File: sparse_coding.md

package info (click to toggle)
mlpack 4.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 31,272 kB
  • sloc: cpp: 226,039; python: 1,934; sh: 1,198; lisp: 414; makefile: 85
file content (399 lines) | stat: -rw-r--r-- 15,146 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
## `SparseCoding`

The `SparseCoding` class implements sparse coding with dictionary learning using
L1 regularization or elastic net (L1+L2) regularization.  Sparse coding is a
form of representation learning, and can be used to represent each point in a
dataset as a sparse combination of *atoms* in the dictionary.

#### Simple usage example:

```c++
// Create a random dataset with 100 points in 40 dimensions, and then a random
// test dataset with 50 points.
arma::mat data(40, 100, arma::fill::randu);
arma::mat testData(40, 50, arma::fill::randu);

// Perform sparse coding with 20 atoms and an L1 penalty of 0.5.
mlpack::SparseCoding sc(20, 0.5);  // Step 1: create object.
double objective = sc.Train(data); // Step 2: learn dictionary.
arma::mat codes;
sc.Encode(testData, codes);        // Step 3: encode new data.

// Print some information about the test encoding.
std::cout << "Average density of encoded test data: "
    << 100.0 * arma::mean(arma::sum(codes != 0)) / codes.n_rows << "\%."
    << std::endl;
```
<p style="text-align: center; font-size: 85%"><a href="#simple-examples">More examples...</a></p>

#### Quick links:

 * [Constructors](#constructors): create `SparseCoding` objects.
 * [`Train()`](#training): train model (learn dictionary).
 * [`Encode()`](#encoding): encode points with a trained model.
 * [Other functionality](#other-functionality) for loading, saving, and
   inspecting.
 * [Examples](#simple-examples) of simple usage and links to detailed example
   projects.
 * [Template parameters](#advanced-functionality-template-parameters) for
   advanced functionality: different element types and dictionary initialization
   strategies.

#### See also:

 * [`LocalCoordinateCoding`](local_coordinate_coding.md)
 * [`LARS`](lars.md) (used internally by `SparseCoding`)
 * [mlpack transformations](../transformations.md)
 * [Sparse dictionary learning on Wikipedia](https://en.wikipedia.org/wiki/Sparse_dictionary_learning)
 * [Efficient sparse coding algorithms (pdf)](https://proceedings.neurips.cc/paper/2006/file/2d71b2ae158c7c5912cc0bbde2bb9d95-Paper.pdf)

### Constructors

 * `sc = SparseCoding()`
 * `sc = SparseCoding(atoms=0, lambda1=0.0, lambda2=0.0, maxIter=0, objTol=0.01, newtonTol=1e-6)`
   - Create a `SparseCoding` object without learning a dictionary on data.
   - If `atoms` is set to `0` (the default), it will need to be set to a value
     greater than `0` before `Train()` is called (`sc.Atoms() = atoms` can be
     used for this).

 * `sc = SparseCoding(data, atoms, lambda1=0.0, lambda2=0.0, maxIter=0, objTol=0.01, newtonTol=1e-6)`
   - Create a `SparseCoding` object and train the dictionary on the given
     `data`.
   - The dictionary will contain `atoms` elements.

 * `sc = SparseCoding(data, atoms, lambda1, lambda2, maxIter, objTol, newtonTol, initializer)`
   - *Advanced constructor*: create a `SparseCoding` object that will use a
     custom dictionary initializer and train on the given `data`.
   - The dictionary will contain `atoms` elements.
   - `initializer` will be used to initialize the dictionary; see [Advanced
     Functionality: Different Dictionary Initialization
     Strategies](#dictionaryinitializer-different-dictionary-initialization-strategies)
     for details.

