1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
|
## `RandomForest`
The `RandomForest` class implements a parallelized random forest classifier that
supports numerical and categorical features, by default using Gini gain to
choose which feature to split on in each tree.
Random forests are a collection of decision trees that give better performance
than a single decision tree. They are useful for classifying points with
_discrete labels_ (i.e. `0`, `1`, `2`). This implementation of the
`RandomForest` class is not for regression (i.e. predicting _continuous
values_).
mlpack's `RandomForest` class offers configurability via template parameters and
runtime parameters. This is used to provide the additional API-compatible
`ExtraTrees` class. To use `ExtraTrees`, simply replace `RandomForest` with
`ExtraTrees` in any of the documentation below. ([More
information...](#fully-custom-behavior))
#### Simple usage example:
```c++
// Train a random forest on random numeric data and predict labels on test data:
// All data and labels are uniform random; 10 dimensional data, 5 classes.
// Replace with a data::Load() call or similar for a real application.
arma::mat dataset(10, 1000, arma::fill::randu); // 1000 points.
arma::Row<size_t> labels =
arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 4));
arma::mat testData(10, 500, arma::fill::randu); // 500 test points.
mlpack::RandomForest rf; // Step 1: create model.
rf.Train(dataset, labels, 5, 10); // Step 2: train model.
arma::Row<size_t> predictions;
rf.Classify(testData, predictions); // Step 3: classify points.
// You can also use `ExtraTrees` instead of `RandomForest`!
// Print some information about the test predictions.
std::cout << arma::accu(predictions == 3) << " test points classified as class "
<< "3." << std::endl;
```
<p style="text-align: center; font-size: 85%"><a href="#simple-examples">More examples...</a></p>
#### Quick links:
* [Constructors](#constructors): create `RandomForest` objects.
* [`Train()`](#training): train model.
* [`Classify()`](#classification): classify with a trained model.
* [Other functionality](#other-functionality) for loading, saving, and
inspecting.
* [Examples](#simple-examples) of simple usage and links to detailed example
projects.
* [Template parameters](#advanced-functionality-template-parameters) for custom
behavior.
#### See also:
* [`DecisionTree`](decision_tree.md)
* [`DecisionTreeRegressor`](decision_tree_regressor.md)
* [mlpack classifiers](../modeling.md#classification)
* [Random forest on Wikipedia](https://en.wikipedia.org/wiki/Random_forest)
* [Decision tree on Wikipedia](https://en.wikipedia.org/wiki/Decision_tree)
* [Leo Breiman's Random Forests page](https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm)
### Constructors
* `rf = RandomForest()`
- Initialize the random forest without training.
- You will need to call [`Train()`](#training) later to train the tree
before calling [`Classify()`](#classification).
---
* `rf = RandomForest(data, labels, numClasses, numTrees=20, minLeafSize=1, minGainSplit=1e-7, maxDepth=0)`
* `rf = RandomForest(data, labels, numClasses, weights, numTrees=20, minLeafSize=1, minGainSplit=1e-7, maxDepth=0)`
- Train on numerical-only data (optionally with instance weights).
---
* `rf = RandomForest(data, info, labels, numClasses, numTrees=20, minLeafSize=1, minGainSplit=1e-7, maxDepth=0)`
* `rf = RandomForest(data, info, labels, numClasses, weights, numTrees=20, minLeafSize=1, minGainSplit=1e-7, maxDepth=0)`
- Train on mixed categorical data (optionally with instance weights).
