1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
|
# Distributions
<!-- TODO: link to the completed HMM documentation -->
mlpack has support for a number of different distributions, each supporting the
same API. These can be used with, for instance, the
[`HMM`](/src/mlpack/methods/hmm/hmm.hpp) class.
* [`DiscreteDistribution`](#discretedistribution): multidimensional categorical
distribution (generalized Bernoulli distribution)
* [`GaussianDistribution`](#gaussiandistribution): multidimensional Gaussian
distribution
* [`DiagonalGaussianDistribution`](#diagonalgaussiandistribution):
multidimensional Gaussian distribution with diagonal covariance
* [`GammaDistribution`](#gammadistribution): multidimensional Gamma
distribution, includes exponential, Chi-squared, and Erlang distributions
* [`LaplaceDistribution`](#laplacedistribution): multidimensional Laplace
(double exponential) distribution
* [`RegressionDistribution`](#regressiondistribution): multidimensional
Gaussian distribution on the errors of a linear regression model
## `DiscreteDistribution`
`DiscreteDistribution` represents a multidimensional categorical distribution
(or generalized Bernoulli distribution) where integer-valued vectors (e.g.
`[0, 3, 4]`) are associated with specific probabilities in each dimension.
*Example:* a 3-dimensional `DiscreteDistribution` will have a specific
probability value associated with each integer value in each dimension. So, for
the vector `[0, 3, 4]`, `P(0)` in dimension 0 could be, e.g., `0.3`, `P(3)` in
dimension 1 could be, e.g., `0.4`, and `P(4)` in dimension 2 could be, e.g.,
`0.6`. Then, `P([0, 3, 4])` would be `0.3 * 0.4 * 0.6 = 0.072`.
### Constructors
* `d = DiscreteDistribution(numObservations)`
- Create a one-dimensional discrete distribution with `numObservations`
different observations in the one and only dimension. `numObservations` is
of type `size_t`.
* `d = DiscreteDistribution(numObservationsVec)`
- Create a multidimensional discrete distribution with
`numObservationsVec.n_elem` dimensions and `numObservationsVec[i]`
different observations in dimension `i`.
- `numObservationsVec` is of type `arma::Col<size_t>`.
* `d = DiscreteDistribution(probabilities)`
- Create a multidimensional discrete distribution with the given
probabilities.
- `probabilities` should have type `std::vector<arma::vec>`, and
`probabilities.size()` should be equal to the dimensionality of the
distribution.
- `probabilities[i]` is a vector such that `probabilities[i][j]` contains the
probability of `j` in dimension `i`.
### Access and modify properties of distribution
* `d.Dimensionality()` returns a `size_t` indicating the number of dimensions
in the multidimensional discrete distribution.
* `d.Probabilities(i)` returns an `arma::vec&` containing the probabilities of
each observation in dimension `i`.
- `d.Probabilities(i)[j]` is the probability of `j` in dimension `i`.
- This can be used to modify probabilities: `d.Probabilities(0)[1] = 0.7`
sets the probability of observing the value `1` in dimension `0` to `0.7`.
- *Note:* when setting probabilities manually, be sure that the sum of
probabilities in a dimension is 1!
* A `DiscreteDistribution` can be serialized with
[`Save()` and `Load()`](../load_save.md#mlpack-models-and-objects).
### Compute probabilities of points
* `d.Probability(observation)` returns the probability of the given
observation as a `double`.
- `observation` should be an `arma::vec` of size `d.Dimensionality()`.
- `observation[i]` should take integer values between `0` and
`d.Probabilities(i).n_elem - 1`.
* `d.Probability(observations, probabilities)` computes the probabilities of
many observations.
- `observations` should be an `arma::mat` with number of rows equal to
`d.Dimensionality()`; `observations.n_cols` is the number of observations.
- `probabilities` will be set to size `observations.n_cols`.
- `probabilities[i]` will be set to `d.Probability(observations.col(i))`.
* `d.LogProbability(observation)` returns the log-probability of the given
observation as a `double`.
* `d.LogProbability(observations, probabilities)` computes the
log-probabilities of many observations.
### Sample from the distribution
* `d.Random()` returns an `arma::vec` with a random sample from the
multidimensional discrete distribution.
### Fit the distribution to observations
* `d.Train(observations)`
- Fit the distribution to the given observations.
- `observations` should be an `arma::mat` with number of rows equal to
`d.Dimensionality()`; `observations.n_cols` is the number of observations.
- `observations(j, i)` should be an integer value between `0` and the number
of observations for dimension `i`.
* `d.Train(observations, observationProbabilities)`
- Fit the distribution to the given observations, as above, but also provide
probabilities that each observation is from this distribution.
- `observationProbabilities` should be an `arma::vec` of length
`observations.n_cols`.
- `observationProbabilities[i]` should be equal to the probability that
`observations.col(i)` is from `d`.
