File: random_forest.md

package info (click to toggle)
mlpack 4.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 31,272 kB
  • sloc: cpp: 226,039; python: 1,934; sh: 1,198; lisp: 414; makefile: 85
file content (840 lines) | stat: -rw-r--r-- 35,711 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
## `RandomForest`

The `RandomForest` class implements a parallelized random forest classifier that
supports numerical and categorical features, by default using Gini gain to
choose which feature to split on in each tree.

Random forests are a collection of decision trees that give better performance
than a single decision tree.  They are useful for classifying points with
_discrete labels_ (i.e.  `0`, `1`, `2`).  This implementation of the
`RandomForest` class is not for regression (i.e. predicting _continuous
values_).

mlpack's `RandomForest` class offers configurability via template parameters and
runtime parameters.  This is used to provide the additional API-compatible
`ExtraTrees` class.  To use `ExtraTrees`, simply replace `RandomForest` with
`ExtraTrees` in any of the documentation below.  ([More
information...](#fully-custom-behavior))

#### Simple usage example:

```c++
// Train a random forest on random numeric data and predict labels on test data:

// All data and labels are uniform random; 10 dimensional data, 5 classes.
// Replace with a data::Load() call or similar for a real application.
arma::mat dataset(10, 1000, arma::fill::randu); // 1000 points.
arma::Row<size_t> labels =
    arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 4));
arma::mat testData(10, 500, arma::fill::randu); // 500 test points.

mlpack::RandomForest rf;            // Step 1: create model.
rf.Train(dataset, labels, 5, 10);   // Step 2: train model.
arma::Row<size_t> predictions;
rf.Classify(testData, predictions); // Step 3: classify points.
// You can also use `ExtraTrees` instead of `RandomForest`!

// Print some information about the test predictions.
std::cout << arma::accu(predictions == 3) << " test points classified as class "
    << "3." << std::endl;
```
<p style="text-align: center; font-size: 85%"><a href="#simple-examples">More examples...</a></p>

#### Quick links:

 * [Constructors](#constructors): create `RandomForest` objects.
 * [`Train()`](#training): train model.
 * [`Classify()`](#classification): classify with a trained model.
 * [Other functionality](#other-functionality) for loading, saving, and
   inspecting.
 * [Examples](#simple-examples) of simple usage and links to detailed example
   projects.
 * [Template parameters](#advanced-functionality-template-parameters) for custom
   behavior.

#### See also:

 * [`DecisionTree`](decision_tree.md)
 * [`DecisionTreeRegressor`](decision_tree_regressor.md)
 * [mlpack classifiers](../modeling.md#classification)
 * [Random forest on Wikipedia](https://en.wikipedia.org/wiki/Random_forest)
 * [Decision tree on Wikipedia](https://en.wikipedia.org/wiki/Decision_tree)
 * [Leo Breiman's Random Forests page](https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm)

### Constructors

 * `rf = RandomForest()`
   - Initialize the random forest without training.
   - You will need to call [`Train()`](#training) later to train the tree
     before calling [`Classify()`](#classification).

---

 * `rf = RandomForest(data, labels, numClasses,          numTrees=20, minLeafSize=1, minGainSplit=1e-7, maxDepth=0)`
 * `rf = RandomForest(data, labels, numClasses, weights, numTrees=20, minLeafSize=1, minGainSplit=1e-7, maxDepth=0)`
   - Train on numerical-only data (optionally with instance weights).

---

 * `rf = RandomForest(data, info, labels, numClasses,          numTrees=20, minLeafSize=1, minGainSplit=1e-7, maxDepth=0)`
 * `rf = RandomForest(data, info, labels, numClasses, weights, numTrees=20, minLeafSize=1, minGainSplit=1e-7, maxDepth=0)`
   - Train on mixed categorical data (optionally with instance weights).