---
#### Constructor Parameters:
| **name** | **type** | **description** | **default** |
|----------|----------|-----------------|-------------|
| `data` | [`arma::mat`](../matrices.md) | [Column-major](../matrices.md#representing-data-in-mlpack) training matrix. | _(N/A)_ |
| `info` | [`data::DatasetInfo`](../load_save.md#loading-categorical-data) | Dataset information, specifying type information for each dimension. | _(N/A)_ |
| `labels` | [`arma::Row<size_t>`](../matrices.md) | Training labels, [between `0` and `numClasses - 1`](../core/normalizing_labels.md) (inclusive). Should have length `data.n_cols`. | _(N/A)_ |
| `numClasses` | `size_t` | Number of classes in the dataset. | _(N/A)_ |
| `weights` | [`arma::rowvec`](../matrices.md) | Instance weights for each training point. Should have length `data.n_cols`. | _(N/A)_ |
| `numTrees` | `size_t` | Number of trees to train in the random forest. | `20`
|
| `minLeafSize` | `size_t` | Minimum number of points in each leaf node of each decision tree. | `1` |
| `minGainSplit` | `double` | Minimum gain for a node to split in each decision tree. | `1e-7` |
| `maxDepth` | `size_t` | Maximum depth for each decision tree. (0 means no limit.) | `0` |
| `warmStart` | `bool` | (Only available in `Train()`.) If true, training adds `numTrees` trees to the random forest. If `false`, an entirely new random forest will be created. | `false` |
* If OpenMP is enabled<!-- TODO: link! -->, one thread will be used to train
each of the `numTrees` trees in the random forest. The computational effort
involved with training a random forest increases linearly with the number of
trees.
* The default `minLeafSize` is `1`, unlike `DecisionTree`. This is because
random forests are less susceptible to overfitting due to their ensembled
nature.
* Note that the default `minLeafSize` of `1` will make large decision trees,
and so if a smaller-sized model is desired, this value should be increased
(at the potential cost of accuracy).
* `minGainSplit` can also be increased if a smaller-sized model is desired.
* `bootstrap` can be any of `DefaultBootstrap`, `IdentityBootstrap`,
`SequentialBootstrap`, or any customer bootstrapping algorithm as defined
by [BootstrapType](#bootstraptype). Note that `SequentialBootstrap` does
not have a default constructor.
***Note:*** different types can be used for `data` and `weights` (e.g.,
`arma::fmat`, `arma::sp_mat`). However, the element type of `data` and
`weights` must match; for example, if `data` has type `arma::fmat`, then
`weights` must have type `arma::frowvec`.
### Training
If training is not done as part of the constructor call, it can be done with one
of the following versions of the `Train()` member function:
* `rf.Train(data, labels, numClasses, numTrees=20, minLeafSize=1, minGainSplit=1e-7, maxDepth=0, warmStart=false)`
* `rf.Train(data, labels, numClasses, weights, numTrees=20, minLeafSize=1, minGainSplit=1e-7, maxDepth=0, warmStart=false)`
- Train on numerical-only data (optionally with instance weights).
- Returns a `double` with the average gain of each tree in the random forest.
By default, this is the Gini gain, unless a different
[`FitnessFunction` template parameter](#fully-custom-behavior) is
specified.
---
* `rf.Train(data, info, labels, numClasses, numTrees=20, minLeafSize=1, minGainSplit=1e-7, maxDepth=0, warmStart=false)`
* `rf.Train(data, info, labels, numClasses, weights, numTrees=20, minLeafSize=1, minGainSplit=1e-7, maxDepth=0, warmStart=false)`
- Train on mixed categorical data (optionally with instance weights).
---
Types of each argument are the same as in the table for constructors
[above](#constructor-parameters).
**Notes**:
* The `warmStart` option, which allows incremental training (i.e. additional
training on top of an existing model) is of type `bool` and defaults to
`false`. This option is not available in the [constructors](#constructors).
* `Train()` returns a `double` with the average gain of each tree in the random
forest. By default, this is the Gini gain, unless a different
[`FitnessFunction` template parameter](#fully-custom-behavior) is specified.
### Classification
Once a `RandomForest` is trained, the `Classify()` member function can be used
to make class predictions for new data.
* `size_t predictedClass = rf.Classify(point)`
- ***(Single-point)***
- Classify a single point, returning the predicted class.
---
* `rf.Classify(point, prediction, probabilitiesVec)`
- ***(Single-point)***
- Classify a single point and compute class probabilities.
- The predicted class is stored in `prediction`.
- The probability of class `i` can be accessed with `probabilitiesVec[i]`.
---
* `rf.Classify(data, predictions)`
- ***(Multi-point)***
- Classify a set of points.
- The prediction for data point `i` can be accessed with `predictions[i]`.
