1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
|
<object data="../img/pipeline-top-1.svg" type="image/svg+xml" id="pipeline-top">
</object>
<!--
If you are adding a new DataOptions type:
* Update #types with the new type of data to be loaded.
* Update #dataoptions to reference the new type.
* Create a new options section to describe the new type and its standalone
operators and members.
* Update the formats table in #formats.
* Add a section with examples about the type of data to be loaded.
* Where relevant, add links to the new data type or new options class
throughout.
Then go read it and make sure it all makes sense... :)
-->
# Data loading and I/O
mlpack provides the `Load()` and `Save()` functions to load and save
[Armadillo matrices](matrices.md) (e.g. numeric and categorical datasets) and
any mlpack object via the [cereal](https://uscilab.github.io/cereal/)
serialization toolkit. A number of other utilities related to loading and
saving data and objects are also available. The `Load()` and
`Save()` functions have numerous options to configure load/save behavior
and [format detection/selection](#formats).
## `Load()`
- `Load(filename, X)`
* Load `X` from the given file `filename` with default options:
- the format of the file is [auto-detected](#formats) based on the
extension of the file, and
- an exception is *not* thrown on an error.
* Returns a `bool` indicating whether the load was a success.
* `X` can be [any supported load type](#types).
- `Load(filename, object, Option1 + Option2 + ...)`
* Load `X` from the given file `filename` with the given options.
* Returns a `bool` indicating whether the load was a success.
* `X` can be [any supported load type](#types).
* The given options must be from the
[list of standalone operators](#dataoptions) and be appropriate for the type
of `X`.
- `Load(filename, object, opts)`
* Load `X` from the given file `filename` with the given options specified in `opts`.
* Returns a `bool` indicating whether the load was a success.
* `X` can be [any supported load type](#types).
* `opts` is a [`DataOptions` object](#dataoptions) whose subtype matches the
type of `X`.
For some types of data, it is also possible to load multiple images at once from a set of files:
- `Load(filenames, X)`
- `Load(filenames, X, Option1 + Option2 + ...)`
- `Load(filenames, X, opts)`
* Load data from `filenames` (a `std::vector<std::string>`) into the matrix `X`.
- For [numeric data](#numeric-data), data loaded from each file is concatenated into `X`.
- For [image data](#image-data), each image is flattened into one column of `X`.
- Metadata (e.g. image size, number of columns, etc.) in all files in `filenames` must match or loading will fail.
- Loading options can be specified by either standalone options or an instantiated [`DataOptions` object](#dataoptions).
---
*Simple example:*
```c++
// See https://datasets.mlpack.org/iris.csv.
arma::mat x;
mlpack::Load("iris.csv", x);
std::cout << "Loaded iris.csv; size " << x.n_rows << " x " << x.n_cols << "."
<< std::endl;
```
Among other things, the file format can be easily specified:
```c++
// See https://datasets.mlpack.org/iris.csv.
arma::mat x;
mlpack::Load("iris.csv", x, mlpack::CSV);
std::cout << "Loaded iris.csv; size " << x.n_rows << " x " << x.n_cols << "."
<< std::endl;
```
See also the other examples for each [supported load type](#types):
* [Numeric data](#numeric-data-loadsave-examples)
* [Categorical data](#categorical-data-loadsave-examples)
* [Image data](#image-data-loadsave-examples)
* [mlpack models and objects](#mlpack-models-and-objects-loadsave-examples)
## `Save()`
- `Save(filename, X)`
* Save `X` to the given file `filename` with default options:
- the format of the file is auto-detected based on the extension of the
file, and
- an exception is *not* thrown on an error.
* Returns a `bool` indicating whether the save was a success.
* `X` can be [any supported save type](#types).
- `Save(filename, object, Option1 + Option2 + ...)`
* Save `X` to the given file `filename` with the given options.
* Returns a `bool` indicating whether the save was a success.
* `X` can be [any supported save type](#types).
* The given options must be from the
[list of standalone options](#dataoptions) and be appropriate for the type
of `X`.
- `Save(filename, object, opts)`
* Save `X` to the given file `filename` with the given options specified in
`opts`.
* Returns a `bool` indicating whether the save was a success.
* `X` can be [any supported save type](#types).
* `opts` is a [`DataOptions` object](#dataoptions) whose subtype matches the
type of `X`.
***Note:*** when saving images, it is possible to save
into multiple images from one matrix `X`. See [image data](#image-data) for more
details.
