File: transformations.md

package info (click to toggle)
mlpack 4.6.2-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 31,272 kB
  • sloc: cpp: 226,039; python: 1,934; sh: 1,198; lisp: 414; makefile: 85
file content (43 lines) | stat: -rw-r--r-- 1,370 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
<object data="../img/pipeline-top-3.svg" type="image/svg+xml" id="pipeline-top">
</object>

# Transformations

Once data is [loaded](load_save.html) and any necessary
[preprocessing and feature extraction](preprocessing.md) is done,
one of mlpack's transformations can be used to transform data into a
new space.

*Note: this section is under construction and not all functionality is
documented yet.*

## Matrix decompositions

Decompose a matrix into two or more components.

 * [AMF](methods/amf.md): alternating matrix factorization
 * [NMF](methods/nmf.md): non-negative matrix factorization

## Linear transformations

Linearly map a matrix onto a new basis, optionally performing dimensionality
reduction.

 * [PCA](methods/pca.md): principal components analysis
 * [RADICAL](methods/radical.md): an independent components analysis technique

## Metric learning techniques

Learn a [distance metric](core/distances.md) based on a data matrix.

 * [LMNN](methods/lmnn.md): large margin nearest neighbor
 * [NCA](methods/nca.md): neighborhood components analysis

## Coding techniques

Encode data points in a matrix as a combination of points in a dictionary.

 * [LocalCoordinateCoding](methods/local_coordinate_coding.md): local coordinate
   coding with dictionary learning
 * [SparseCoding](methods/sparse_coding.md): sparse coding with dictionary
   learning