nmf = NMF()`
- Create an `NMF` object.
- The rank of the decomposition is specified in the call to
[`Apply()`](#applying-decompositions).
---
* `nmf = NMF(SimpleResidueTermination(minResidue=1e-5, maxIterations=10000))`
- Create an NMF object with custom termination parameters.
- `minResidue` (a `double`) specifies the minimum difference of the norm of
`W * H` between iterations for termination.
- `maxIterations` specifies the maximum number of iterations before
decomposition terminates.
---
### Applying Decompositions
* `double residue = nmf.Apply(V, rank, W, H)`
- Decompose the matrix `V` into two non-negative matrices `W` and `H` with
rank `rank`.
- `W` will be set to size `V.n_rows` x `rank`.
- `H` will be set to size `rank` x `V.n_cols`.
- `W` and `H` are initialized randomly using the
[Acol](#advanced-functionality-initializationruletype) initialization
strategy; i.e., each column of `W` is an average of 5 random columns of
`V`, and `H` is initialized uniformly randomly.
- The residue (change in the norm of `W * H` between iterations) is returned.
---
***Notes***:
- Low values of `rank` will give smaller matrices `W` and `H`, but the
decomposition will be less accurate. Larger values of `rank` will give more
accurate decompositions, but will take longer to compute. Every problem is
different, so `rank` must be specified manually.
- The expression `W * H` can be used to reconstruct the matrix `V`.
- Custom behavior, such as custom initialization of `W` and `H`, different or
custom termination rules, and different update rules are discussed in the
[advanced functionality](#advanced-functionality-template-parameters)
section.
---
#### `Apply()` Parameters:
| **name** | **type** | **description** |
|----------|----------|-----------------|
| `V` | [`arma::sp_mat` or `arma::mat`](../matrices.md) | Input matrix to be factorized. |
| `rank` | `size_t` | Rank of decomposition; lower is smaller, higher is more accurate. |
| `W` | [`arma::mat`](../matrices.md) | Output matrix in which `W` will be stored. |
| `H` | [`arma::mat`](../matrices.md) | Output matrix in which `H` will be stored. |
***Note:*** Matrices with different element types can be used for `V`, `W`, and
`H`; e.g., `arma::fmat`. While `V` can be sparse or dense, `W` and `H` must be
dense matrices.
### Simple Examples
See also the [simple usage example](#simple-usage-example) for a trivial use of
`NMF`.
---
Decompose a dense matrix with custom termination parameters.
```c++
// Create a low-rank V matrix by multiplying together two random matrices.
arma::mat V = arma::randu<arma::mat>(500, 25) *
arma::randn<arma::mat>(25, 5000);
// Create the NMF object with a looser tolerance of 1e-3 and a maximum of 100
// iterations only.
mlpack::NMF nmf(mlpack::SimpleResidueTermination(1e-3, 500));
arma::mat W, H;
// Decompose with a rank of 25.
// W will have size 500 x 25, and H will have size 25 x 5000.
const double residue = nmf.Apply(V, 25, W, H);
std::cout << "Residue of decomposition: " << residue << "." << std::endl;
// Compute RMSE of decomposition.
const double rmse = arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem);
std::cout << "RMSE of decomposition: " << rmse << "." << std::endl;
```
---
Decompose the sparse MovieLens dataset using a rank-12 decomposition and `float`
element type.
```c++
// See https://datasets.mlpack.org/movielens-100k.csv.
arma::sp_fmat V;
mlpack::data::Load("movielens-100k.csv", V, true);
// Create the NMF object.
mlpack::NMF nmf;
arma::fmat W, H;
// Decompose the Movielens dataset with rank 12.
const double residue = nmf.Apply(V, 12, W, H);
std::cout << "Residue of MovieLens decomposition: " << residue << "."
<< std::endl;
// Compute RMSE of decomposition.
const double rmse = arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem);
std::cout << "RMSE of decomposition: " << rmse << "." << std::endl;
```
---
Compare quality of decompositions of MovieLens with different ranks.
```c++
// See https://datasets.mlpack.org/movielens-100k.csv.
arma::sp_mat V;
mlpack::data::Load("movielens-100k.csv", V, true);
// Create the NMF object.
mlpack::NMF nmf;
arma::mat W, H;
for (size_t rank = 10; rank <= 100; rank += 15)
{
// Decompose with the given rank.
const double residue = nmf.Apply(V, rank, W, H);
const double rmse = arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem);
std::cout << "RMSE for rank-" << rank << " decomposition: " << rmse << "."
<< std::endl;
}
```
---
### Advanced Functionality: Template Parameters
The `NMF` class has three template parameters that can be used for custom
behavior. The full signature of the class is:
```
NMF<TerminationPolicyType, InitializationRuleType, UpdateRuleType>
```
* `TerminationPolicyType`: the strategy used to choose when to terminate NMF.