---
* `rf.Classify(data, predictions, probabilities)`
- ***(Multi-point)***
- Classify a set of points and compute class probabilities for each point.
- The prediction for data point `i` can be accessed with `predictions[i]`.
- The probability of class `j` for data point `i` can be accessed with
`probabilities(j, i)`.
---
#### Classification Parameters:
| **usage** | **name** | **type** | **description** |
|-----------|----------|----------|-----------------|
| _single-point_ | `point` | [`arma::vec`](../matrices.md) | Single point for classification. |
| _single-point_ | `prediction` | `size_t&` | `size_t` to store class prediction into. |
| _single-point_ | `probabilitiesVec` | [`arma::vec&`](../matrices.md) | `arma::vec&` to store class probabilities into. Will be set to length `numClasses`. |
||||
| _multi-point_ | `data` | [`arma::mat`](../matrices.md) | Set of [column-major](../matrices.md#representing-data-in-mlpack) points for classification. |
| _multi-point_ | `predictions` | [`arma::Row<size_t>&`](../matrices.md) | Vector of `size_t`s to store class prediction into. Will be set to length `data.n_cols`. |
| _multi-point_ | `probabilities` | [`arma::mat&`](../matrices.md) | Matrix to store class probabilities into (number of rows will be equal to number of classes, number of columns will be equal to `data.n_cols`). |
***Note:*** different types can be used for `data` and `point` (e.g.
`arma::fmat`, `arma::sp_mat`, `arma::sp_vec`, etc.). However, the element type
that is used should be the same type that was used for training.
### Other Functionality
* A `RandomForest` can be serialized with
[`data::Save()` and `data::Load()`](../load_save.md#mlpack-objects).
* `rf.NumTrees()` will return a `size_t` indicating the number of trees in the
random forest.
* `rf.Tree(i)` will return a [`DecisionTree` object](decision_tree.md)
representing the `i`th decision tree in the random forest.
For complete functionality, the [source
code](/src/mlpack/methods/random_forest/random_forest.hpp) can be consulted.
Each method is fully documented.
### Simple Examples
See also the [simple usage example](#simple-usage-example) for a trivial use of
`RandomForest`.
---
Train a random forest incrementally on random mixed categorical data and save it
to disk:
```c++
// Load a categorical dataset.
arma::mat dataset;
mlpack::data::DatasetInfo info;
// See https://datasets.mlpack.org/covertype.train.arff.
mlpack::data::Load("covertype.train.arff", dataset, info, true);
arma::Row<size_t> labels;
// See https://datasets.mlpack.org/covertype.train.labels.csv.
mlpack::data::Load("covertype.train.labels.csv", labels, true);
// Create the random forest.
mlpack::RandomForest rf;
// Train 10 trees on the given dataset, with a minimum leaf size of 3.
rf.Train(dataset, info, labels, 7 /* classes */, 10 /* trees */,
3 /* minimum leaf size */);
// Now load categorical test data.
arma::mat testDataset;
// See https://datasets.mlpack.org/covertype.test.arff.
mlpack::data::Load("covertype.test.arff", testDataset, info, true);
arma::Row<size_t> testLabels;
// See https://datasets.mlpack.org/covertype.test.labels.csv.
mlpack::data::Load("covertype.test.labels.csv", testLabels, true);
// Compute test set accuracy.
arma::Row<size_t> testPredictions;
rf.Classify(testDataset, testPredictions);
double accuracy = 100.0 * ((double) arma::accu(testPredictions == testLabels)) /
testLabels.n_elem;
std::cout << "After training 10 trees, test set accuracy is " << accuracy
<< "%." << std::endl;
// Now train another 10 trees and compute the test accuracy.
rf.Train(dataset, info, labels, 7 /* classes */, 10 /* trees */,
3 /* minimum leaf size */, 0.0 /* minimum split gain */,
0 /* maximum depth (unlimited) */, true /* incremental training */);
rf.Classify(testDataset, testPredictions);
accuracy = 100.0 * ((double) arma::accu(testPredictions == testLabels)) /
testLabels.n_elem;
std::cout << "After training 20 trees, test set accuracy is " << accuracy
<< "%." << std::endl;
// Save the random forest to disk.
mlpack::data::Save("rf.bin", "rf", rf);
```
---
Load a random forest and print some information about it.