### Example usage
```c++
// Create a single-dimension Bernoulli distribution: P([0]) = 0.3, P([1]) = 0.7.
mlpack::DiscreteDistribution bernoulli(2);
bernoulli.Probabilities(0)[0] = 0.3;
bernoulli.Probabilities(0)[1] = 0.7;
const double p1 = bernoulli.Probability(arma::vec("0")); // p1 = 0.3.
const double p2 = bernoulli.Probability(arma::vec("1")); // p2 = 0.7.
// Create a 3-dimensional discrete distribution by specifying the probabilities
// manually.
arma::vec probDim0 = arma::vec("0.1 0.3 0.5 0.1"); // 4 possible values.
arma::vec probDim1 = arma::vec("0.7 0.3"); // 2 possible values.
arma::vec probDim2 = arma::vec("0.4 0.4 0.2"); // 3 possible values.
std::vector<arma::vec> probs { probDim0, probDim1, probDim2 };
mlpack::DiscreteDistribution d(probs);
arma::vec obs("2 0 1");
const double p3 = d.Probability(obs); // p3 = 0.5 * 0.7 * 0.4 = 0.14.
// Estimate a 10-dimensional discrete distribution.
// Each dimension takes values between 0 and 9.
arma::mat observations = arma::randi<arma::mat>(10, 1000,
arma::distr_param(0, 9));
// Create a distribution with 10 observations in each of the 10 dimensions.
mlpack::DiscreteDistribution d2(
arma::Col<size_t>("10 10 10 10 10 10 10 10 10 10"));
d2.Train(observations);
// Compute the probabilities of each point.
arma::vec probabilities;
d2.Probability(observations, probabilities);
std::cout << "Average probability: " << arma::mean(probabilities) << "."
<< std::endl;
```
### Using different element types
The `DiscreteDistribution` class takes two template parameters:
```
DiscreteDistribution<MatType, ObsMatType>
```
* `MatType` represents the matrix type used to represent internal parameters
(e.g. probabilities of each observation).
* `ObsMatType` represents the matrix type used to represent observations.
* By default:
- `MatType` is `arma::mat`, but any dense matrix type matching the Armadillo
API that holds floating-point numbers can be used (e.g. `arma::fmat`).
- `ObsMatType` is `MatType`, but any matrix type matching the Armadillo API
can be used (e.g. `arma::fmat`, `arma::imat`, etc.).
* When using custom `MatType` and `ObsMatType` parameters, several method
signatures will change:
- `DiscreteDistributions(probabilities)` will expect `probabilities` to be `
`std::vector<VecType>`, where `VecType` is the column vector type
associated with `MatType` (e.g. `arma::fvec` for `arma::fmat`).
- `Probability(observation)` and `LogProbability(observation)` will expect
`observation` to be an `ObsVecType`, where `ObsVecType` is the column
vector type associated with `ObsMatType`, and will return a probability
with type equivalent to the element type of `MatType`.
- `Probability(observations, probabilities)` and
`LogProbability(observations, probabilities)` will expect `observations` to
be of type `ObsMatType` and `probabilities` to be of type `VecType`.
- `Random()` will return an `ObsVecType`.
- `Train(observations)` and `Train(observations, probabilities)` will expect
`observations` to be of type `ObsMatType` and `probabilities` to be of type
`VecType`.
- `Probabilities(dim)` will return a `VecType`.
The code below uses a `DiscreteDistribution` built on 32-bit floating point
numbers.
```c++
// Create a distribution with 10 observations in each of 3 dimensions.
mlpack::DiscreteDistribution<arma::fmat> d(arma::Col<size_t>("10 10 10"));
// Train the distribution on random data.
arma::fmat observations =
arma::randi<arma::fmat>(3, 100, arma::distr_param(0, 9));
d.Train(observations);
// Compute and print the probability of [8, 6, 7].
const float p = d.Probability(arma::fvec("8 6 7"));
std::cout << "Probability of [8, 6, 7]: " << p << "." << std::endl;
```
The code below uses a `DiscreteDistribution` that internally uses `float` to
hold probabilities, but accepts `unsigned int`s as observations.
```c++
// Create a distribution with 10 observations in each of 3 dimensions.
mlpack::DiscreteDistribution<arma::fmat, arma::umat> d(
arma::Col<size_t>("10 10 10"));
// Train the distribution on random data. Note that the observation type is a
// matrix of unsigned ints (arma::umat).
arma::umat observations =
arma::randi<arma::umat>(3, 100, arma::distr_param(0, 9));
d.Train(observations);
// Compute and print the probability of [8, 6, 7]. Note that the input vector
// is a vector of unsigned ints (arma::uvec), but the returned probability is a
// float because MatType is set to arma::fmat.
const float p = d.Probability(arma::uvec("8 6 7"));
std::cout << "Probability of [8, 6, 7]: " << p << "." << std::endl;
// Print the probability vector for dimension 0.
std::cout << "Probabilities for observations in dimension 0: "
<< d.Probabilities(0).t() << std::endl;
```
## `GaussianDistribution`
`GaussianDistribution` is a standard multivariate Gaussian distribution with
parameterized mean and covariance. (For a Gaussian distribution with a diagonal
covariance, see
[`DiagonalGaussianDistribution`](#diagonalgaussiandistribution).)