* `InitializationRuleType`: the strategy used to choose the initial `W` and `H`
matrices.
* `UpdateRuleType`: the update rules used for NMF:
- `NMFMultiplicativeDistanceUpdate`: update rule that ensure the Frobenius
norm of the reconstruction error is decreasing at each iteration.
- `NMFMultiplicativeDivergenceUpdate`: update rules that ensure
Kullback-Leibler divergence is decreasing at each iteration.
- `NMFALSUpdate`: alternating least-squares projections for `W` and `H`.
- For custom update rules, use the more general [`AMF`](amf.md) class.
---
### Advanced Functionality: `TerminationPolicyType`
* Specifies the strategy to use to choose when to stop the NMF algorithm.
* An instantiated `TerminationPolicyType` can be passed to the NMF constructor.
* The following choices are available for drop-in usage:
---
#### ***`SimpleResidueTermination`*** (default):
- Terminates when a maximum number of iterations is reached, or when the
residue (change in norm of `W * H` between iterations) is sufficiently small.
- Constructor: `SimpleResidueTermination(minResidue=1e-5, maxIterations=10000)`
* `minResidue` (a `double`) specifies the sufficiently small residue for
termination.
* `maxIterations` (a `size_t`) specifies the maximum number of iterations.
- `nmf.Apply()` will return the residue of the last iteration.
---
#### ***`MaxIterationTermination`***:
- Terminates when the maximum number of iterations is reached.
- No other condition is checked.
- Constructor: `MaxIterationTermination(maxIterations=1000)`
- `nmf.Apply()` will return the number of iterations performed.
---
#### ***`SimpleToleranceTermination<MatType, WHMatType>`***:
- Terminates when the nonzero residual decreases a sufficiently small relative
amount between iterations (e.g.
`(lastNonzeroResidual - nonzeroResidual) / lastNonzeroResidual` is below a
threshold), or when the maximum number of iterations is reached.
- The residual must remain below the threshold for a specified number of
iterations.
- The nonzero residual is defined as the root of the sum of squared elements in
the reconstruction error matrix `(V - WH)`, limited to locations where `V` is
nonzero.
- Constructor: `SimpleToleranceTermination<MatType, WHMatType>(tol=1e-5, maxIter=10000, extraSteps=3)`
* `MatType` should be set to the type of `V` (see
[`Apply()` Parameters](#apply-parameters)).
* `WHMatType` (default `arma::mat`) should be set to the type of `W` and `H`
(see [`Apply()` Parameters](#apply-parameters)).
* `tol` (a `double`) specifies the relative nonzero residual tolerance for
convergence.
* `maxIter` (a `size_t`) specifies the maximum number of iterations
before termination.
* `extraSteps` (a `size_t`) specifies the number of iterations
where the relative nonzero residual must be below the tolerance for
convergence.
- The best `W` and `H` matrices (according to the nonzero residual) from the
final `extraSteps` iterations are returned by `nmf.Apply()`.
- `nmf.Apply()` will return the nonzero residue of the iteration corresponding
to the best `W` and `H` matrices.
---
#### ***`ValidationRMSETermination<MatType>`***:
- Holds out a validation set of nonzero elements from `V`, and terminates when
the RMSE (root mean squared error) on this validation set is sufficiently
small between iterations.
- The validation RMSE must remain below the threshold for a specified number of
iterations.
- `MatType` should be set to the type of `V` (see
[`Apply()` Parameters](#apply-parameters)).
- Constructor: `ValidationRMSETermination<MatType>(V, numValPoints, tol=1e-5, maxIter=10000, extraSteps=3)`
* `V` is the matrix to be decomposed by `Apply()`. This will be modified
(validation elements will be removed).
* `numValPoints` (a `size_t`) specifies number of test points from `V` to be
held out.
* `tol` (a `double`) specifies the relative tolerance for the validation RMSE
for termination.
* `maxIter` (a `size_t`) specifies the maximum number of iterations before
termination.
* `extraSteps` (a `size_t`) specifies the number of iterations where the
validation RMSE must be below the tolerance for convergence.
- The best `W` and `H` matrices (according to the validation RMSE) from the
final `extraSteps` iterations are returned by `nmf.Apply()`.
- `nmf.Apply()` will return the best validation RMSE.
---
#### ***Custom policies***:
- A custom class for termination behavior must implement the following
functions.
```c++
// You can use this as a starting point for implementation.
class CustomTerminationPolicy
{
public:
// Initialize the termination policy for the given matrix V. (It is okay to
// do nothing.) This function is called at the beginning of Apply().
