1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
|
<object data="../img/pipeline-top-4.svg" type="image/svg+xml" id="pipeline-top">
</object>
# Modeling
mlpack contains numerous different machine learning algorithms that can be used
for modeling.
*Note: this section is under construction and not all functionality is
documented yet.*
## Classification
Classify points as discrete labels (`0`, `1`, `2`, ...).
* [`AdaBoost`](methods/adaboost.md): Adaptive Boosting
* [`DecisionTree`](methods/decision_tree.md): ID3-style decision tree
classifier
* [`HoeffdingTree`](methods/hoeffding_tree.md): streaming/incremental decision
tree classifier
* [`LinearSVM`](methods/linear_svm.md): simple linear support vector machine
classifier
* [`LogisticRegression`](methods/logistic_regression.md): L2-regularized
logistic regression (two-class only)
* [`NaiveBayesClassifier`](methods/naive_bayes_classifier.md): simple
multi-class naive Bayes classifier
* [`Perceptron`](methods/perceptron.md): simple Perceptron classifier
* [`RandomForest`](methods/random_forest.md): parallelized random forest
classifier
* [`SoftmaxRegression`](methods/softmax_regression.md): L2-regularized
softmax regression (i.e. multi-class logistic regression)
## Regression
Predict continuous values.
* [`BayesianLinearRegression`](methods/bayesian_linear_regression.md):
Bayesian L2-penalized linear regression
* [`DecisionTreeRegressor`](methods/decision_tree_regressor.md): ID3-style
decision tree regressor
* [`LARS`](methods/lars.md): Least Angle Regression (LARS), L1-regularized and
L2-regularized
* [`LinearRegression`](methods/linear_regression.md): L2-regularized linear
regression (ridge regression)
## Clustering
***NOTE:*** this documentation is still under construction and so some
algorithms that mlpack implements are not yet listed here. For now, see
[the mlpack/methods directory](https://github.com/mlpack/mlpack/tree/master/src/mlpack/methods)
for a full list of algorithms.
Group points into clusters.
* [`MeanShift`](methods/mean_shift.md): clustering with the density-based mean
shift algorithm
## Geometric algorithms
***NOTE:*** this documentation is still under construction and so no geometric
algorithms in mlpack are documented yet. For now, see
[the mlpack/methods directory](https://github.com/mlpack/mlpack/tree/master/src/mlpack/methods)
for a full list of algorithms.
Computations based on distance metrics.
<!-- TODO: add some -->
|