### Constructors
* `g = GaussianDistribution(dimensionality)`
- Create the distribution with the given dimensionality.
- The distribution will have a zero mean and unit diagonal covariance matrix.
* `g = GaussianDistribution(mean, covariance)`
- Create the distribution with the given mean and covariance.
- `mean` is of type `arma::vec` and should have length equal to the
dimensionality of the distribution.
- `covariance` is of type `arma::mat`, and should be symmetric and square,
with rows and columns equal to the dimensionality of the distribution.
### Access and modify properties of distribution
* `g.Dimensionality()` returns the dimensionality of the distribution as a
`size_t`.
* `g.Mean()` returns an `arma::vec&` holding the mean of the distribution.
This can be modified.
* `g.Covariance()` returns a `const arma::mat&` holding the covariance of the
distribution. To set a new covariance, use `g.Covariance(newCov)` or
`g.Covariance(std::move(newCov))`.
* `g.InvCov()` returns a `const arma::mat&` holding the precomputed inverse of
the covariance.
* `g.LogDetCov()` returns a `double` holding the log-determinant of the
covariance.
* A `GaussianDistribution` can be serialized with
[`Save()` and `Load()`](../load_save.md#mlpack-models-and-objects).
### Compute probabilities of points
* `g.Probability(observation)` returns the probability of the given
observation as a `double`.
- `observation` should be an `arma::vec` of size `g.Dimensionality()`.
* `g.Probability(observations, probabilities)` computes the probabilities of
many observations.
- `observations` should be an `arma::mat` with number of rows equal to
`d.Dimensionality()`; `observations.n_cols` is the number of observations.
- `probabilities` will be set to size `observations.n_cols`.
- `probabilities[i]` will be set to `g.Probability(observations.col(i))`.
* `g.LogProbability(observation)` returns the log-probability of the given
observation as a `double`.
* `g.LogProbability(observations, probabilities)` computes the
log-probabilities of many observations.
### Sample from the distribution
* `g.Random()` returns an `arma::vec` with a random sample from the
multidimensional Gaussian distribution.
### Fit the distribution to observations
* `g.Train(observations)`
- Fit the distribution to the given observations.
- `observations` should be an `arma::mat` with number of rows equal to
`g.Dimensionality()`; `observations.n_cols` is the number of observations.
* `g.Train(observations, observationProbabilities)`
- Fit the distribution to the given observations, as above, but also provide
probabilities that each observation is from this distribution.
- `observationProbabilities` should be an `arma::vec` of length
`observations.n_cols`.
- `observationProbabilities[i]` should be equal to the probability that
`observations.col(i)` is from `g`.
### Example usage
```c++
// Create a Gaussian distribution in 3 dimensions with zero mean and unit
// covariance.
mlpack::GaussianDistribution g(3);
// Compute the probability of the point [0, 0.5, 0.25].
const double p = g.Probability(arma::vec("0 0.5 0.25"));
// Modify the mean in dimension 0.
g.Mean()[0] = 0.5;
// Set a random covariance.
arma::mat newCov(3, 3, arma::fill::randu);
newCov *= newCov.t(); // Ensure covariance is positive semidefinite.
g.Covariance(std::move(newCov)); // Set new covariance.
// Compute the probability of the same point [0, 0.5, 0.25].
const double p2 = g.Probability(arma::vec("0 0.5 0.25"));
// Create a Gaussian distribution that is estimated from random samples in 50
// dimensions.
arma::mat samples(50, 10000, arma::fill::randn); // Normally distributed.
mlpack::GaussianDistribution g2(50);
g2.Train(samples);
// Compute the probability of all of the samples.
arma::vec probabilities;
g2.Probability(samples, probabilities);
std::cout << "Average probability is: " << arma::mean(probabilities) << "."
<< std::endl;
```
### Using different element types
The `GaussianDistribution` class takes one template parameter:
```
GaussianDistribution<MatType>
```
* `MatType` represents the matrix type used to represent observations.
* By default, `MatType` is `arma::mat`, but any matrix type matching the
Armadillo API can be used (e.g. `arma::fmat`).
* When `MatType` is set to anything other than `arma::mat`, all arguments are
adapted accordingly:
- `arma::mat` arguments will instead be `MatType`.
- `arma::vec` arguments will instead be the corresponding column vector type
associated with `MatType`.
- `double` arguments will instead be the element type of `MatType`.
The code below uses a Gaussian distribution to make predictions with 32-bit
floating point numbers.
```c++
// Create a 3-dimensional 32-bit floating point Gaussian distribution with
// random mean and unit covariance.
mlpack::GaussianDistribution<arma::fmat> g(3);
g.Mean().randu();
// Compute the probability of the point [0.2, 0.3, 0.4].
const float p = g.Probability(arma::fvec("0.2 0.3 0.4"));
std::cout << "Probability of (0.2, 0.3, 0.4): " << p << "." << std::endl;
```
## `DiagonalGaussianDistribution`
`DiagonalGaussianDistribution` is a standard multiviate Gaussian distribution
with parameterized mean and diagonal covariance. (For a full-covariance
Gaussian distribution, see [`GaussianDistribution`](#gaussiandistribution).)