---

#### Constructor Parameters:

| **name** | **type** | **description** | **default** |
|----------|----------|-----------------|-------------|
| `data` | [`arma::mat`](../matrices.md) | [Column-major](../matrices.md#representing-data-in-mlpack) training matrix. | _(N/A)_ |
| `info` | [`data::DatasetInfo`](../load_save.md#loading-categorical-data) | Dataset information, specifying type information for each dimension. | _(N/A)_ |
| `labels` | [`arma::Row<size_t>`](../matrices.md) | Training labels, [between `0` and `numClasses - 1`](../core/normalizing_labels.md) (inclusive).  Should have length `data.n_cols`.  | _(N/A)_ |
| `numClasses` | `size_t` | Number of classes in the dataset. | _(N/A)_ |
| `weights` | [`arma::rowvec`](../matrices.md) | Instance weights for each training point.  Should have length `data.n_cols`.  | _(N/A)_ |
| `numTrees` | `size_t` | Number of trees to train in the random forest. | `20`
|
| `minLeafSize` | `size_t` | Minimum number of points in each leaf node of each decision tree. | `1` |
| `minGainSplit` | `double` | Minimum gain for a node to split in each decision tree. | `1e-7` |
| `maxDepth` | `size_t` | Maximum depth for each decision tree. (0 means no limit.) | `0` |
| `warmStart` | `bool` | (Only available in `Train()`.)  If true, training adds `numTrees` trees to the random forest.  If `false`, an entirely new random forest will be created. | `false` |

 * If OpenMP is enabled<!-- TODO: link! -->, one thread will be used to train
   each of the `numTrees` trees in the random forest.  The computational effort
   involved with training a random forest increases linearly with the number of
   trees.
 * The default `minLeafSize` is `1`, unlike `DecisionTree`.  This is because
   random forests are less susceptible to overfitting due to their ensembled
   nature.
 * Note that the default `minLeafSize` of `1` will make large decision trees,
   and so if a smaller-sized model is desired, this value should be increased
   (at the potential cost of accuracy).
 * `minGainSplit` can also be increased if a smaller-sized model is desired.
 * `bootstrap` can be any of `DefaultBootstrap`, `IdentityBootstrap`,
   `SequentialBootstrap`, or any customer bootstrapping algorithm as defined
   by [BootstrapType](#bootstraptype). Note that `SequentialBootstrap` does
   not have a default constructor.

***Note:*** different types can be used for `data` and `weights` (e.g.,
`arma::fmat`, `arma::sp_mat`).  However, the element type of `data` and
`weights` must match; for example, if `data` has type `arma::fmat`, then
`weights` must have type `arma::frowvec`.

### Training

If training is not done as part of the constructor call, it can be done with one
of the following versions of the `Train()` member function:

 * `rf.Train(data, labels, numClasses,          numTrees=20, minLeafSize=1, minGainSplit=1e-7, maxDepth=0, warmStart=false)`
 * `rf.Train(data, labels, numClasses, weights, numTrees=20, minLeafSize=1, minGainSplit=1e-7, maxDepth=0, warmStart=false)`
   - Train on numerical-only data (optionally with instance weights).
   - Returns a `double` with the average gain of each tree in the random forest.
     By default, this is the Gini gain, unless a different
     [`FitnessFunction` template parameter](#fully-custom-behavior) is
     specified.

---

 * `rf.Train(data, info, labels, numClasses,          numTrees=20, minLeafSize=1, minGainSplit=1e-7, maxDepth=0, warmStart=false)`
 * `rf.Train(data, info, labels, numClasses, weights, numTrees=20, minLeafSize=1, minGainSplit=1e-7, maxDepth=0, warmStart=false)`
   - Train on mixed categorical data (optionally with instance weights).

---

Types of each argument are the same as in the table for constructors
[above](#constructor-parameters).

**Notes**:

 * The `warmStart` option, which allows incremental training (i.e. additional
   training on top of an existing model) is of type `bool` and defaults to
   `false`.  This option is not available in the [constructors](#constructors).

 * `Train()` returns a `double` with the average gain of each tree in the random
   forest.  By default, this is the Gini gain, unless a different
   [`FitnessFunction` template parameter](#fully-custom-behavior) is specified.

### Classification

Once a `RandomForest` is trained, the `Classify()` member function can be used
to make class predictions for new data.

 * `size_t predictedClass = rf.Classify(point)`
   - ***(Single-point)***
   - Classify a single point, returning the predicted class.

---

 * `rf.Classify(point, prediction, probabilitiesVec)`
    - ***(Single-point)***
    - Classify a single point and compute class probabilities.
    - The predicted class is stored in `prediction`.
    - The probability of class `i` can be accessed with `probabilitiesVec[i]`.

---

 * `rf.Classify(data, predictions)`
    - ***(Multi-point)***
    - Classify a set of points.
    - The prediction for data point `i` can be accessed with `predictions[i]`.