```c++
mlpack::RandomForest rf;
// This call assumes a random forest called "rf" has already been saved to
// `rf.bin` with `data::Save()`.
mlpack::data::Load("rf.bin", "rf", rf, true);
std::cout << "The random forest in 'rf.bin' contains " << rf.NumTrees()
<< " trees." << std::endl;
if (rf.NumTrees() > 0)
{
std::cout << "The first tree's root node has " << rf.Tree(0).NumChildren()
<< " children." << std::endl;
}
```
---
Train a random forest on categorical data, and compare its performance with the
performance of each individual tree:
```c++
// Load a categorical dataset (training and test sets).
arma::mat dataset, testDataset;
mlpack::data::DatasetInfo info;
arma::Row<size_t> labels, testLabels;
// See the following files:
// * https://datasets.mlpack.org/covertype.train.arff
// * https://datasets.mlpack.org/covertype.train.labels.csv
// * https://datasets.mlpack.org/covertype.test.arff
// * https://datasets.mlpack.org/covertype.test.labels.csv
mlpack::data::Load("covertype.train.arff", dataset, info, true);
mlpack::data::Load("covertype.train.labels.csv", labels, true);
mlpack::data::Load("covertype.test.arff", testDataset, info, true);
mlpack::data::Load("covertype.test.labels.csv", testLabels, true);
// Create the random forest.
mlpack::RandomForest rf;
// Train 20 trees on the given dataset, with a minimum leaf size of 5.
rf.Train(dataset, info, labels, 7 /* classes */, 20 /* trees */,
5 /* minimum leaf size */);
// Compute test set accuracy for each tree.
arma::Row<size_t> testPredictions;
for (size_t i = 0; i < rf.NumTrees(); ++i)
{
rf.Tree(i).Classify(testDataset, testPredictions);
const double accuracy = 100.0 *
((double) arma::accu(testPredictions == testLabels)) / testLabels.n_elem;
std::cout << "Tree " << i << " has test accuracy " << accuracy << "%."
<< std::endl;
}
// Now compute accuracy using the whole forest.
rf.Classify(testDataset, testPredictions);
const double accuracy = 100.0 *
((double) arma::accu(testPredictions == testLabels)) / testLabels.n_elem;
std::cout << "The whole forest has test accuracy " << accuracy << "%."
<< std::endl;
```
---
Train an `ExtraTrees` model on random numeric data.
```c++
// 1000 random points in 10 dimensions.
arma::mat dataset(10, 1000, arma::fill::randu);
// Random labels for each point, totaling 5 classes.
arma::Row<size_t> labels =
arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 4));
// Train in the constructor, using 10 trees in the forest.
// Note that `ExtraTrees` has exactly the same API as `RandomForest`.
mlpack::ExtraTrees<> rf(dataset, labels, 5, 10);
// Create a single test point.
arma::vec testPoint(10, arma::fill::randu);
size_t prediction;
arma::vec probabilities;
rf.Classify(testPoint, prediction, probabilities);
std::cout << "Test point predicted to be class " << prediction << "."
<< std::endl;
std::cout << "Probabilities of each class: " << probabilities.t();
```
---
See also the following fully-working examples:
- [Rainfall prediction with `RandomForest`](https://github.com/mlpack/examples/blob/master/jupyter_notebook/random_forest/rainfall_prediction/rainfall-prediction-cpp.ipynb)
- [Forest cover type prediction with `RandomForest`](https://github.com/mlpack/examples/blob/master/jupyter_notebook/random_forest/forest_covertype_prediction/covertype-rf-cpp.ipynb)
### Advanced Functionality: Template Parameters
#### Using different element types.
`RandomForest`'s constructors, `Train()`, and `Predict()` functions support any
data type, so long as it supports the Armadillo matrix API. So, for instance,
learning can be done on single-precision floating-point data:
```c++
// 1000 random points in 10 dimensions.
arma::fmat dataset(10, 1000, arma::fill::randu);
// Random labels for each point, totaling 5 classes.
arma::Row<size_t> labels =
arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 4));
// Train in the constructor.
mlpack::RandomForest rf(dataset, labels, 5);
// Create test data (500 points).
arma::fmat testDataset(10, 500, arma::fill::randu);
arma::Row<size_t> predictions;
rf.Classify(testDataset, predictions);
// Now `predictions` holds predictions for the test dataset.