### Constructors
* `d = DiagonalGaussianDistribution(dimensionality)`
- Create the distribution with the given dimensionality.
- The distribution will have a zero mean and unit diagonal covariance matrix.
* `d = DiagonalGaussianDistribution(mean, covariance)`
- Create the distribution with the given mean and covariance.
- `mean` is of type `arma::vec` and should have length equal to the
dimensionality of the distribution.
- `covariance` is of type `arma::vec`, and should have length equal to the
dimensionality of the distribution. Its elements represent the diagonal of
the covariance matrix.
### Access and modify properties of distribution
* `d.Dimensionality()` returns the dimensionality of the distribution as a
`size_t`.
* `d.Mean()` returns an `arma::vec&` holding the mean of the distribution.
This can be modified.
* `d.Covariance()` returns a `const arma::vec&` holding the covariance of the
distribution. To set a new covariance, use `d.Covariance(newCov)` or
`d.Covariance(std::move(newCov))`, where `newCov` is the new diagonal of the
covariance matrix.
* A `DiagonalGaussianDistribution` can be serialized with
[`Save()` and `Load()`](../load_save.md#mlpack-models-and-objects).
### Compute probabilities of points
* `d.Probability(observation)` returns the probability of the given observation
as a `double`.
- `observation` should be an `arma::vec` of size `d.Dimensionality()`.
* `d.Probability(observations, probabilities)` computes the probabilities of
many observations.
- `observations` should be an `arma::mat` with number of rows equal to
`d.Dimensionality()`; `observations.n_cols` is the number of observations.
- `probabilities` will be set to size `observations.n_cols`.
- `probabilities[i]` will be set to `d.Probability(observations.col(i))`.
* `d.LogProbability(observation)` returns the log-probability of the given
observation as a `double`.
* `d.LogProbability(observations, probabilities)` computes the
log-probabilities of many observations.
### Sample from the distribution
* `d.Random()` returns an `arma::vec` with a random sample from the
multidimensional diagonal Gaussian distribution.
### Fit the distribution to observations
* `d.Train(observations)`
- Fit the distribution to the given observations.
- `observations` should be an `arma::mat` with number of rows equal to
`d.Dimensionality()`; `observations.n_cols` is the number of observations.
* `g.Train(observations, observationProbabilities)`
- Fit the distribution to the given observations, as above, but also provide
probabilities that each observation is from this distribution.
- `observationProbabilities` should be an `arma::vec` of length
`observations.n_cols`.
- `observationProbabilities[i]` should be equal to the probability that
`observations.col(i)` is from `d`.
### Example usage
```c++
// Create a diagonal Gaussian distribution in 3 dimensions with zero mean and
// unit covariance.
mlpack::DiagonalGaussianDistribution d(3);
// Compute the probability of the point [0, 0.5, 0.25].
const double p = d.Probability(arma::vec("0 0.5 0.25"));
// Modify the mean in dimension 0.
d.Mean()[0] = 0.5;
// Set the covariance to a random diagonal.
arma::vec newCovDiag(3, arma::fill::randu);
d.Covariance(std::move(newCovDiag)); // Set new covariance.
// Compute the probability of the same point [0, 0.5, 0.25].
const double p2 = d.Probability(arma::vec("0 0.5 0.25"));
// Create a diagonal Gaussian distribution that is estimated from random samples
// in 50 dimensions.
arma::mat samples(50, 10000, arma::fill::randn); // Normally distributed.
mlpack::DiagonalGaussianDistribution d2(50);
d2.Train(samples);
// Compute the probability of all of the samples.
arma::vec probabilities;
d2.Probability(samples, probabilities);
std::cout << "Average probability is: " << arma::mean(probabilities) << "."
<< std::endl;
```
### Using different element types
The `DiagonalGaussianDistribution` class takes one template parameter:
```
DiagonalGaussianDistribution<MatType>
```
* `MatType` represents the matrix type used to represent observations.
* By default, `MatType` is `arma::mat`, but any matrix type matching the
Armadillo API can be used (e.g. `arma::fmat`).
* When `MatType` is set to anything other than `arma::mat`, all arguments are
adapted accordingly:
- `arma::mat` arguments will instead be `MatType`.
- `arma::vec` arguments will instead be the corresponding column vector type
associated with `MatType`.
- `double` arguments will instead be the element type of `MatType`.
The code below uses a Gaussian distribution to make predictions with 32-bit
floating point numbers.
```c++
// Create a 3-dimensional 32-bit floating point Gaussian distribution with
// random mean and covariance.
mlpack::DiagonalGaussianDistribution<arma::fmat> g(
arma::randu<arma::fvec>(3), arma::randu<arma::fvec>(3));
// Compute the probability of the point [0.2, 0.3, 0.4].
const float p = g.Probability(arma::fvec("0.2 0.3 0.4"));
std::cout << "Probability of (0.2, 0.3, 0.4): " << p << "." << std::endl;
```
## `GammaDistribution`
`GammaDistribution` is a multivariate Gamma distribution with two parameters for
shape (alpha) and inverse scale (beta). Certain settings of these parameters
yield the exponential distribution, Chi-squared distribution, and Erlang
distribution. This family of distributions is commonly used in Bayesian
statistics. See more on
[Wikipedia](https://en.wikipedia.org/wiki/Gamma_distribution).
