File: softmax_regression.md

package info (click to toggle)
mlpack 4.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 31,272 kB
  • sloc: cpp: 226,039; python: 1,934; sh: 1,198; lisp: 414; makefile: 85
file content (408 lines) | stat: -rw-r--r-- 16,475 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
## `SoftmaxRegression`

The `SoftmaxRegression` class implements an L2-regularized multi-class softmax
regression classifier for numerical data.  This is a multi-class extension of
the logistic regression classifier.  By default, L-BFGS is used to learn the
model.  The `SoftmaxRegression` class offers easy configurability, and arbitrary
optimizers can be used to learn the model.

Softmax regression is useful for multi-class classification (i.e. classes are
`0`, `1`, `2`).  For two-class situations, see also the
[`LogisticRegression`](logistic_regression.md) class.

#### Simple usage example:

```c++
// Train a softmax regression model on random data and predict labels:

// All data and labels are uniform random; 5 dimensional data, 4 classes.
// Replace with a data::Load() call or similar for a real application.
arma::mat dataset(5, 1000, arma::fill::randu); // 1000 points.
arma::Row<size_t> labels =
    arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 3));
arma::mat testDataset(5, 500, arma::fill::randu); // 500 test points.

mlpack::SoftmaxRegression sr;          // Step 1: create model.
sr.Train(dataset, labels, 4);          // Step 2: train model.
arma::Row<size_t> predictions;
sr.Classify(testDataset, predictions); // Step 3: classify points.

// Print some information about the test predictions.
std::cout << arma::accu(predictions == 2) << " test points classified as class "
    << "2." << std::endl;
```
<p style="text-align: center; font-size: 85%"><a href="#simple-examples">More examples...</a></p>

#### Quick links:

 * [Constructors](#constructors): create `SoftmaxRegression` objects.
 * [`Train()`](#training): train model.
 * [`Classify()`](#classification): classify with a trained model.
 * [Other functionality](#other-functionality) for loading, saving, and
   inspecting.
 * [Examples](#simple-examples) of simple usage and links to detailed example
   projects.
 * [Template parameters](#advanced-functionality-different-element-types) for
   using different element types for a model.

#### See also:

 * [`LogisticRegression`](logistic_regression.md)
 * [mlpack classifiers](../modeling.md#classification)
 * [UFLDL Softmax Regression Tutorial](http://deeplearning.stanford.edu/tutorial/supervised/SoftmaxRegression/)

### Constructors

 * `sr = SoftmaxRegression()`
   - Initialize the model without training.
   - You will need to call [`Train()`](#training) later to train the model
     before calling [`Classify()`](#classification).

---

 * `sr = SoftmaxRegression(data, labels, numClasses, lambda=0.0001, fitIntercept=true)`
 * `sr = SoftmaxRegression(data, labels, numClasses, lambda=0.0001, fitIntercept=true, [callbacks...])`
   - Train model, optionally specifying hyperparameters and callbacks for the
     default ensmallen optimizer.

---

 * `sr = SoftmaxRegression(data, labels, numClasses, optimizer, lambda=0.0001, fitIntercept=true)`
 * `sr = SoftmaxRegression(data, labels, numClasses, optimizer, lambda=0.0001, fitIntercept=true, [callbacks...])`
    - Train model with a custom ensmallen optimizer, optionally specifying
      hyperparameters and callbacks for the custom optimizer.

---

#### Constructor Parameters:

| **name** | **type** | **description** | **default** |
|----------|----------|-----------------|-------------|
| `data` | [`arma::mat`](../matrices.md) | [Column-major](../matrices.md#representing-data-in-mlpack) training matrix. | _(N/A)_ |
| `labels` | [`arma::Row<size_t>`](../matrices.md) | Training labels, [between `0` and `numClasses - 1`](../core/normalizing_labels.md) (inclusive).  Should have length `data.n_cols`.  | _(N/A)_ |
| `numClasses` | `size_t` | Number of classes in the dataset. | _(N/A)_ |
| `lambda` | `double` | L2 regularization penalty parameter.  Must be nonnegative. | `0.0001` |
| `fitIntercept` | `bool` | If true, an intercept term is fit to the model. | `true` |
| `optimizer` | [any ensmallen optimizer](https://www.ensmallen.org) | Instantiated ensmallen optimizer for [differentiable functions](https://www.ensmallen.org/docs.html#differentiable-functions) or [differentiable separable functions](https://www.ensmallen.org/docs.html#differentiable-separable-functions). | _(N/A)_ |
| `callbacks...` | [any set of ensmallen callbacks](https://www.ensmallen.org/docs.html#callback-documentation) | Optional callbacks for the ensmallen optimizer, such as e.g. `ens::ProgressBar()`, `ens::Report()`, or others. | _(N/A)_ |