---

 * `rf.Classify(data, predictions, probabilities)`
    - ***(Multi-point)***
    - Classify a set of points and compute class probabilities for each point.
    - The prediction for data point `i` can be accessed with `predictions[i]`.
    - The probability of class `j` for data point `i` can be accessed with
      `probabilities(j, i)`.

---

#### Classification Parameters:

| **usage** | **name** | **type** | **description** |
|-----------|----------|----------|-----------------|
| _single-point_ | `point` | [`arma::vec`](../matrices.md) | Single point for classification. |
| _single-point_ | `prediction` | `size_t&` | `size_t` to store class prediction into. |
| _single-point_ | `probabilitiesVec` | [`arma::vec&`](../matrices.md) | `arma::vec&` to store class probabilities into.  Will be set to length `numClasses`. |
||||
| _multi-point_ | `data` | [`arma::mat`](../matrices.md) | Set of [column-major](../matrices.md#representing-data-in-mlpack) points for classification. |
| _multi-point_ | `predictions` | [`arma::Row<size_t>&`](../matrices.md) | Vector of `size_t`s to store class prediction into.  Will be set to length `data.n_cols`. |
| _multi-point_ | `probabilities` | [`arma::mat&`](../matrices.md) | Matrix to store class probabilities into (number of rows will be equal to number of classes, number of columns will be equal to `data.n_cols`). |

***Note:*** different types can be used for `data` and `point` (e.g.
`arma::fmat`, `arma::sp_mat`, `arma::sp_vec`, etc.).  However, the element type
that is used should be the same type that was used for training.

### Other Functionality

 * A `RandomForest` can be serialized with
   [`data::Save()` and `data::Load()`](../load_save.md#mlpack-objects).

 * `rf.NumTrees()` will return a `size_t` indicating the number of trees in the
   random forest.

 * `rf.Tree(i)` will return a [`DecisionTree` object](decision_tree.md)
   representing the `i`th decision tree in the random forest.

For complete functionality, the [source
code](/src/mlpack/methods/random_forest/random_forest.hpp) can be consulted.
Each method is fully documented.

### Simple Examples

See also the [simple usage example](#simple-usage-example) for a trivial use of
`RandomForest`.

---

Train a random forest incrementally on random mixed categorical data and save it
to disk:

```c++
// Load a categorical dataset.
arma::mat dataset;
mlpack::data::DatasetInfo info;
// See https://datasets.mlpack.org/covertype.train.arff.
mlpack::data::Load("covertype.train.arff", dataset, info, true);

arma::Row<size_t> labels;
// See https://datasets.mlpack.org/covertype.train.labels.csv.
mlpack::data::Load("covertype.train.labels.csv", labels, true);

// Create the random forest.
mlpack::RandomForest rf;
// Train 10 trees on the given dataset, with a minimum leaf size of 3.
rf.Train(dataset, info, labels, 7 /* classes */, 10 /* trees */,
         3 /* minimum leaf size */);

// Now load categorical test data.
arma::mat testDataset;
// See https://datasets.mlpack.org/covertype.test.arff.
mlpack::data::Load("covertype.test.arff", testDataset, info, true);

arma::Row<size_t> testLabels;
// See https://datasets.mlpack.org/covertype.test.labels.csv.
mlpack::data::Load("covertype.test.labels.csv", testLabels, true);

// Compute test set accuracy.
arma::Row<size_t> testPredictions;
rf.Classify(testDataset, testPredictions);
double accuracy = 100.0 * ((double) arma::accu(testPredictions == testLabels)) /
    testLabels.n_elem;
std::cout << "After training 10 trees, test set accuracy is " << accuracy
    << "%." << std::endl;

// Now train another 10 trees and compute the test accuracy.
rf.Train(dataset, info, labels, 7 /* classes */, 10 /* trees */,
         3 /* minimum leaf size */, 0.0 /* minimum split gain */,
         0 /* maximum depth (unlimited) */, true /* incremental training */);

rf.Classify(testDataset, testPredictions);
accuracy = 100.0 * ((double) arma::accu(testPredictions == testLabels)) /
    testLabels.n_elem;
std::cout << "After training 20 trees, test set accuracy is " << accuracy
    << "%." << std::endl;

// Save the random forest to disk.
mlpack::data::Save("rf.bin", "rf", rf);
```