### Constructors
* `g = GammaDistribution(dimensionality)`
- Create the distribution with the given dimensionality.
- The distribution will have alpha and beta parameters in each dimension set
to 0.
* `g = GammaDistribution(alphas, betas)`
- Create the distribution with the given parameters.
- `alphas` and `betas` are of type `arma::vec` and should have length equal
to the dimensionality of the distribution.
- `alphas` should hold the desired shape parameters in each dimension.
- `betas` should hold the desired inverse scale parameters in each dimension.
* `g = GammaDistribution(data, tol=1e-8)`
- Create the distribution by fitting to the given `data`.
- `tol` specifies the convergence tolerance for the fitting procedure.
- Using this constructor is equivalent to calling `g.Train(data, tol)` after
initializing a `GammaDistribution`.
### Access and modify properties of distribution
* `g.Dimensionality()` returns the dimensionality of the distribution.
* `g.Alpha(i)` returns a `double` representing the shape parameter for
dimension `i`. `g.Alpha(i) = a` will set the `i`'th dimension's shape
parameter to `a`.
* `g.Beta(i)` returns a `double` representing the inverse scale parameter for
dimension `i`. `g.Beta(i) = b` will set the `i`'th dimension's inverse scale
parameter to `b`.
* A `GammaDistribution` can be serialized with
[`Save()` and `Load()`](../load_save.md#mlpack-models-and-objects).
### Compute probabilities of points
* `g.Probability(observation)` returns the probability of the given observation
as a `double`.
- `observation` should be an `arma::vec` of size `g.Dimensionality()`.
* `g.Probability(observations, probabilities)` computes the probabilities of
many observations.
- `observations` should be an `arma::mat` with number of rows equal to
`g.Dimensionality()`; `observations.n_cols` is the number of observations.
- `probabilities` will be set to size `observations.n_cols`.
- `probabilities[i]` will be set to `g.Probability(observations.col(i))`.
* `g.LogProbability(observation)` returns the log-probability of the given
observation as a `double`.
* `g.LogProbability(observations, probabilities)` computes the
log-probabilities of many observations.
### Sample points from the distribution
* `g.Random()` returns an `arma::vec` with a random sample from the
Gamma distribution.
### Fit the distribution to observations
* `g.Train(observations)`
- Fit the distribution to the given observations.
- `observations` should be an `arma::mat` with number of rows equal to
`g.Dimensionality()`; `observations.n_cols` is the number of observations.
* `g.Train(observations, observationProbabilities)`
- Fit the distribution to the given observations, as above, but also provide
probabilities that each observation is from this distribution.
- `observationProbabilities` should be an `arma::vec` of length
`observations.n_cols`.
- `observationProbabilities[i]` should be equal to the probability that
`observations.col(i)` is from `g`.
* The algorithm used for fitting the distribution is described in the paper
[Estimating a Gamma Distribution](https://tminka.github.io/papers/minka-gamma.pdf).
### Example usage
```c++
// Create a Gamma distribution in 3 dimensions with ones for the alpha (shape)
// parameters and random beta (inverse scale) parameters.
mlpack::GammaDistribution g(arma::ones<arma::vec>(3) /* shape */,
arma::randu<arma::vec>(3) /* scale */);
// Compute the probability and log-probability of the point [0, 0.5, 0.25].
const double p = g.Probability(arma::vec("0 0.5 0.25"));
const double lp = g.LogProbability(arma::vec("0 0.5 0.25"));
std::cout << "Probability of [0 0.5 0.25]: " << p << "." << std::endl;
std::cout << "Log-probability of [0 0.5 0.25]: " << lp << "." << std::endl;
// Modify the scale and inverse shape parameters in dimension 0.
g.Alpha(0) = 0.5;
g.Beta(0) = 3.0;
// Compute the probability of the same point [0, 0.5, 0.25].
const double p2 = g.Probability(arma::vec("0 0.5 0.25"));
const double lp2 = g.LogProbability(arma::vec("0 0.5 0.25"));
std::cout << "After parameter changes:" << std::endl;
std::cout << "Probability of [0 0.5 0.25]: " << p << "." << std::endl;
std::cout << "Log-probability of [0 0.5 0.25]: " << lp << "." << std::endl;
// Create a Gamma distribution that is estimated from random samples in 5
// dimensions. Note that the samples here are uniformly distributed---so a
// Gamma distribution fit will not be a good one!
arma::mat samples(5, 1000, arma::fill::randu);
samples += 2.0; // Shift samples away from zero.
mlpack::GammaDistribution g2(samples, 1e-3 /* tolerance for fitting */);
// Compute the probability of all of the samples.
arma::vec probabilities;
g2.Probability(samples, probabilities);
std::cout << "Average probability is: " << arma::mean(probabilities) << "."
<< std::endl;
```
### Using different element types
The `GammaDistribution` class takes one template parameter:
```
GammaDistribution<MatType>
```
* `MatType` represents the matrix type used to represent observations.