#### Constructor Parameters:

| **name** | **type** | **description** | **default** |
|----------|----------|-----------------|-------------|
| `data` | [`arma::mat`](../matrices.md) | [Column-major](../matrices.md#representing-data-in-mlpack) training matrix. | _(N/A)_ |
| `atoms` | `size_t` | Number of atoms in dictionary. | _(N/A)_ |
| `lambda1` | `double` | L1 regularization penalty.  Used in both `Train()` and `Encode()` steps. | `0.0` |
| `lambda2` | `double` | L2 regularization penalty (for elastic net regularization).  Used in both `Train()` and `Encode()` steps. | `0.0` |
| `maxIter` | `size_t` | Maximum number of iterations for dictionary learning.  `0` means no limit. | `0` |
| `objTol` | `double` | Objective function tolerance for terminating dictionary learning. | `0.01` |
| `newtonTol` | `double` | Tolerance for the Newton's method dictionary optimization step. | `1e-6` |

As an alternative to passing `atoms`, `lambda1`, `lambda2`, `maxIter`, `objTol`,
or `newtonTol`, these can be set with a standalone method.  The following
functions can be used before calling `Train()`:

 * `sc.Atoms() = a;` will set the number of atoms to use in the dictionary to
   `a`.  Changing this after calling `Train()` will not make a difference to the
   dictionary size.

 * `sc.Lambda1() = l1;` will set the L1 regularization penalty to `l1`.  This
   can be set after `Train()` to force sparser encodings when `Encode()` is
   called.

 * `sc.Lambda2() = l2;` will set the L2 regularization penalty to `l2`.  This
   can be set after `Train()` to increase the regularization when `Encode()` is
   called.

 * `sc.MaxIterations() = m;` will set the maximum number of iterations for
   dictionary learning to `m`.  `0` means that the algorithm will run until
   convergence.

 * `sc.ObjTolerance() = ot;` will set the objective tolerance for convergence of
   the dictionary learning algorithm to `ot`.

 * `sc.NewtonTolerance() = nt;` will set the tolerance for the Newton's method
   dictionary optimization step to `nt`.

***Caveats***:

 * Larger settings of `atoms` (i.e. larger dictionary sizes) will be able to
   more accurately represent the data, but may take longer to learn.

 * Larger values of `lambda1` will cause the model to use sparser codings for
   data when `Train()` and `Encode()` are called, but codings that are too
   sparse may be inaccurate representations of the original points.

 * Training is not incremental; a second call to `Train()` will reinitialize the
   dictionary and restart the learning process.

### Training

If training the dictionary is not done as part of the constructor call, it can
be done with one of the following versions of the `Train()` member function:

 * `sc.Train(data)`
 * `sc.Train(data, initializer)`
   - Train the sparse coding dictionary on the given `data`.
   - Optionally, use the given `initializer` to initialize the dictionary (see
     [`DictionaryInitializer`](#dictionaryinitializer-different-dictionary-initialization-strategies)
     for more details).

### Encoding

Once a `SparseCoding` model has a trained dictionary, the `Encode()` member
function can be used to encode new data points.

 * `sc.Encode(data, codes)`
   - Encode `data` (a
     [column-major data matrix](../matrices.md#representing-data-in-mlpack))
     as a set of sparse codes of the dictionary, storing the result in `codes`.
   - Both `data` and `codes` should be the same matrix type (e.g. `arma::mat`);
     see [Different Element Types](#mattype-different-element-types) for more
     details.
   - `codes` will be set to have `atoms` rows and `data.n_cols` columns.
   - Column `i` of `codes` corresponds to the sparse coding of the `i`'th column
     of `data`.  Each row represents the weight associated with each atom in
     the dictionary.

After encoding, the original data can be recovered (approximately) as
`sc.Dictionary() * data`.

### Other Functionality

 * A `SparseCoding` model can be serialized with
   [`data::Save()` and `data::Load()`](../load_save.md#mlpack-objects).

 * `sc.Dictionary()` will return an `arma::mat&` containing the dictionary
   matrix.  The matrix has `data.n_rows` rows and `atoms` columns; each column
   corresponds to an atom in the dictionary.