---

Load a random forest and print some information about it.

```c++
mlpack::RandomForest rf;
// This call assumes a random forest called "rf" has already been saved to
// `rf.bin` with `data::Save()`.
mlpack::data::Load("rf.bin", "rf", rf, true);

std::cout << "The random forest in 'rf.bin' contains " << rf.NumTrees()
    << " trees." << std::endl;
if (rf.NumTrees() > 0)
{
  std::cout << "The first tree's root node has " << rf.Tree(0).NumChildren()
      << " children." << std::endl;
}
```

---

Train a random forest on categorical data, and compare its performance with the
performance of each individual tree:

```c++
// Load a categorical dataset (training and test sets).
arma::mat dataset, testDataset;
mlpack::data::DatasetInfo info;
arma::Row<size_t> labels, testLabels;

// See the following files:
//  * https://datasets.mlpack.org/covertype.train.arff
//  * https://datasets.mlpack.org/covertype.train.labels.csv
//  * https://datasets.mlpack.org/covertype.test.arff
//  * https://datasets.mlpack.org/covertype.test.labels.csv
mlpack::data::Load("covertype.train.arff", dataset, info, true);
mlpack::data::Load("covertype.train.labels.csv", labels, true);
mlpack::data::Load("covertype.test.arff", testDataset, info, true);
mlpack::data::Load("covertype.test.labels.csv", testLabels, true);

// Create the random forest.
mlpack::RandomForest rf;
// Train 20 trees on the given dataset, with a minimum leaf size of 5.
rf.Train(dataset, info, labels, 7 /* classes */, 20 /* trees */,
         5 /* minimum leaf size */);

// Compute test set accuracy for each tree.
arma::Row<size_t> testPredictions;
for (size_t i = 0; i < rf.NumTrees(); ++i)
{
  rf.Tree(i).Classify(testDataset, testPredictions);
  const double accuracy = 100.0 *
      ((double) arma::accu(testPredictions == testLabels)) / testLabels.n_elem;
  std::cout << "Tree " << i << " has test accuracy " << accuracy << "%."
      << std::endl;
}

// Now compute accuracy using the whole forest.
rf.Classify(testDataset, testPredictions);
const double accuracy = 100.0 *
    ((double) arma::accu(testPredictions == testLabels)) / testLabels.n_elem;
std::cout << "The whole forest has test accuracy " << accuracy << "%."
    << std::endl;
```

---

Train an `ExtraTrees` model on random numeric data.

```c++
// 1000 random points in 10 dimensions.
arma::mat dataset(10, 1000, arma::fill::randu);
// Random labels for each point, totaling 5 classes.
arma::Row<size_t> labels =
    arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 4));

// Train in the constructor, using 10 trees in the forest.
// Note that `ExtraTrees` has exactly the same API as `RandomForest`.
mlpack::ExtraTrees<> rf(dataset, labels, 5, 10);

// Create a single test point.
arma::vec testPoint(10, arma::fill::randu);

size_t prediction;
arma::vec probabilities;
rf.Classify(testPoint, prediction, probabilities);
std::cout << "Test point predicted to be class " << prediction << "."
    << std::endl;
std::cout << "Probabilities of each class: " << probabilities.t();
```

---

See also the following fully-working examples:

 - [Rainfall prediction with `RandomForest`](https://github.com/mlpack/examples/blob/master/jupyter_notebook/random_forest/rainfall_prediction/rainfall-prediction-cpp.ipynb)
 - [Forest cover type prediction with `RandomForest`](https://github.com/mlpack/examples/blob/master/jupyter_notebook/random_forest/forest_covertype_prediction/covertype-rf-cpp.ipynb)

### Advanced Functionality: Template Parameters

#### Using different element types.

`RandomForest`'s constructors, `Train()`, and `Predict()` functions support any
data type, so long as it supports the Armadillo matrix API.  So, for instance,
learning can be done on single-precision floating-point data:

```c++
// 1000 random points in 10 dimensions.
arma::fmat dataset(10, 1000, arma::fill::randu);
// Random labels for each point, totaling 5 classes.
arma::Row<size_t> labels =
    arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 4));

// Train in the constructor.
mlpack::RandomForest rf(dataset, labels, 5);

// Create test data (500 points).
arma::fmat testDataset(10, 500, arma::fill::randu);
arma::Row<size_t> predictions;
rf.Classify(testDataset, predictions);
// Now `predictions` holds predictions for the test dataset.

// Print some information about the test predictions.
std::cout << arma::accu(predictions == 0) << " test points classified as class "
    << "0." << std::endl;
```