---
*Simple example:*
```c++
// Generate a 5-dimensional matrix of random data.
arma::mat dataset(5, 1000, arma::fill::randu);
mlpack::Save("dataset.csv", dataset);
std::cout << "Saved random data to 'dataset.csv'." << std::endl;
```
Among other things, the file format can be easily specified manually:
```c++
// Generate a 5-dimensional matrix of random data.
arma::mat dataset(5, 1000, arma::fill::randu);
mlpack::Save("dataset.csv", dataset, mlpack::CSV);
std::cout << "Saved random data to 'dataset.csv'." << std::endl;
```
See also the other examples for each [supported save type](#types):
* [Numeric data](#numeric-data-loadsave-examples)
* [Categorical data](#categorical-data-loadsave-examples)
* [Image data](#image-data-loadsave-examples)
* [mlpack models and objects](#mlpack-models-and-objects-loadsave-examples)
## Types
Support is available for loading and saving several kinds of data. Given an
object `X` to be loaded or saved:
* For [***numeric data***](#numeric-data),
- `X` should have type
[`arma::mat` or any supported matrix type](matrices.md)
(e.g. `arma::fmat`, `arma::umat`, etc.).
- Supported formats are CSV, TSV, text, binary, ARFF, and others;
see [the table of format options](#formats).
- Additional options can be specified with a [`DataOptions`](#dataoptions),
[`MatrixOptions`](#matrixoptions), or [`TextOptions`](#textoptions) object.
- See [numeric data examples](#numeric-data-loadsave-examples) for example
usage.
* For [***mixed categorical data***](#mixed-categorical-data) (data where not
all columns are numeric),
- `X` should have type
[`arma::mat` or any supported matrix type](matrices.md) (e.g.
`arma::fmat`, `arma::umat`, etc.).
- Columns of `X` that are categorical are represented as integer values
starting from 0.
- Information about categorical dimensions is stored in a
[`DatasetInfo`](#datasetinfo) object, which is held inside of a
[`TextOptions`](#textoptions) object.
- Supported formats are CSV, TSV, text, and ARFF;
see [the table of format options](#formats).
- See [categorical data examples](#categorical-data-loadsave-examples) for
example usage.
* For [***image data***](#image-data),
- `X` should have type
[`arma::mat` or any supported matrix type](matrices.md) (e.g.
`arma::fmat`, `arma::umat`, etc.).
- Images are represented in a vectorized form; see [image data](#image-data)
for details.
- An [`ImageOptions`](#imageoptions) object is used for representing metadata
specific to image formats.
- Supported formats are PNG, JPEG, TGA, BMP, PSD, GIF, PIC, and PNM;
see [the table of format options](#formats).
- See [image data examples](#image-data-loadsave-examples) for example usage.
* For [***mlpack models and objects***](#mlpack-models-and-objects),
- `X` can have type equivalent to any mlpack class or type (e.g.
[`mlpack::RandomForest`](methods/random_forest.md),
[`mlpack::KDTree`](core/trees/kdtree.md),
[`mlpack::Range`](core/math.md#range), etc.).
- Supported formats for model/object serialization are binary, text, and JSON;
see [the table of format options](#formats).
- See [mlpack model and object examples](#mlpack-models-and-objects-loadsave-examples)
for example usage.
## `DataOptions`
The [`Load()`](#load) and [`Save()`](#save) functions allow
specifying options in a standalone manner or with an instantiated `DataOptions`
object. Standalone options provide convenience:
<!-- note: marked this example as C so we get syntax highlighting but it doesn't
get compiled -->
```c
// Individual standalone options can be combined with the + operator.
mlpack::Load("filename.csv", X, mlpack::CSV + mlpack::Fatal);
```
The use of an instantiated `DataOptions` (or a child class relevant to the type
of data being loaded) allows more complex options to be configured and for
metadata resulting from a load or save operation to be stored:
```c
// Different data types will use DataOptions, MatrixOptions, TextOptions,
// ModelOptions, or other types. See the documentation for each class below.
mlpack::ImageOptions opts;
opts.Channels() = 1; // Force loading in grayscale.
mlpack::Load("filename.png", X, opts);
// Now, `opts.Width()` and `opts.Height()` will store the size of the loaded
// image.
```
The set of allowed standalone options differs depending on the
[type of data](#types) being loaded or saved; if using an instantiated options
object, so does the type of `opts`:
* ***Numeric data***: [`MatrixOptions`](#matrixoptions) and its
[standalone options](#matrixoptions-standalone-operators-and-members), or
[`TextOptions`](#textoptions) and its
[standalone options](#textoptions-standalone-operators-and-members)
for plaintext formats;
* ***Mixed categorical data***: [`TextOptions`](#textoptions) and its
[standalone options](#textoptions-standalone-operators-and-members);
* ***Image data***: [`ImageOptions`](#imageoptions) and its
[standalone options](#imageoptions-standalone-operators-and-members);
* ***mlpack models and objects***: [`ModelOptions`](#modeloptions) and its
[standalone options](#modeloptions-standalone-operators-and-members).