 * `double obj = sc.Objective(data, codes)` computes the sparse coding objective
   function on the given `data` and encodings `codes`.  This can be used after
   `Encode()` to test the quality of the encodings (a smaller objective is
   better).

### Simple Examples

See also the [simple usage example](#simple-usage-example) for a trivial usage
of the `SparseCoding` class.

---

Train a sparse coding model on the cloud dataset and print the reconstruction
error.

```c++
// See https://datasets.mlpack.org/cloud.csv.
arma::mat dataset;
mlpack::data::Load("cloud.csv", dataset, true);

mlpack::SparseCoding sc;
sc.Atoms() = 50;
sc.Lambda1() = 0.1;
sc.Lambda2() = 0.001;
sc.MaxIterations() = 25;
sc.Train(dataset);

// Encode the training dataset.
arma::mat codes;
sc.Encode(dataset, codes);

std::cout << "Input matrix size: " << dataset.n_rows << " x " << dataset.n_cols
    << "." << std::endl;
std::cout << "Codes matrix size: " << codes.n_rows << " x " << codes.n_cols
    << "." << std::endl;

// Reconstruct the original matrix.
arma::mat recon = sc.Dictionary() * codes;
double error = std::sqrt(arma::norm(dataset - recon, "fro") / dataset.n_elem);
std::cout << "RMSE of reconstructed matrix: " << error << "." << std::endl;
```

---

Train a sparse coding model on the iris dataset and save the model to disk.

```c++
// See https://datasets.mlpack.org/iris.train.csv.
arma::mat dataset;
mlpack::data::Load("iris.train.csv", dataset, true);

// Train the model in the constructor.
mlpack::SparseCoding sc(dataset, 10 /* atoms */, 0.1 /* L1 penalty */);

// Save the model to disk.
mlpack::data::Save("sc.bin", "sc", sc);
```

---

Load a sparse coding model from disk and encode some new points from the
iris dataset.

```c++
// Load model from disk.
mlpack::SparseCoding sc;
mlpack::data::Load("sc.bin", "sc", sc);

// See https://datasets.mlpack.org/iris.test.csv.
arma::mat dataset;
mlpack::data::Load("iris.test.csv", dataset, true);

// Encode the test points.
arma::mat codes;
sc.Encode(dataset, codes);

// Compute the sparse coding objective on the test points.
const double obj = sc.Objective(dataset, codes);
std::cout << "Sparse coding objective on test set: " << obj << "." << std::endl;
```

---

Train a sparse coding model on the satellite dataset, trying several different
dictionary sizes and checking the objective value on a held-out test dataset.

```c++
// See https://datasets.mlpack.org/satellite.train.csv.
arma::mat trainData;
mlpack::data::Load("satellite.train.csv", trainData, true);
// See https://datasets.mlpack.org/satellite.test.csv.
arma::mat testData;
mlpack::data::Load("satellite.test.csv", testData, true);

for (size_t atoms = 20; atoms < 100; atoms += 10)
{
  mlpack::SparseCoding sc(atoms);
  sc.Lambda1() = 0.1;
  sc.MaxIterations() = 20; // Keep iterations low so this runs relatively fast.

  const double trainObj = sc.Train(trainData);

  // Compute the objective on the test set.
  arma::mat codes;
  sc.Encode(testData, codes);
  const double testObj = sc.Objective(testData, codes);

  std::cout << "Atoms: " << std::setfill(' ') << std::setw(3) << atoms << "; ";
  std::cout << "training set objective: " << std::setw(6) << trainObj << "; ";
  std::cout << "test set objective: " << std::setw(6) << testObj << "."
      << std::endl;
}
```

### Advanced Functionality: Template Parameters

The `SparseCoding` class has one class template parameter that can be used for
custom behavior.  The full signature of the class is:

```
SparseCoding<MatType>
```

In addition, the [constructors](#constructors) and
[`Train()` functions](#training) have a template parameter
`DictionaryInitializer` that can be used for custom behavior.