// Print some information about the test predictions.
std::cout << arma::accu(predictions == 0) << " test points classified as class "
<< "0." << std::endl;
```
---
#### Fully custom behavior.
mlpack provides a few variants of the random forest classifier, using the
template parameters of the `RandomForest` class. The following types can be
used as drop-in replacements throughout this documentation page:
* `RandomForest`
- This is an implementation of Breiman's seminal random forest algorithm
([website](https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm),
[paper pdf](https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf)).
- The [`DecisionTree`](decision_tree.md) class is used for each individual
decision tree.
- When training each individual decision tree, bootstrapping is used to
compute the samples given to each tree for training.
* `ExtraTrees`
- This is an implementation of the Extremely Randomized Trees algorithm
([paper pdf](https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=336a165c17c9c56160d332b9f4a2b403fccbdbfb)).
- When training an `ExtraTrees` model, each individual decision tree chooses
splits for numeric data randomly.
- Training an `ExtraTrees` model is generally much faster than
`RandomForest`, but the accuracy of the `ExtraTrees` model will be lower.
- To use `ExtraTrees`, simply replace `RandomForest` with `ExtraTrees` in
the documentation below.
---
Fully custom classes can also be used to control the behavior of the
`RandomForest` class. The full signature of the class is as follows:
```
RandomForest<FitnessFunction,
DimensionSelectionType,
NumericSplitType,
CategoricalSplitType,
UseBootstrap,
BootstrapType>
```
* `FitnessFunction`: the measure of goodness to use when deciding on tree
splits
* `DimensionSelectionType`: the strategy used for proposing dimensions to
attempt to split on
* `NumericSplitType`: the strategy used for finding splits on numeric data
dimensions
* `CategoricalSplitType`: the strategy used for finding splits on categorical
data dimensions
* `UseBootstrap`: a boolean indicating whether or not to use a bootstrap sample
when training each tree in the forest. This argument will be removed in mlpack
5.0.0 as it is superseded by the BootstrapType strategy.
* `BootstrapType`: the strategy used to bootstrap the samples per tree.
An additional `RandomForest` constructor offers two additional parameters to
pass the `DimensionSelectionType`, via the `dimSelector` argument, and the
`BootstrapType`, via the `bootstrap` argument, in case they have non-default
constructors. See the [`BootstrapType` documentation](#bootstraptype).
Note that the first four of these template parameters are exactly the same as
the template parameters for the
[`DecisionTree`](decision_tree.md#fully-custom-behavior) class.
Below, details are given for the requirements of each of these template types.
---
#### `FitnessFunction`
* Specifies the fitness function to use when learning a decision tree.
* The `GiniGain` _(default)_ and `InformationGain` classes are available for
drop-in usage.
* A custom class must implement three functions:
```c++
// You can use this as a starting point for implementation.
class CustomFitnessFunction
{
// Return the range (difference between maximum and minimum gain values).
double Range(const size_t numClasses);
// Compute the gain for the given vector of labels, where `labels[i]` has an
// associated instance weight `weights[i]`.
//
// `RowType` and `WeightVecType` will be vector types following the Armadillo
// API. If `UseWeights` is `false`, then the `weights` vector should be
// ignored (e.g. the labels are not weighted).
template<bool UseWeights, typename RowType, typename WeightVecType>
double Evaluate(const RowType& labels,
const size_t numClasses,
const WeightVecType& weights);
// Compute the gain for the given counted set of labels, where `counts[i]`
// contains the number of points with label `i`. There are `totalCount`
// labels total, and `counts` has length `numClasses`.
//
// `UseWeights` is ignored, and `CountType` will be an integral type (e.g.
// `size_t`).
template<bool UseWeights, typename CountType>
double EvaluatePtr(const CountType* counts,
const size_t numClasses,
const CountType totalCount);
};
```
---
#### `DimensionSelectionType`
* When splitting a tree in the forest, `DimensionSelectionType` proposes
possible dimensions to try splitting on.