### `DataOptions`
The `DataOptions` class is the base class from which all options classes
specific to [data types](#types) are derived. It is default-constructible and
provides the `.Fatal()` and `.Format()` members.
Any members or standalone operators available in `DataOptions` are also
available when using other options types (e.g. [`TextOptions`](#textoptions),
[`ImageOptions`](#imageoptions), etc.).
#### `DataOptions` standalone operators and members
The options below can be used as standalone operators to the
[`Load()`](#load) and [`Save()`](#save) functions, or as
calls to set members of an instantiated `DataOptions` object.
| ***Standalone operator*** | ***Member function*** | ***Available for:*** | ***Description*** |
|---------------------------|-------------------------|---------------------------|-------------------|
| _Load/save behavior._ | | | |
| `Fatal` | `opts.Fatal() = true;` | All [data types](#types). | A `std::runtime_error` will be thrown on failure. |
| `NoFatal` _(default)_ | `opts.Fatal() = false;` | All [data types](#types). | `false` will be returned on failure. A warning will also be printed if [`MLPACK_PRINT_WARN`](compile.md#configuring-mlpack-with-compile-time-definitions) is defined. |
|---------------------------|-------------------------|---------------------------|-------------------|
| [_Formats._](#formats) | | | |
| `AutoDetect` _(default)_ | `opts.Format() = mlpack::FileType::AutoDetect;` | All [data types](#types). | The format of the file is autodetected using the extension fo the filename and (if loading) inspecting the file contents. |
|---------------------------|-------------------------|---------------------------|-------------------|
### `MatrixOptions`
The `MatrixOptions` class represents options specific to matrix types
([numeric](#numeric-data) and [categorical](#mixed-categorical-data) data).
`MatrixOptions` is derived from [`DataOptions`](#dataoptions) and thus any
[standalone operators or member functions from `DataOptions`](#dataoptions-standalone-operators-and-members)
(e.g. `Fatal`, `NoFatal`, and `AutoDetect`) can also be used with
`MatrixOptions`.
***Note:*** closely related is the [`TextOptions`](#textoptions) class,
specifically for loading numeric or categorical data from plaintext formats.
`MatrixOptions` is used for non-plaintext numeric data formats.
#### `MatrixOptions` standalone operators and members
The options below can be used as standalone operators to the
[`Load()`](#load) and [`Save()`](#save) functions, or as
calls to set members of an instantiated `MatrixOptions` object.
If an option is given that does not match the type of data being loaded or
saved, if [`Fatal()`](#dataoptions-standalone-operators-and-members) is set,
then an exception will be thrown; otherwise, a warning will be printed if
[`MLPACK_PRINT_WARN`](compile.md#configuring-mlpack-with-compile-time-definitions)
is set.
| ***Standalone operator*** | ***Member function*** | ***Available for:*** | ***Description*** |
|---------------------------|-----------------------------|---------------------------|-------------------|
| _Load/save behavior._ | | | |
| `Transpose` _(default)_ | `opts.Transpose() = true;` | [Numeric](#numeric-data) and [categorical](#mixed-categorical-data) data. | The matrix will be transposed to/from [column-major form](matrices.md#representing-data-in-mlpack) on load/save. |
| `NoTranspose` | `opts.Transpose() = false;` | [Numeric](#numeric-data) and [categorical](#mixed-categorical-data) data. | The matrix will not be transposed to [column-major form](matrices.md#representing-data-in-mlpack) on load/save. |
|---------------------------|-----------------------------|---------------------------|-------------------|
| [_Formats._](#formats) | | | |
| `PGM` | `opts.Format() = mlpack::FileType::PGMBinary;` | [Numeric](#numeric-data) data. | Load/save in the PGM image format; data should have values in the range `[0, 255]`. The size of the image will be the same as the size of the matrix (after any transpose is applied). |
| `PPM` | `opts.Format() = mlpack::FileType::PPMBinary;` | [Numeric](#numeric-data) data. | Load/save in the PPM image format; data should have values in the range `[0, 255]`. The size of the image will be the same as the size of the matrix (after any transpose is applied). |
| `HDF5` | `opts.Format() = mlpack::FileType::HDF5Binary;` | [Numeric](#numeric-data) data. | Load/save in the [HDF5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format) binary format; only available if Armadillo is configured with [HDF5 support](https://arma.sourceforge.net/docs.html#config_hpp). |