 * `MatType`: the type of the matrix to use (e.g. `arma::mat`, `arma::fmat`,
   etc.).  The given `MatType` must support the Armadillo API and hold a
   floating-point element type (e.g. `float`, `double`, etc.).

 * `DictionaryInitializer`: the strategy used to initialize the dictionary.  By
   default, `DataDependentRandomInitializer` is used.

#### `MatType`: Different Element Types

`MatType` specifies the type of matrix used for training data and internal
representation of the dictionary.  Any matrix type that implements the Armadillo
API can be used.  The example below trains a sparse coding model on 32-bit
floating point data.

```c++
// See https://datasets.mlpack.org/cloud.csv.
arma::fmat dataset;
mlpack::data::Load("cloud.csv", dataset, true);

mlpack::SparseCoding<arma::fmat> sc;
sc.Atoms() = 30;
sc.Lambda1() = 0.15;
sc.Lambda2() = 0.001;
sc.MaxIterations() = 100;
// Note: a looser tolerance is often required when using floats instead of
// doubles.
sc.ObjTolerance() = 0.01;
sc.Train(dataset);

// Encode the training dataset.
arma::fmat codes;
sc.Encode(dataset, codes);

std::cout << "Input matrix size: " << dataset.n_rows << " x " << dataset.n_cols
    << "." << std::endl;
std::cout << "Codes matrix size: " << codes.n_rows << " x " << codes.n_cols
    << "." << std::endl;

// Reconstruct the original matrix.
arma::fmat recon = sc.Dictionary() * codes;
double error = std::sqrt(arma::norm(dataset - recon, "fro") / dataset.n_elem);
std::cout << "RMSE of reconstructed matrix: " << error << "." << std::endl;
```

#### `DictionaryInitializer`: Different Dictionary Initialization Strategies

The `DictionaryInitializer` template class specifies the strategy to be used to
initialize the dictionary when `Train()` is called.

 * The `DataDependentRandomInitalizer` class (the default) uses the average of
   three random points in the dataset to initialize each atom in the dictionary.

 * The `NothingInitializer` class does not modify the dictionary matrix in any
   way, and could be used either to set a specific dictionary before training
   with `sc.Dictionary()`, or to allow incremental training that does not modify
   the existing dictionary when `Train()` is called a second time.

 * The `RandomInitializer` class initializes the dictionary by sampling norm-1
   atoms from a normal distribution.

***Note:*** none of the classes above have any members, and as such it is not
necessary to use the constructor or `Train()` variants that take an initialized
`initializer` object.  That would only be necessary for a custom
`DictionaryInitializer` class that stored internal members.

---

The example below uses `NothingInitializer` to set a specific initial
dictionary.

```c++
// See https://datasets.mlpack.org/satellite.train.csv.
arma::mat trainData;
mlpack::data::Load("satellite.train.csv", trainData, true);

const size_t atoms = 25;
const double lambda1 = 0.1;
const double lambda2 = 0.0;
const size_t maxIterations = 50;

// Use a uniform random matrix as the initial dictionary.
arma::mat initialDictionary(trainData.n_rows, atoms, arma::fill::randu);

mlpack::SparseCoding sc(atoms, lambda1, lambda2, maxIterations);
sc.Dictionary() = initialDictionary;

const double obj = sc.Train<mlpack::NothingInitializer>(trainData);
std::cout << "Training set objective: " << obj << "." << std::endl;
```

---

 * An entirely custom class can also be implemented.  The class must implement
   one method, `Initialize()`:

```c++
// You can use this as a starting point for implementation.
class CustomDictionaryInitializer
{
 public:
  // Initialize the dictionary to have the given number of atoms, given the
  // dataset.  MatType will be the matrix type used by the sparse coding model
  // (e.g. `arma::mat`, `arma::fmat`, etc.).
  template<typename MatType>
  void Initialize(const MatType& data,
                  const size_t atoms,
                  MatType& dictionary);
};
```