* `MultipleRandomDimensionSelect` _(default)_ is available for drop-in usage
and proposes a different random subset of dimensions at each decision tree
node.
- By default each random subset is of size `sqrt(d)` where `d` is the number
of dimensions in the data.
- If constructed as `MultipleRandomDimensionSelect(n)` and passed to the
constructor of `RandomForest` or the `Train()` function, each random
subset will be of size `n`.
* Each `RandomForest` [constructor](#constructors) and each version of
the [`Train()`](#training) function optionally accept an instantiated
`DimensionSelectionType` object as the very last parameter (after
`maxDepth` in the constructor, or `warmStart` in `Train()`), in case some
internal state in the dimension selection mechanism is required.
* A custom class must implement three simple functions:
```c++
class CustomDimensionSelect
{
public:
// Get the first dimension to try.
// This should return a value between `0` and `data.n_rows`.
size_t Begin();
// Get the next dimension to try. Note that internal state can be used to
// track which candidate dimension is currently being looked at.
// This should return a value between `0` and `data.n_rows`.
size_t Next();
// Get a value indicating that all dimensions have been tried.
size_t End() const;
// The usage pattern of `DimensionSelectionType` by `DecisionTree` is as
// follows, assuming that `dim` is an instantiated `DimensionSelectionType`
// object:
//
// for (size_t dim = dim.Begin(); dim != dim.End(); dim = dim.Next())
// {
// // ... try to split on dimension `dim` ...
// }
};
```
---
#### `NumericSplitType`
* Specifies the strategy to be used during training when splitting a numeric
feature.
* The `BestBinaryNumericSplit` _(default)_ class is available for drop-in
usage and finds the best binary (two-way) split among all possible binary
splits.
* The `RandomBinaryNumericSplit` class is available for drop-in usage and
will select a split randomly between the minimum and maximum values of a
dimension. It is very efficient but does not yield splits that maximize
the gain. (Used by the `ExtraTrees` [variant](#fully-custom-behavior).)
* A custom class must take a [`FitnessFunction`](#fitnessfunction) as a
template parameter, implement three functions, and have an internal
structure `AuxiliarySplitInfo` that is used at classification time:
```c++
template<typename FitnessFunction>
class CustomNumericSplit
{
public:
// This class can hold any extra data that is necessary to encode a split. It
// should only be non-empty if a single `double` value cannot be used to hold
// the information corresponding to a split.
class AuxiliarySplitInfo { };
// If a split with better resulting gain than `bestGain` is found, then
// information about the new, better split should be stored in `splitInfo` and
// `aux`. Specifically, a split is better than `bestGain` if the sum of the
// gains that the children will have (call this `sumChildrenGains`) is
// sufficiently better than the gain of the unsplit node (call this
// `unsplitGain`):
//
// split if `sumChildrenGains - unsplitGain > bestGain`, and
// `sumChildrenGains - unsplitGain > minGainSplit`, and
// each child will have at least `minLeafSize` points
//
// The new best split value should be returned (or anything greater than or
// equal to `bestGain` if no better split is found).
//
// If a new best split is found, then `splitInfo` and `aux` should be
// populated with the information that will be needed for
// `CalculateDirection()` to successfully choose the child for a given point.
// `splitInfo` should be set to a vector of length 1. The format of `aux` is
// arbitrary and is detailed more below.
//
// If `UseWeights` is false, the vector `weights` should be ignored.
// Otherwise, they are instance weighs for each value in `data` (one dimension
// of the input data).
template<bool UseWeights, typename VecType, typename WeightVecType>
static double SplitIfBetter(const double bestGain,
const VecType& data,
const arma::Row<size_t>& labels,
const size_t numClasses,
const WeightVecType& weights,
const size_t minLeafSize,
const double minGainSplit,
arma::vec& splitInfo,
AuxiliarySplitInfo& aux);
// Return the number of children for a given split (stored as the single
// element from `splitInfo` and auxiliary data `aux` in `SplitIfBetter()`).
static size_t NumChildren(const arma::vec& splitInfo,
const AuxiliarySplitInfo& aux);
// Given a point with value `point`, and split information `splitInfo` and
// `aux`, return the index of the child that corresponds to the point. So,
// e.g., if the split type was a binary split on the value `splitInfo`, you
// might return `0` if `point < splitInfo`, and `1` otherwise.
template<typename ElemType>
static size_t CalculateDirection(
const ElemType& point,
const arma::vec& splitInfo,
const AuxiliarySplitInfo& /* aux */);
};
```
---
#### `CategoricalSplitType`
* Specifies the strategy to be used during training when splitting a
categorical feature.