---

#### Fully custom behavior.

mlpack provides a few variants of the random forest classifier, using the
template parameters of the `RandomForest` class.  The following types can be
used as drop-in replacements throughout this documentation page:

 * `RandomForest`
    - This is an implementation of Breiman's seminal random forest algorithm
      ([website](https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm),
      [paper pdf](https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf)).
    - The [`DecisionTree`](decision_tree.md) class is used for each individual
      decision tree.
    - When training each individual decision tree, bootstrapping is used to
      compute the samples given to each tree for training.

 * `ExtraTrees`
    - This is an implementation of the Extremely Randomized Trees algorithm
      ([paper pdf](https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=336a165c17c9c56160d332b9f4a2b403fccbdbfb)).
    - When training an `ExtraTrees` model, each individual decision tree chooses
      splits for numeric data randomly.
    - Training an `ExtraTrees` model is generally much faster than
      `RandomForest`, but the accuracy of the `ExtraTrees` model will be lower.
    - To use `ExtraTrees`, simply replace `RandomForest` with `ExtraTrees` in
      the documentation below.

---

Fully custom classes can also be used to control the behavior of the
`RandomForest` class.  The full signature of the class is as follows:

```
RandomForest<FitnessFunction,
             DimensionSelectionType,
             NumericSplitType,
             CategoricalSplitType,
             UseBootstrap,
             BootstrapType>
```

 * `FitnessFunction`: the measure of goodness to use when deciding on tree
   splits
 * `DimensionSelectionType`: the strategy used for proposing dimensions to
   attempt to split on
 * `NumericSplitType`: the strategy used for finding splits on numeric data
   dimensions
 * `CategoricalSplitType`: the strategy used for finding splits on categorical
   data dimensions
 * `UseBootstrap`: a boolean indicating whether or not to use a bootstrap sample
   when training each tree in the forest. This argument will be removed in mlpack
   5.0.0 as it is superseded by the BootstrapType strategy.
 * `BootstrapType`: the strategy used to bootstrap the samples per tree.

An additional `RandomForest` constructor offers two additional parameters to
pass the `DimensionSelectionType`, via the `dimSelector` argument, and the
`BootstrapType`, via the `bootstrap` argument, in case they have non-default
constructors.  See the [`BootstrapType` documentation](#bootstraptype).

Note that the first four of these template parameters are exactly the same as
the template parameters for the
[`DecisionTree`](decision_tree.md#fully-custom-behavior) class.

Below, details are given for the requirements of each of these template types.

---

#### `FitnessFunction`

 * Specifies the fitness function to use when learning a decision tree.
 * The `GiniGain` _(default)_ and `InformationGain` classes are available for
   drop-in usage.
 * A custom class must implement three functions:

```c++
// You can use this as a starting point for implementation.
class CustomFitnessFunction
{
  // Return the range (difference between maximum and minimum gain values).
  double Range(const size_t numClasses);

  // Compute the gain for the given vector of labels, where `labels[i]` has an
  // associated instance weight `weights[i]`.
  //
  // `RowType` and `WeightVecType` will be vector types following the Armadillo
  // API.  If `UseWeights` is `false`, then the `weights` vector should be
  // ignored (e.g. the labels are not weighted).
  template<bool UseWeights, typename RowType, typename WeightVecType>
  double Evaluate(const RowType& labels,
                  const size_t numClasses,
                  const WeightVecType& weights);

  // Compute the gain for the given counted set of labels, where `counts[i]`
  // contains the number of points with label `i`.  There are `totalCount`
  // labels total, and `counts` has length `numClasses`.
  //
  // `UseWeights` is ignored, and `CountType` will be an integral type (e.g.
  // `size_t`).
  template<bool UseWeights, typename CountType>
  double EvaluatePtr(const CountType* counts,
                     const size_t numClasses,
                     const CountType totalCount);
};
```