//
// If the termination policy requires V to compute convergence, store a
// reference or pointer to it in this function.
template<typename MatType>
void Initialize(const MatType& V);
// Check if convergence has occurred for the given W and H matrices. Return
// `true` if so.
//
// Note that W and H may have different types than V (i.e. V may be sparse,
// and W and H must be dense.)
template<typename WHMatType>
bool IsConverged(const WHMatType& H, const WHMatType& W);
// Return the value that should be returned for the `nmf.Apply()` function
// when convergence has been reached. This is called at the end of
// `nmf.Apply()`.
const double Index();
// Return the number of iterations that have been completed. This is called
// at the end of `nmf.Apply()`.
const size_t Iteration();
};
```
---
### Advanced Functionality: `InitializationRuleType`
* Specifies the strategy to use to initialize `W` and `H` at the beginning of
the NMF algorithm.
* An initialized `InitializationRuleType` can be passed to the following
constructor:
- `nmf = NMF(terminationPolicy, initializationRule)`
* The following choices are available for drop-in usage:
---
#### ***`RandomAcolInitialization<N>`*** (default):
- Initialize `W` by averaging `N` randomly chosen columns of `V`.
- Initialize `H` as uniform random in the range `[0, 1]`.
- The default value for `N` is 5.
- See also [the paper](https://arxiv.org/abs/1407.7299) describing the
strategy.
---
#### ***`NoInitialization`***:
- When `nmf.Apply(V, rank, W, H)`, the existing values of `W` and `H` will be
used.
- If `W` is not of size `V.n_rows` x `rank`, or if `H` is not of size `rank` x
`V.n_cols`, a `std::invalid_argument` exception will be thrown.
---
#### ***`GivenInitialization<MatType>`***:
- Set `W` and/or `H` to the given matrices when `Apply()` is called.
- `MatType` should be set to the type of `W` or `H` (default `arma::mat`); see
[`Apply()` Parameters](#apply-parameters).
- Constructors:
* `GivenInitialization<MatType>(W, H)`
- Specify both initial `W` and `H` matrices.
* `GivenInitialization<MatType>(M, isW=true)`
- If `isW` is `true`, then set initial `W` to `M`.
- If `isW` is `false`, then set initial `H` to `M`.
- This constructor is meant to only be used with `MergeInitialization`
(below).
---
#### ***`RandomAMFInitialization`***:
- Initialize `W` and `H` as uniform random in the range `[0, 1]`.
---
#### ***`AverageInitialization`***:
- Initialize each element of `W` and `H` to the square root of the average
value of `V`, adding uniform random noise in the range `[0, 1]`.
---
#### ***`MergeInitialization<WRule, HRule>`***:
- Use two different initialization rules, one for `W` (`WRule`) and one for `H`
(`HRule`).
- Constructors:
* `MergeInitialization<WRule, HRule>()`
- Create the merge initialization with default-constructed rules for `W`
and `H`.
* `MergeInitialization<WRule, HRule>(wRule, hRule)`
- Create the merge initialization with instantiated rules for `W` and `H`.
- `wRule` and `hRule` will be copied.
- Any `WRule` and `HRule` classes must implement the `InitializeOne()`
function.
---
#### ***Custom rules***:
- A custom class for initializing `W` and `H` must implement the following
functions.
```c++
// You can use this as a starting point for implementation.
class CustomInitialization
{
public:
// Initialize the W and H matrices, given V and the rank of the decomposition.
// This is called at the start of `Apply()`.
//
// Note that `MatType` may be different from `WHMatType`; e.g., `V` could be
// sparse, but `W` and `H` must be dense.
template<typename MatType, typename WHMatType>
void Initialize(const MatType& V,
const size_t rank,
WHMatType& W,
WHMatType& H);
// Initialize one of the W or H matrices, given V and the rank of the
// decomposition.
//
// If `isW` is `true`, then `M` should be treated as though it is `W`;
// if `isW` is `false`, then `M` should be treated as thought it is `H`.
//
// This function only needs to be implemented if it is intended to use the
// custom initialization strategy with `MergeInitialization`.
template<typename MatType, typename WHMatType>
void InitializeOne(const MatType& V,
const size_t rank,
WHMatType& M,
const bool isW);
};
```
---
### Advanced Functionality Examples
Use a pre-specified initialization for `W` and `H`.
```c++
// See https://datasets.mlpack.org/movielens-100k.csv.
arma::sp_mat V;
mlpack::data::Load("movielens-100k.csv", V, true);
arma::mat W, H;
// Pre-initialize W and H.
// W will be filled with random values from a normal distribution.
// H will be filled with 1s.