* By default, `MatType` is `arma::mat`, but any matrix type matching the
Armadillo API can be used (e.g. `arma::fmat`).
* When `MatType` is set to anything other than `arma::mat`, all arguments are
adapted accordingly:
- `arma::mat` arguments will instead be `MatType`
- `arma::vec` arguments will instead be the corresponding column vector type
associated with `MatType`
- `double` arguments will instead be the element type of `MatType`
- If the element type is `float`, the default tolerance (`tol`) for `Train()`
is `1e-4`
The code below uses a Gamma distribution to make predictions with 32-bit
floating point numbers.
```c++
// Create a 3-dimensional 32-bit floating point Laplace distribution with
// ones for the shape parameter and random scale parameters.
mlpack::GammaDistribution<arma::fmat> g(arma::ones<arma::fvec>(3) /* shape */,
arma::randu<arma::fvec>(3) /* scale */);
// Compute the probability of the point [0.2, 0.3, 0.4].
const float p = g.Probability(arma::fvec("0.2 0.3 0.4"));
std::cout << "Probability of (0.2, 0.3, 0.4): " << p << "." << std::endl;
```
## `LaplaceDistribution`
`LaplaceDistribution` is a multivariate Laplace distribution parameterized by a
mean vector and a single scale value. The Laplace distribution is sometimes
also called the *double exponential distribution*. See more on
[Wikipedia](https://en.wikipedia.org/wiki/Laplace_distribution).
### Constructors
* `l = LaplaceDistribution(dimensionality, scale=1.0)`
- Create the distribution with the given dimensionality.
- The distribution will have mean zero and the given `scale`.
- `scale` must be greater than 0.
* `l = LaplaceDistribution(mean, scale)`
- Create the distribution with the given parameters.
- `mean` is of type `arma::vec` and should have length equal to the
dimensionality of the distribution.
- `scale` must be greater than 0.
### Access and modify properties of distribution
* `l.Dimensionality()` returns the dimensionality of the distribution.
* `l.Mean()` returns an `arma::vec&` holding the mean of the distribution.
This can be modified.
* `l.Scale()` returns a `double` representing the distribution's scale
parameter. `l.Scale() = s` will set the scale parameter to `s`.
* A `LaplaceDistribution` can be serialized with
[`Save()` and `Load()`](../load_save.md#mlpack-models-and-objects).
### Compute probabilities of points
* `l.Probability(observation)` returns the probability of the given observation
as a `double`.
- `observation` should be an `arma::vec` of size `l.Dimensionality()`.
* `l.Probability(observations, probabilities)` computes the probabilities of
many observations.
- `observations` should be an `arma::mat` with number of rows equal to
`l.Dimensionality()`; `observations.n_cols` is the number of observations.
- `probabilities` will be set to size `observations.n_cols`.
- `probabilities[i]` will be set to `l.Probability(observations.col(i))`.
* `l.LogProbability(observation)` returns the log-probability of the given
observation as a `double`.
* `l.LogProbability(observations, probabilities)` computes the
log-probabilities of many observations.
### Sample points from the distribution
* `l.Random()` returns an `arma::vec` with a random sample from the
Laplace distribution.
### Fit the distribution to observations
* `l.Train(observations)`
- Fit the distribution to the given observations.
- `observations` should be an `arma::mat` with number of rows equal to
`l.Dimensionality()`; `observations.n_cols` is the number of observations.
* `l.Train(observations, observationProbabilities)`
- Fit the distribution to the given observations, as above, but also provide
probabilities that each observation is from this distribution.
- `observationProbabilities` should be an `arma::vec` of length
`observations.n_cols`.
- `observationProbabilities[i]` should be equal to the probability that
`observations.col(i)` is from `l`.
### Example usage
```c++
// Create a Laplace distribution in 3 dimensions with uniform random mean and
// scale parameter 1.
mlpack::LaplaceDistribution l(arma::randu<arma::vec>(3) /* mean */,
1.0 /* scale */);
// Compute the probability and log-probability of the point [0, 0.5, 0.25].
const double p = l.Probability(arma::vec("0 0.5 0.25"));
const double lp = l.LogProbability(arma::vec("0 0.5 0.25"));
std::cout << "Probability of [0 0.5 0.25]: " << p << "." << std::endl;
std::cout << "Log-probability of [0 0.5 0.25]: " << lp << "." << std::endl;
// Modify the scale, and the mean in dimension 1.
l.Scale() = 2.0;
l.Mean()[1] = 1.5;
// Compute the probability of the same point [0, 0.5, 0.25].
const double p2 = l.Probability(arma::vec("0 0.5 0.25"));
const double lp2 = l.LogProbability(arma::vec("0 0.5 0.25"));
std::cout << "After parameter changes:" << std::endl;
std::cout << "Probability of [0 0.5 0.25]: " << p << "." << std::endl;
std::cout << "Log-probability of [0 0.5 0.25]: " << lp << "." << std::endl;
// Create a Laplace distribution that is estimated from random samples in 50
// dimensions. Note that the samples here are normally distributed---so a Gamma
// distribution fit will not be a good one!
arma::mat samples(50, 10000, arma::fill::randn);
mlpack::LaplaceDistribution l2;
l2.Train(samples);
// Compute the probability of all of the samples.
arma::vec probabilities;
l2.Probability(samples, probabilities);
std::cout << "Average probability is: " << arma::mean(probabilities) << "."