---

#### `DimensionSelectionType`

 * When splitting a tree in the forest, `DimensionSelectionType` proposes
   possible dimensions to try splitting on.
 * `MultipleRandomDimensionSelect` _(default)_ is available for drop-in usage
   and proposes a different random subset of dimensions at each decision tree
   node.
    - By default each random subset is of size `sqrt(d)` where `d` is the number
      of dimensions in the data.
    - If constructed as `MultipleRandomDimensionSelect(n)` and passed to the
      constructor of `RandomForest` or the `Train()` function, each random
      subset will be of size `n`.
 * Each `RandomForest` [constructor](#constructors) and each version of
   the [`Train()`](#training) function optionally accept an instantiated
   `DimensionSelectionType` object as the very last parameter (after
   `maxDepth` in the constructor, or `warmStart` in `Train()`), in case some
   internal state in the dimension selection mechanism is required.
 * A custom class must implement three simple functions:

```c++
class CustomDimensionSelect
{
 public:
  // Get the first dimension to try.
  // This should return a value between `0` and `data.n_rows`.
  size_t Begin();

  // Get the next dimension to try.  Note that internal state can be used to
  // track which candidate dimension is currently being looked at.
  // This should return a value between `0` and `data.n_rows`.
  size_t Next();

  // Get a value indicating that all dimensions have been tried.
  size_t End() const;

  // The usage pattern of `DimensionSelectionType` by `DecisionTree` is as
  // follows, assuming that `dim` is an instantiated `DimensionSelectionType`
  // object:
  //
  // for (size_t dim = dim.Begin(); dim != dim.End(); dim = dim.Next())
  // {
  //   // ... try to split on dimension `dim` ...
  // }
};
```

---

#### `NumericSplitType`

 * Specifies the strategy to be used during training when splitting a numeric
   feature.
 * The `BestBinaryNumericSplit` _(default)_ class is available for drop-in
   usage and finds the best binary (two-way) split among all possible binary
   splits.
 * The `RandomBinaryNumericSplit` class is available for drop-in usage and
   will select a split randomly between the minimum and maximum values of a
   dimension.  It is very efficient but does not yield splits that maximize
   the gain.  (Used by the `ExtraTrees` [variant](#fully-custom-behavior).)
 * A custom class must take a [`FitnessFunction`](#fitnessfunction) as a
   template parameter, implement three functions, and have an internal
   structure `AuxiliarySplitInfo` that is used at classification time:

```c++
template<typename FitnessFunction>
class CustomNumericSplit
{
 public:
  // This class can hold any extra data that is necessary to encode a split.  It
  // should only be non-empty if a single `double` value cannot be used to hold
  // the information corresponding to a split.
  class AuxiliarySplitInfo { };

  // If a split with better resulting gain than `bestGain` is found, then
  // information about the new, better split should be stored in `splitInfo` and
  // `aux`.  Specifically, a split is better than `bestGain` if the sum of the
  // gains that the children will have (call this `sumChildrenGains`) is
  // sufficiently better than the gain of the unsplit node (call this
  // `unsplitGain`):
  //
  //    split if `sumChildrenGains - unsplitGain > bestGain`, and
  //             `sumChildrenGains - unsplitGain > minGainSplit`, and
  //             each child will have at least `minLeafSize` points
  //
  // The new best split value should be returned (or anything greater than or
  // equal to `bestGain` if no better split is found).
  //
  // If a new best split is found, then `splitInfo` and `aux` should be
  // populated with the information that will be needed for
  // `CalculateDirection()` to successfully choose the child for a given point.
  // `splitInfo` should be set to a vector of length 1.  The format of `aux` is
  // arbitrary and is detailed more below.
  //
  // If `UseWeights` is false, the vector `weights` should be ignored.
  // Otherwise, they are instance weighs for each value in `data` (one dimension
  // of the input data).
  template<bool UseWeights, typename VecType, typename WeightVecType>
  static double SplitIfBetter(const double bestGain,
                              const VecType& data,
                              const arma::Row<size_t>& labels,
                              const size_t numClasses,
                              const WeightVecType& weights,
                              const size_t minLeafSize,
                              const double minGainSplit,
                              arma::vec& splitInfo,
                              AuxiliarySplitInfo& aux);

  // Return the number of children for a given split (stored as the single
  // element from `splitInfo` and auxiliary data `aux` in `SplitIfBetter()`).
  static size_t NumChildren(const arma::vec& splitInfo,
                            const AuxiliarySplitInfo& aux);

  // Given a point with value `point`, and split information `splitInfo` and
  // `aux`, return the index of the child that corresponds to the point.  So,
  // e.g., if the split type was a binary split on the value `splitInfo`, you
  // might return `0` if `point < splitInfo`, and `1` otherwise.
  template<typename ElemType>
  static size_t CalculateDirection(
      const ElemType& point,
      const arma::vec& splitInfo,
      const AuxiliarySplitInfo& /* aux */);
};
```