* The `AllCategoricalSplit` _(default)_ is available for drop-in usage and
splits all categories into their own node.
* A custom class must take a [`FitnessFunction`](#fitnessfunction) as a
template parameter, implement three functions, and have an internal structure
`AuxiliarySplitInfo` that is used at classification time:
```c++
template<typename FitnessFunction>
class CustomCategoricalSplit
{
public:
// This class can hold any extra data that is necessary to encode a split. It
// should only be non-empty if a single `double` value cannot be used to hold
// the information corresponding to a split.
class AuxiliarySplitInfo { };
// If a split with better resulting gain than `bestGain` is found, then
// information about the new, better split should be stored in `splitInfo` and
// `aux`. Specifically, a split is better than `bestGain` if the sum of the
// gains that the children will have (call this `sumChildrenGains`) is
// sufficiently better than the gain of the unsplit node (call this
// `unsplitGain`):
//
// split if `sumChildrenGains - unsplitGain > bestGain`, and
// `sumChildrenGains - unsplitGain > minGainSplit`, and
// each child will have at least `minLeafSize` points
//
// The new best split value should be returned (or anything greater than or
// equal to `bestGain` if no better split is found).
//
// If a new best split is found, then `splitInfo` and `aux` should be
// populated with the information that will be needed for
// `CalculateDirection()` to successfully choose the child for a given point.
// `splitInfo` should be set to a vector of length 1. The format of `aux` is
// arbitrary and is detailed more below.
//
// If `UseWeights` is false, the vector `weights` should be ignored.
// Otherwise, they are instance weighs for each value in `data` (one
// categorical dimension of the input data, which takes values between `0` and
// `numCategories - 1`).
template<bool UseWeights, typename VecType, typename LabelsType,
typename WeightVecType>
static double SplitIfBetter(
const double bestGain,
const VecType& data,
const size_t numCategories,
const LabelsType& labels,
const size_t numClasses,
const WeightVecType& weights,
const size_t minLeafSize,
const double minGainSplit,
arma::vec& splitInfo,
AuxiliarySplitInfo& aux);
// Return the number of children for a given split (stored as the single
// element from `splitInfo` and auxiliary data `aux` in `SplitIfBetter()`).
static size_t NumChildren(const arma::vec& splitInfo,
const AuxiliarySplitInfo& aux);
// Given a point with (categorical) value `point`, and split information
// `splitInfo` and `aux`, return the index of the child that corresponds to
// the point. So, e.g., for `AllCategoricalSplit`, which splits a categorical
// dimension into one child for each category, this simply returns `point`.
template<typename ElemType>
static size_t CalculateDirection(
const ElemType& point,
const arma::vec& splitInfo,
const AuxiliarySplitInfo& /* aux */);
};
```
---
#### `UseBootstrap`
***Note:*** this parameter will be removed in mlpack 5.0.0. A value of `false`
will then be equivalent to setting `BootstrapType` to `IdentityBootstrap`, and a
value of `true` will be equivalent to `DefaultBootstrap`.
* A `bool` value that indicates whether or not a bootstrap sample of the
dataset should be used for the training of each individual decision tree in
the random forest.
* If `true` _(default)_, a different bootstrap sample of the same size as the
dataset will be used to train each decision tree.
* If `false` _(default for the `ExtraTrees` [variant](#fully-custom-behavior))_, the full
dataset will be used to train each decision tree.
#### `BootstrapType`
* Specifies the strategy used for bootstrapping data for each tree in the random forest.