W.randn(V.n_rows, 15);
H.set_size(15, V.n_cols);
H.fill(0.2);
mlpack::NMF<mlpack::SimpleResidueTermination, mlpack::NoInitialization> nmf;
const double residue = nmf.Apply(V, 15, W, H);
const double rmse = arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem);
std::cout << "RMSE of NMF decomposition with pre-specified W and H: " << rmse
<< "." << std::endl;
```
---
Use `ValidationRMSETermination` to decompose the MovieLens dataset until the
RMSE of the held-out validation set is sufficiently low.
```c++
// See https://datasets.mlpack.org/movielens-100k.csv.
arma::sp_mat V;
mlpack::data::Load("movielens-100k.csv", V, true);
arma::mat W, H;
// Create a ValidationRMSETermination class that will hold out 3k points from V.
// This will remove 3000 nonzero entries from V.
mlpack::ValidationRMSETermination<arma::sp_mat> t(V, 3000);
// Create the NMF object with the instantiated termination policy.
mlpack::NMF<mlpack::ValidationRMSETermination<arma::sp_mat>> nmf(t);
// Perform NMF with a rank of 20.
// Note the RMSE returned here is the RMSE on the validation set.
const double rmse = nmf.Apply(V, 20, W, H);
const double rmseTrain = arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem);
std::cout << "Training RMSE: " << rmseTrain << "." << std::endl;
std::cout << "Validation RMSE: " << rmse << "." << std::endl;
```
---
Use all three sets of NMF update rules and compare the RMSE on a held-out
validation set.
```c++
// See https://datasets.mlpack.org/movielens-100k.csv.
arma::sp_mat V;
mlpack::data::Load("movielens-100k.csv", V, true);
arma::mat W1, W2, W3;
arma::mat H1, H2, H3;
// Create a ValidationRMSETermination class that will hold out 3k points from V.
// This will remove 3000 nonzero entries from V.
mlpack::ValidationRMSETermination<arma::sp_mat> t(V, 3000);
// Multiplicative distance update rule.
mlpack::NMF<mlpack::ValidationRMSETermination<arma::sp_mat>,
mlpack::RandomAcolInitialization<5>,
mlpack::NMFMultiplicativeDistanceUpdate> nmf1(t);
// Multiplicative divergence update rule.
mlpack::NMF<mlpack::ValidationRMSETermination<arma::sp_mat>,
mlpack::RandomAcolInitialization<5>,
mlpack::NMFMultiplicativeDivergenceUpdate> nmf2(t);
// Alternating least squares update rule.
mlpack::NMF<mlpack::ValidationRMSETermination<arma::sp_mat>,
mlpack::RandomAcolInitialization<5>,
mlpack::NMFALSUpdate> nmf3(t);
const double rmse1 = nmf1.Apply(V, 15, W1, H1);
const double rmse2 = nmf2.Apply(V, 15, W2, H2);
const double rmse3 = nmf3.Apply(V, 15, W3, H3);
// Print the RMSEs.
std::cout << "Mult. dist. update RMSE: " << rmse1 << "." << std::endl;
std::cout << "Mult. div. update RMSE: " << rmse2 << "." << std::endl;
std::cout << "ALS update RMSE: " << rmse3 << "." << std::endl;
```
---
Use a custom termination policy that sets a limit on how long NMF is allowed to
take. First, we define the termination policy:
```c++
class CustomTimeTermination
{
public:
CustomTimeTermination(const double totalAllowedTime) :
totalAllowedTime(totalAllowedTime) { }
template<typename MatType>
void Initialize(const MatType& /* V */)
{
totalTime = 0.0;
iteration = 0;
c.tic();
}
template<typename WHMatType>
bool IsConverged(const WHMatType& /* W */, const WHMatType& /* H */)
{
totalTime += c.toc();
c.tic();
++iteration;
return (totalTime > totalAllowedTime);
}
const double Index() const { return totalTime; }
const size_t Iteration() const { return iteration; }
private:
double totalAllowedTime;
double totalTime;
size_t iteration;
arma::wall_clock c; // used for convenient timing
};
```
Then we can use it in the test program:
```c++
// See https://datasets.mlpack.org/movielens-100k.csv.
arma::sp_fmat V;
mlpack::data::Load("movielens-100k.csv", V, true);
CustomTimeTermination t(5 /* seconds */);
mlpack::NMF<CustomTimeTermination> nmf(t);
arma::fmat W, H;
const double actualTime = nmf.Apply(V, 10, W, H);
const double rmse = arma::norm(V - W * H, "fro") / std::sqrt(V.n_elem);
std::cout << "Actual time used for decomposition: " << actualTime << "."
<< std::endl;
std::cout << "RMSE after ~5 seconds: " << rmse << "." << std::endl;
```
|