---

#### `CategoricalSplitType`

 * Specifies the strategy to be used during training when splitting a
    categorical feature.
 * The `AllCategoricalSplit` _(default)_ is available for drop-in usage and
   splits all categories into their own node.
 * A custom class must take a [`FitnessFunction`](#fitnessfunction) as a
   template parameter, implement three functions, and have an internal structure
   `AuxiliarySplitInfo` that is used at classification time:

```c++
template<typename FitnessFunction>
class CustomCategoricalSplit
{
 public:
  // This class can hold any extra data that is necessary to encode a split.  It
  // should only be non-empty if a single `double` value cannot be used to hold
  // the information corresponding to a split.
  class AuxiliarySplitInfo { };

  // If a split with better resulting gain than `bestGain` is found, then
  // information about the new, better split should be stored in `splitInfo` and
  // `aux`.  Specifically, a split is better than `bestGain` if the sum of the
  // gains that the children will have (call this `sumChildrenGains`) is
  // sufficiently better than the gain of the unsplit node (call this
  // `unsplitGain`):
  //
  //    split if `sumChildrenGains - unsplitGain > bestGain`, and
  //             `sumChildrenGains - unsplitGain > minGainSplit`, and
  //             each child will have at least `minLeafSize` points
  //
  // The new best split value should be returned (or anything greater than or
  // equal to `bestGain` if no better split is found).
  //
  // If a new best split is found, then `splitInfo` and `aux` should be
  // populated with the information that will be needed for
  // `CalculateDirection()` to successfully choose the child for a given point.
  // `splitInfo` should be set to a vector of length 1.  The format of `aux` is
  // arbitrary and is detailed more below.
  //
  // If `UseWeights` is false, the vector `weights` should be ignored.
  // Otherwise, they are instance weighs for each value in `data` (one
  // categorical dimension of the input data, which takes values between `0` and
  // `numCategories - 1`).
  template<bool UseWeights, typename VecType, typename LabelsType,
           typename WeightVecType>
  static double SplitIfBetter(
      const double bestGain,
      const VecType& data,
      const size_t numCategories,
      const LabelsType& labels,
      const size_t numClasses,
      const WeightVecType& weights,
      const size_t minLeafSize,
      const double minGainSplit,
      arma::vec& splitInfo,
      AuxiliarySplitInfo& aux);

  // Return the number of children for a given split (stored as the single
  // element from `splitInfo` and auxiliary data `aux` in `SplitIfBetter()`).
  static size_t NumChildren(const arma::vec& splitInfo,
                            const AuxiliarySplitInfo& aux);

  // Given a point with (categorical) value `point`, and split information
  // `splitInfo` and `aux`, return the index of the child that corresponds to
  // the point.  So, e.g., for `AllCategoricalSplit`, which splits a categorical
  // dimension into one child for each category, this simply returns `point`.
  template<typename ElemType>
  static size_t CalculateDirection(
      const ElemType& point,
      const arma::vec& splitInfo,
      const AuxiliarySplitInfo& /* aux */);
};
```

---

#### `UseBootstrap`

***Note:*** this parameter will be removed in mlpack 5.0.0. A value of `false`
will then be equivalent to setting `BootstrapType` to `IdentityBootstrap`, and a
value of `true` will be equivalent to `DefaultBootstrap`.

 * A `bool` value that indicates whether or not a bootstrap sample of the
   dataset should be used for the training of each individual decision tree in
   the random forest.
 * If `true` _(default)_, a different bootstrap sample of the same size as the
   dataset will be used to train each decision tree.
 * If `false` _(default for the `ExtraTrees` [variant](#fully-custom-behavior))_, the full
   dataset will be used to train each decision tree.