As an alternative to passing `lambda`, it can be set with a
standalone method:

 * `sr.Lambda() = l;` will set the value of the L2 regularization penalty
   parameter to `l`.

It is not possible to set `fitIntercept` except in the constructor or the call
to `Train()`.

***Note***: Setting `lambda` too small may cause the model to overfit; however,
setting it too large may cause the model to underfit.  [Automatic hyperparameter
tuning](../hpt.md) can be used to find a good value of `lambda` instead of a
manual setting.

<!-- TODO: fix hyperparameter tuner link with real documentation -->

### Training

If training is not done as part of the constructor call, it can be done with the
`Train()` function:

 * `sr.Train(data, labels, numClasses, lambda=0.0001, fitIntercept=true)`
 * `sr.Train(data, labels, numClasses, lambda=0.0001, fitIntercept=true, [callbacks...])`
   - Train model, optionally specifying hyperparameters and callbacks for the
     default ensmallen optimizer.

---

 * `sr.Train(data, labels, numClasses, optimizer, lambda=0.0001, fitIntercept=true)`
 * `sr.Train(data, labels, numClasses, optimizer, lambda=0.0001, fitIntercept=true, optimizer=ens::L_BFGS(), [callbacks...])`
   - Train model with a custom ensmallen optimizer, optionally specifying
    hyperparameters and callbacks for the optimizer.

---

Types of each argument are the same as in the table for constructors
[above](#constructor-parameters).

***Notes***:

 * Training is incremental.  Successive calls to `Train()` will not reinitialize
   the model, unless the given data has different dimensionality.  To
   reinitialize the model, call `Reset()` (see
   [Other Functionality](#other-functionality)).

 * To set the initial point of the optimization, call `Parameters()`; see
   [Other Functionality](#other-functionality).

 * `Train()` returns a `double` with the final softmax regression loss value
   (including L2 penalty term) of the trained model.

### Classification

Once a `SoftmaxRegression` model is trained, the `Classify()` member function
can be used to make class predictions for new data.

 * `size_t predictedClass = sr.Classify(point)`
   - ***(Single-point)***
   - Classify a single point, returning the predicted class (`0` through
     `numClasses - 1`, inclusive).

---

 * `sr.Classify(point, prediction, probabilitiesVec)`
   - ***(Single-point)***
   - Classify a single point and compute class probabilities.
   - The predicted class is stored in `prediction`.
   - The probability of class `i` can be accessed with `probabilitiesVec[i]`.

---

 * `sr.Classify(data, predictions)`
   - ***(Multi-point)***
   - Classify a set of points.
   - The prediction for data point `i` can be accessed with `predictions[i]`.

---

 * `sr.Classify(data, predictions, probabilities)`
   - ***(Multi-point)***
   - Classify a set of points and compute class probabilities.
   - The prediction for data point `i` can be accessed with `predictions[i]`.
   - The probability of class `j` for data point `i` can be accessed with
     `probabilities(j, i)`.

---

#### Classification Parameters:

| **usage** | **name** | **type** | **description** |
|-----------|----------|----------|-----------------|
| _single-point_ | `point` | [`arma::vec`](../matrices.md) | Single point for classification. |
| _single-point_ | `prediction` | `size_t&` | `size_t` to store class prediction into. |
| _single-point_ | `probabilitiesVec` | [`arma::vec&`](../matrices.md) | `arma::vec&` to store class probabilities into; will have length 2. |
||||
| _multi-point_ | `data` | [`arma::mat`](../matrices.md) | Set of [column-major](../matrices.md#representing-data-in-mlpack) points for classification. |
| _multi-point_ | `predictions` | [`arma::Row<size_t>&`](../matrices.md) | Vector of `size_t`s to store class prediction into; will be set to length `data.n_cols`. |
| _multi-point_ | `probabilities` | [`arma::mat&`](../matrices.md) | Matrix to store class probabilities into (number of rows will be equal to 2; number of columns will be equal to `data.n_cols`). |

### Other Functionality

 * A `SoftmaxRegression` model can be serialized with
   [`data::Save()` and `data::Load()`](../load_save.md#mlpack-objects).