<< std::endl;
```
### Using different element types
The `LaplaceDistribution` class takes one template parameter:
```
LaplaceDistribution<MatType>
```
* `MatType` represents the matrix type used to represent observations.
* By default, `MatType` is `arma::mat`, but any matrix type matching the
Armadillo API can be used (e.g. `arma::fmat`).
* When `MatType` is set to anything other than `arma::mat`, all arguments are
adapted accordingly:
- `arma::mat` arguments will instead be `MatType`.
- `arma::vec` arguments will instead be the corresponding column vector type
associated with `MatType`.
- `double` arguments will instead be the element type of `MatType`.
The code below uses a Laplace distribution to make predictions with 32-bit
floating point numbers.
```c++
// Create a 3-dimensional 32-bit floating point Laplace distribution with
// random mean and scale of 2.0.
mlpack::LaplaceDistribution<arma::fmat> g(arma::randu<arma::fvec>(3), 2.0);
// Compute the probability of the point [0.2, 0.3, 0.4].
const float p = g.Probability(arma::fvec("0.2 0.3 0.4"));
std::cout << "Probability of (0.2, 0.3, 0.4): " << p << "." << std::endl;
```
## `RegressionDistribution`
The `RegressionDistribution` is a [Gaussian distribution](#gaussiandistribution)
fitted on the errors of a linear regression model. Given a point `x` with
response `y`, the probability of `(y, x)` is computed using a univariate
Gaussian distribution on the scalar residual `y - y'`, where `y'` is the linear
regression model's prediction on `x`.
<!-- TODO: fix link! -->
This class is meant to be used with mlpack's
[HMM](/src/mlpack/methods/hmm/hmm.hpp) class for the task of
[HMM regression (pdf)](https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=93a56eb64e77ac83404fddfd0036e95a742fcee6).
### Constructors
* `r = RegressionDistribution()`
- Create an empty `RegressionDistribution`.
- The distribution will not provide useful predictions; call `Train()` before
doing anything else with the object!
* `r = RegressionDistribution(predictors, responses)`
- Create the `RegressionDistribution` by estimating the parameters with the
given labeled regression data `predictors` and `responses`.
- `predictors` should be a
[column-major](../matrices.md#representing-data-in-mlpack) `arma::mat`
representing the data the distribution should be trained on.
- `responses` should be an `arma::rowvec` representing the responses for each
data point.
- The number of elements in `responses` (e.g. `responses.n_elem`) should be
the same as the number of columns in `predictors` (e.g.
`predictors.n_cols`).
### Access and modify properties of distribution
* `r.Dimensionality()` returns the dimensionality of the distribution.
- ***Note***: this is *not* the same as the number of elements in a vector
passed to `Probability()`!
* `r.Rf()` returns the [`LinearRegression&`](../methods/linear_regression.md)
model. This can be modified.
* `r.Parameters()` returns an `const arma::vec&` with length
`r.Dimensionality() + 1` representing the parameters of the linear regression
model. The first element is the bias; subsequent elements are the weights
for each dimension.
* `r.Err()` returns a [`GaussianDistribution&`](#gaussiandistribution) object
representing the univariate distribution trained on the model's residuals.
This can be modified.
* A `RegressionDistribution` can be serialized with
[`Save()` and `Load()`](../load_save.md#mlpack-models-and-objects).
### Compute probabilities of points
* `r.Probability(observation)` returns the probability of the given *labeled*
observation as a `double`.
- `observation` should be an `arma::vec` of size `r.Dimensionality() + 1`,
containing both the data point and its scalar response.
- The first element of `observation` should be the response; subsequent
elements should be the data point.
* `r.Probability(observations, probabilities)` computes the probabilities of
many labeled observations.
- `observations` should be an `arma::mat` with number of rows equal to
`r.Dimensionality() + 1`; `observations.n_cols` is the number of
observations.
- The first row of `observations` should correspond to the responses for each
data point.
- `probabilities` will be set to size `observations.n_cols`.
- `probabilities[i]` will be set to `r.Probability(observations.col(i))`.
* `r.LogProbability(observation)` returns the log-probability of the given
labeled observation as a `double`.
* `r.LogProbability(observations, probabilities)` computes the
log-probabilities of many labeled observations.
### Fit the distribution to observations
Training a `RegressionDistribution` on a given set of labeled observations is
done by first training a [`LinearRegression`](../methods/linear_regression.md)
model on the dataset, and then subsequently training a univariate
[`GaussianDistribution`](#gaussiandistribution) on the residual error of each
data point.
In the `Train()` overloads, the `observations` matrix is expected to contain
both the responses and the data points (predictors).
* `r.Train(observations)`
- Fit the distribution to the given *labeled* observations.