#### `BootstrapType`

 * Specifies the strategy used for bootstrapping data for each tree in the random forest.
 * Three implementations for `BootstrapType` are available for drop-in usage:
   - `DefaultBootstrap` *(default)*: bootstrap via random sampling with replacement.
   - `IdentityBootstrap`: no bootstrapping.  Simply copies the input `dataset`, `labels`, and `weights` for each tree's data.
   - `SequentialBootstrap`: bootstrapping from overlapping sequences such that samples with informational overlap behave more I.I.D.
     * Useful when data consists of multiple overlapping events (or individual sequences).
     * `b = SequentialBootstrap(intervals)` will create a `SequentialBootstrap` object, where:
       - `intervals` is of type `arma::umat`, with 2 rows and `n` columns, where `n` is the number of events to be sampled from.
       - Each column in `intervals` represents the start and end columns (inclusive) of each event.
       - So, e.g., if the 10th event is 5 points long, starting at index 6, then column `9` of `intervals` should be `[6, 10]`.
     * A `SequentialBootstrap` must be passed as the `bootstrap` option to the advanced constructor (below).
     * For more information, see: M. López de Prado (2018): "Advances in Financial Machine Learning", pp. 63-65.

 * When using a `BootstrapType` that requires an instantiated object (such as `SequentialBootstrap`), the following advanced constructor forms can be used for `RandomForest`:
 
   - `rf = RandomForest(data, info, labels, numClasses,          numTrees, minLeafSize, minGainSplit, maxDepth, bootstrap)`
   - `rf = RandomForest(data, info, labels, numClasses, weights, numTrees, minLeafSize, minGainSplit, maxDepth, bootstrap)`

 * A custom `BootstrapType` class must take a `bool` template parameter `UseWeights` and implement one function:

```c++
class CustomBootstrapType
{
 public:
  /**
   * Compute a bootstrap dataset based on the original dataset.
   * If `UseWeights` is `false`, then `weights` and `bootstrapWeights` can be
   * ignored.
   *
   * When the function is complete, `bootstrapDataset` and `bootstrapLabels`
   * should contain a bootstrapped dataset.  If `UseWeights` is `true`, then
   * `bootstrapWeights` should contain the corresponding instance weights for
   * the bootstrapped dataset.
   */
  template<
      bool UseWeights,
      typename MatType,
      typename LabelsType,
      typename WeightsType>
  void Bootstrap(
      const MatType& dataset,
      const LabelsType& labels,
      const WeightsType& weights,
      MatType& bootstrapDataset,
      LabelsType& bootstrapLabels,
      WeightsType& bootstrapWeights);
};
```

---

Train a `RandomForest` with the `SequentialBootstrap` strategy.

```c++
// 1000 random points in 10 dimensions. In reality this might be
// financial time-series data.
arma::mat dataset(10 /* rows */, 1000 /* cols */, arma::fill::randu);

// Random labels for each point, totaling 5 classes.
arma::Row<size_t> labels =
    arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 4));

arma::umat intervals(2, labels.n_cols);

for (size_t c = 0; c < 1000; ++c)
{
  // Every "normal" event has length 1 and happens at the time step
  // equivalent to its column.
  intervals(0, c) = c;
  intervals(1, c) = c;
}

// Now set the three "overlapping" events to have longer ranges.
// The first two events overlap in [100,200].
// The third event is isolated from the other two.
// All three still overlap in each time step with one
// "normal" event.
intervals(0, 0) = 0; // start of first event
intervals(1, 0) = 200; // end of first event
intervals(0, 100) = 100; // start of second event
intervals(1, 100) = 500; // end of second event
intervals(0, 600) = 600; // start of third event
intervals(1, 600) = 1000; // end of third event

mlpack::SequentialBootstrap bootstrap(intervals);

// Create and train the random forest.
mlpack::RandomForest<
    mlpack::GiniGain,
    mlpack::MultipleRandomDimensionSelect,
    mlpack::BestBinaryNumericSplit,
    mlpack::AllCategoricalSplit,
    true,
    mlpack::SequentialBootstrap<>> rf(
        dataset,
        labels,
        5, // numClasses
        20, // numTrees
        1, // minimumLeafSize
        1e-7, // minimumGainSplit
        0, // maximumDepth
        mlpack::MultipleRandomDimensionSelect(), // dimSelector
        bootstrap);

std::cout << "Forest trained with sequential bootstrap has " << rf.NumTrees()
    << " trees." << std::endl;
```