 * `sr.Parameters()` will return an `arma::mat` filled with the weights of the
   model.  The matrix will have rows equal to `numClasses` and columns equal to
   the dimensionality of the model (plus one if `fitIntercept` is `true`).  Each
   row of the matrix can be considered its own two-class one-vs.-all logistic
   regression model.

 * `sr.NumClasses()` will return the number of classes the model was trained on.

 * `sr.ComputeAccuracy(data, labels)` will return the accuracy of the model on
   the given `data` with the given `labels`.  The returned accuracy is between 0
   and 100.

 * `sr.Reset()` will reset the weights of the model to small random values.

For complete functionality, the [source
code](/src/mlpack/methods/softmax_regression/softmax_regression.hpp) can be
consulted.  Each method is fully documented.

### Simple Examples

See also the [simple usage example](#simple-usage-example) for a trivial usage
of the `SoftmaxRegression` class.

---

Train a softmax regression model using a custom SGD-like optimizer with
callbacks.

```c++
// See https://datasets.mlpack.org/mnist.train.csv.
arma::mat dataset;
mlpack::data::Load("mnist.train.csv", dataset, true);
// See https://datasets.mlpack.org/mnist.train.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("mnist.train.labels.csv", labels, true);

mlpack::SoftmaxRegression sr;

// Create AdaGrad optimizer with custom step size and batch size.
ens::AdaGrad optimizer(0.0005 /* step size */, 16 /* batch size */);
optimizer.MaxIterations() = 10 * dataset.n_cols; // Allow 10 epochs.

// Print a progress bar and an optimization report when training is finished.
sr.Train(dataset, labels, 10 /* numClasses */, optimizer,
    0.01 /* lambda */, true /* fit intercept */, ens::ProgressBar(),
    ens::Report());

// Now predict on test labels and compute accuracy.

// See https://datasets.mlpack.org/mnist.test.csv.
arma::mat testDataset;
mlpack::data::Load("mnist.test.csv", testDataset, true);
// See https://datasets.mlpack.org/mnist.test.labels.csv.
arma::Row<size_t> testLabels;
mlpack::data::Load("mnist.test.labels.csv", testLabels, true);

std::cout << std::endl;
std::cout << "Accuracy on training set: "
    << sr.ComputeAccuracy(dataset, labels) << "\%." << std::endl;
std::cout << "Accuracy on test set:     "
    << sr.ComputeAccuracy(testDataset, testLabels) << "\%." << std::endl;
```

---

Train a softmax regression model with AdaGrad and save the model every epoch
using a [custom ensmallen
callback](https://www.ensmallen.org/docs.html#custom-callbacks):

```c++
// This callback saves the model into "model-<epoch>.bin" after every epoch.
class ModelCheckpoint
{
 public:
  ModelCheckpoint(mlpack::SoftmaxRegression<>& model) : model(model) { }

  template<typename OptimizerType, typename FunctionType, typename MatType>
  bool EndEpoch(OptimizerType& /* optimizer */,
                FunctionType& /* function */,
                const MatType& /* coordinates */,
                const size_t epoch,
                const double /* objective */)
  {
    const std::string filename = "model-" + std::to_string(epoch) + ".bin";
    mlpack::data::Save(filename, "sr_model", model, true);
    return false; // Do not terminate the optimization.
  }

 private:
  mlpack::SoftmaxRegression<>& model;
};
```