* Three implementations for `BootstrapType` are available for drop-in usage:
- `DefaultBootstrap` *(default)*: bootstrap via random sampling with replacement.
- `IdentityBootstrap`: no bootstrapping. Simply copies the input `dataset`, `labels`, and `weights` for each tree's data.
- `SequentialBootstrap`: bootstrapping from overlapping sequences such that samples with informational overlap behave more I.I.D.
* Useful when data consists of multiple overlapping events (or individual sequences).
* `b = SequentialBootstrap(intervals)` will create a `SequentialBootstrap` object, where:
- `intervals` is of type `arma::umat`, with 2 rows and `n` columns, where `n` is the number of events to be sampled from.
- Each column in `intervals` represents the start and end columns (inclusive) of each event.
- So, e.g., if the 10th event is 5 points long, starting at index 6, then column `9` of `intervals` should be `[6, 10]`.
* A `SequentialBootstrap` must be passed as the `bootstrap` option to the advanced constructor (below).
* For more information, see: M. López de Prado (2018): "Advances in Financial Machine Learning", pp. 63-65.
* When using a `BootstrapType` that requires an instantiated object (such as `SequentialBootstrap`), the following advanced constructor forms can be used for `RandomForest`:
- `rf = RandomForest(data, info, labels, numClasses, numTrees, minLeafSize, minGainSplit, maxDepth, bootstrap)`
- `rf = RandomForest(data, info, labels, numClasses, weights, numTrees, minLeafSize, minGainSplit, maxDepth, bootstrap)`
* A custom `BootstrapType` class must take a `bool` template parameter `UseWeights` and implement one function:
```c++
class CustomBootstrapType
{
public:
/**
* Compute a bootstrap dataset based on the original dataset.
* If `UseWeights` is `false`, then `weights` and `bootstrapWeights` can be
* ignored.
*
* When the function is complete, `bootstrapDataset` and `bootstrapLabels`
* should contain a bootstrapped dataset. If `UseWeights` is `true`, then
* `bootstrapWeights` should contain the corresponding instance weights for
* the bootstrapped dataset.
*/
template<
bool UseWeights,
typename MatType,
typename LabelsType,
typename WeightsType>
void Bootstrap(
const MatType& dataset,
const LabelsType& labels,
const WeightsType& weights,
MatType& bootstrapDataset,
LabelsType& bootstrapLabels,
WeightsType& bootstrapWeights);
};
```
---
Train a `RandomForest` with the `SequentialBootstrap` strategy.
```c++
// 1000 random points in 10 dimensions. In reality this might be
// financial time-series data.
arma::mat dataset(10 /* rows */, 1000 /* cols */, arma::fill::randu);
// Random labels for each point, totaling 5 classes.
arma::Row<size_t> labels =
arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 4));
arma::umat intervals(2, labels.n_cols);
for (size_t c = 0; c < 1000; ++c)
{
// Every "normal" event has length 1 and happens at the time step
// equivalent to its column.
intervals(0, c) = c;
intervals(1, c) = c;
}
// Now set the three "overlapping" events to have longer ranges.
// The first two events overlap in [100,200].
// The third event is isolated from the other two.
// All three still overlap in each time step with one
// "normal" event.
intervals(0, 0) = 0; // start of first event
intervals(1, 0) = 200; // end of first event
intervals(0, 100) = 100; // start of second event
intervals(1, 100) = 500; // end of second event
intervals(0, 600) = 600; // start of third event
intervals(1, 600) = 1000; // end of third event
mlpack::SequentialBootstrap bootstrap(intervals);
// Create and train the random forest.
mlpack::RandomForest<
mlpack::GiniGain,
mlpack::MultipleRandomDimensionSelect,
mlpack::BestBinaryNumericSplit,
mlpack::AllCategoricalSplit,
true,
mlpack::SequentialBootstrap<>> rf(
dataset,
labels,
5, // numClasses
20, // numTrees
1, // minimumLeafSize
1e-7, // minimumGainSplit
0, // maximumDepth
mlpack::MultipleRandomDimensionSelect(), // dimSelector
bootstrap);
std::cout << "Forest trained with sequential bootstrap has " << rf.NumTrees()
<< " trees." << std::endl;
```
|