- `observations` should be an `arma::mat` with number of rows equal to the
dimensionality of the data plus one; `observations.n_cols` is the number of
observations.
- The first row of `observations` should correspond to the responses of the
data; subsequent rows correspond to the data itself.
* `r.Train(observations, observationProbabilities)`
- Fit the distribution to the given *labeled* observations, as above, but
also provide probabilities that each observation is from this distribution.
- `observationProbabilities` should be an `arma::rowvec` of length
`observations.n_cols`.
- `observationProbabilities[i]` should be equal to the probability that the
`i`'th observation is from `r`.
***Note***: if the linear regression model is able to exactly fit the
observations, then the resulting Gaussian distribution will have zero-valued
standard deviation, and `Probability()` will return `1` for points that are
perfectly fit and `0` otherwise.
### Example usage
```c++
// Create an example dataset that arises from a noisy random linear model:
//
// y = bx + noise
//
// Noise is added from a Gaussian distribution with zero mean and unit variance.
// Data is 10-dimensional, and we will generate 1000 points.
arma::vec b(10, arma::fill::randu);
arma::mat x(10, 1000, arma::fill::randu);
arma::rowvec y = b.t() * x + arma::randn<arma::rowvec>(1000);
// Now fit a RegressionDistribution to the data.
mlpack::RegressionDistribution r(x, y);
// Print information about the distribution.
std::cout << "RegressionDistribution model parameters:" << std::endl;
std::cout << " - " << r.Parameters().subvec(1, r.Parameters().n_elem - 1).t();
std::cout << " - Bias: " << r.Parameters()[0] << "." << std::endl;
std::cout << "True model parameters:" << std::endl;
std::cout << " - " << b.t();
std::cout << "Error Gaussian mean is " << r.Err().Mean()[0] << ", with "
<< "variance " << r.Err().Covariance()[0] << "." << std::endl << std::endl;
// Compute the probability of a point in the training set. We must assemble the
// points into a single vector.
arma::vec p1(11); // p1 will be point 5 from (x, y).
p1[0] = y[5];
p1.subvec(1, p1.n_elem - 1) = x.col(5);
std::cout << "Probability of point 5: " << r.Probability(p1) << "."
<< std::endl;
arma::vec p2(11, arma::fill::randu);
std::cout << "Probability of random point: " << r.Probability(p2) << "."
<< std::endl;
// Print log-probabilities too.
std::cout << "Log-probability of point 5: " << r.LogProbability(p1) << "."
<< std::endl;
std::cout << "Log-probability of random point: " << r.LogProbability(p2) << "."
<< std::endl << std::endl;
// Change the error distribution.
y = b.t() * x + (1.5 * arma::randn<arma::rowvec>(1000));
// Combine x and y to build the observations matrix for Train().
arma::mat observations(x.n_rows + 1, x.n_cols);
observations.row(0) = y;
observations.rows(1, observations.n_rows - 1) = x;
// Assign a random probability for each point.
arma::rowvec observationProbabilities(observations.n_cols, arma::fill::randu);
// Refit the distribution to the new data.
r.Train(observations, observationProbabilities);
// Print new error distribution information.
std::cout << "Updated error Gaussian mean is " << r.Err().Mean()[0] << ", with "
<< "variance " << r.Err().Covariance()[0] << "." << std::endl << std::endl;
// Compute average probability of points in the dataset.
arma::vec probabilities;
r.Probability(observations, probabilities);
std::cout << "Average probability of points in `observations`: "
<< arma::mean(probabilities) << "." << std::endl;
```
### Using different element types
The `RegressionDistribution` class takes one template parameter:
```
RegressionDistribution<MatType>
```
* `MatType` represents the matrix type used to represent observations.
* By default, `MatType` is `arma::mat`, but any matrix type matching the
Armadillo API can be used (e.g. `arma::fmat`).
* When `MatType` is set to anything other than `arma::mat`, all arguments are
adapted accordingly:
- `arma::mat` arguments will instead be `MatType`.
- `arma::vec` arguments will instead be the corresponding column vector type
associated with `MatType`.
- `double` arguments will instead be the element type of `MatType`.
The code below uses a regression distribution trained on 32-bit floating point
data.
```c++
// Create an example dataset that arises from a noisy random linear model:
//
// y = bx + noise
//
// Noise is added from a Gaussian distribution with zero mean and unit variance.
// Data is 3-dimensional, and we will generate 1000 points.
arma::fvec b(3, arma::fill::randu);
arma::fmat x(3, 1000, arma::fill::randu);
arma::frowvec y = b.t() * x + arma::randn<arma::frowvec>(1000);
// Now fit a RegressionDistribution to the data.
mlpack::RegressionDistribution<arma::fmat> r(x, y);
// Compute the probability of the point [0.5, 0.2, 0.3, 0.4].
// (Here 0.5 is the response, and [0.2, 0.3, 0.4] is the point.)
const float p = r.Probability(arma::fvec("0.5 0.2 0.3 0.4"));
std::cout << "Probability of (0.5, 0.2, 0.3, 0.4): " << p << "." << std::endl;
```
|