With that callback available, the code to train the model is below:

```c++
// See https://datasets.mlpack.org/mnist.train.csv.
arma::mat dataset;
mlpack::data::Load("mnist.train.csv", dataset, true);
// See https://datasets.mlpack.org/mnist.train.labels.csv.
arma::Row<size_t> labels;
mlpack::data::Load("mnist.train.labels.csv", labels, true);

mlpack::SoftmaxRegression sr;

// Create AdaGrad optimizer with small step size and batch size of 32.
ens::AdaGrad adaGrad(0.0005, 32);
adaGrad.MaxIterations() = 10 * dataset.n_cols; // 10 epochs maximum.

// Use the custom callback and an L2 penalty parameter of 0.01.
sr.Train(dataset, labels, 10 /* numClasses */, adaGrad, 0.01, true,
    ModelCheckpoint(sr), ens::ProgressBar());

// Now files like model-1.bin, model-2.bin, etc. should be saved on disk.
```

---

Load an existing softmax regression model and print some information about it.

```c++
mlpack::SoftmaxRegression sr;
// This assumes that a model called "sr_model" has been saved to the file
// "model-1.bin" (as in the previous example).
mlpack::data::Load("model-1.bin", "sr_model", sr, true);

// Print the dimensionality of the model and some other statistics.
const size_t dimensionality = (sr.FitIntercept()) ?
    (sr.Parameters().n_cols - 1) : (sr.Parameters().n_cols);
std::cout << "The dimensionality of the model in model-1.bin is "
    << dimensionality << "." << std::endl;
std::cout << "The bias parameters for the model, for each class, are: "
    << std::endl;
std::cout << sr.Parameters().col(0).t();

arma::vec point(dimensionality, arma::fill::randu);
std::cout << "The predicted class for a random point is " << sr.Classify(point)
    << "." << std::endl;
```

---

Perform incremental training on multiple datasets with multiple calls to
`Train()`.

```c++
// Generate two random datasets with four classes.
arma::mat firstDataset(5, 1000, arma::fill::randu); // 1000 points.
arma::Row<size_t> firstLabels =
    arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 3));

arma::mat secondDataset(5, 1500, arma::fill::randu); // 1500 points.
arma::Row<size_t> secondLabels =
    arma::randi<arma::Row<size_t>>(1500, arma::distr_param(0, 3));

// Train a model on the first dataset with an L2 regularization penalty
// parameter of 0.01, not fitting an intercept.
mlpack::SoftmaxRegression sr(firstDataset, firstLabels, 4, 0.01, false);

// Now compute the accuracy on the second dataset and print it.
std::cout << "Accuracy on second dataset: "
    << sr.ComputeAccuracy(secondDataset, secondLabels) << "\%." << std::endl;

// Train for a second round on the second dataset.
sr.Train(secondDataset, secondLabels, 4);

// Now compute the accuracy on the second dataset again and print it.
// (Note that it may not be all that much better because this is random data!)
std::cout << "Accuracy on second dataset after second training: "
    << sr.ComputeAccuracy(secondDataset, secondLabels) << "\%." << std::endl;
```

---

### Advanced Functionality: Different Element Types

The `SoftmaxRegression` class has one template parameter that can be used to
control the element type of the model.  The full signature of the class is:

```
SoftmaxRegression<MatType>
```

`MatType` specifies the type of matrix used for training data and internal
representation of model parameters.  Any matrix type that implements the
Armadillo API can be used.  The example below trains a softmax regression model
on sparse 32-bit floating point data.

```c++
// Create random, sparse 100-dimensional data, with 3 classes.
arma::sp_fmat dataset;
dataset.sprandu(100, 5000, 0.3);
arma::Row<size_t> labels =
    arma::randi<arma::Row<size_t>>(5000, arma::distr_param(0, 2));

// Train with L2 regularization penalty parameter of 0.1.
mlpack::SoftmaxRegression<arma::sp_fmat> sr(dataset, labels, 3, 0.1);

// Now classify a test point.
arma::sp_fvec point;
point.sprandu(100, 1, 0.3);

size_t prediction;
arma::fvec probabilitiesVec;
sr.Classify(point, prediction, probabilitiesVec);

std::cout << "Prediction for random test point: " << prediction << "."
    << std::endl;
std::cout << "Class probabilities for random test point: "
    << probabilitiesVec.t();
```

***Note***: if `MatType` is a sparse object (e.g. `sp_fmat`), the internal
parameter representation will be a *dense* matrix containing elements of the
same type (e.g. `fmat`).  This is because L2-regularized softmax regression,
even when training on sparse data, does not necessarily produce sparse models.