| `ArmaBin` | `opts.Format() = mlpack::FileType::ArmaBinary;` | [Numeric](#numeric-data) data. | Load/save in the space-efficient [`arma_binary`](https://arma.sourceforge.net/docs.html#save_load_mat) format (packed binary data). |
| `RawBinary` | `opts.Format() = mlpack::FileType::RawBinary;` | [Numeric](#numeric-data) data. | Load/save as packed binary data with no header and no size information; data will be loaded as a single column vector _(not recommended)_. |
|---------------------------|-----------------------------|---------------------------|-------------------|
### `TextOptions`
The `TextOptions` class represents options specific to matrix types stored in
plaintext formats ([numeric](#numeric-data) and [categorical](#mixed-categorical-data)
data). `TextOptions` is a child class and thus any standalone operators or members from its parent classes are also available:
* [`DataOptions`](#dataoptions) provides:
- `Fatal`, `NoFatal`, and `AutoDetect` standalone operators
- `opts.Fatal()` and `opts.Format()` members
- See the [`DataOptions` operator and member documentation](#dataoptions-standalone-operators-and-members)
* [`MatrixOptions`](#matrixoptions) provides:
- `Transpose`, `NoTranspose`, `PGM`, `PPM`, `HDF5`, `ArmaBin`, and
`RawBinary` standalone operators
- `opts.Transpose()` member
- See the [`MatrixOptions` operator and member documentation](#matrixoptions-standalone-operators-and-members)
#### `TextOptions` standalone operators and members
The options below can be used as standalone operators to the
[`Load()`](#load) and [`Save()`](#save) functions, or as
calls to set members of an instantiated `TextOptions` object.
If an option is given that does not match the type of data being loaded or
saved, if [`Fatal()`](#dataoptions-standalone-operators-and-members) is set,
then an exception will be thrown; otherwise, a warning will be printed if
[`MLPACK_PRINT_WARN`](compile.md#configuring-mlpack-with-compile-time-definitions)
is set.
<!-- TODO for Omar: what happens when HasHeaders() is true for saving? -->
| ***Standalone operator*** | ***Member function*** | ***Available for:*** | ***Description*** |
|---------------------------|-----------------------------|---------------------------|-------------------|
| _Load/save behavior._ | | | |
| `HasHeaders` | `opts.HasHeaders() = true;` | [Numeric](#numeric-data) and [categorical](#mixed-categorical-data) data, only for the CSV format.. | If `true`, the first row of the file contains column names instead of data. See note below. |
| `Categorical` | `opts.Categorical() = true;` | [Categorical](#mixed-categorical-data), only for the CSV or ARFF formats. | If `true`, the data to be loaded or saved is mixed categorical data. See note below. |
| `SemiColon` | `opts.SemiColon() = true;` | [Numeric](#numeric-data) and [categorical](#mixed-categorical-data) data, only for the CSV, `CoordAscii`, and `RawAscii` formats. | If `true`, the field separator in the file is a semicolon instead of a comma. |
| `MissingToNan` | `opts.MissingToNan() = true;` | [Numeric](#numeric-data) and [categorical](#mixed-categorical-data) data. | If `true`, any missing data elements will be represented as `NaN` instead of 0. |
|---------------------------|-----------------------------|---------------------------|-------------------|
| [_Formats._](#formats) | | | |
| `CSV` | `opts.Format() = mlpack::FileType::CSVASCII;` | [Numeric](#numeric-data) and [categorical](#mixed-categorical-data) data. | CSV or TSV format. If loading a sparse matrix and the CSV has three columns, the data is interpreted as a [coordinate list](https://arma.sourceforge.net/docs.html#save_load_mat). |
| `ArmaAscii` | `opts.Format() = mlpack::FileType::ArmaASCII;` | [Numeric](#numeric-data) data. | Space-separated values as saved by Armadillo with the [`arma_ascii`](https://arma.sourceforge.net/docs.html#save_load_mat) format. |
| `RawAscii` | `opts.Format() = mlpack::FileType::RawASCII;` | [Numeric](#numeric-data) data. | Space-separated values or tab-separated values (TSV) with no header. |
| `CoordAscii` | `opts.Format() = mlpack::FileType::CoordAscii;` | [Numeric](#numeric-data) data where `X` is a sparse matrix (e.g. `arma::sp_mat`). | Coordinate list format for sparse data (see [`coord_ascii`](https://arma.sourceforge.net/docs.html#save_load_mat)). |
| `ARFF` | `opts.Format() = mlpack::FileType::ARFFAscii;` | [Categorical](#mixed-categorical-data) data. | ARFF filetype. Used specifically to load mixed categorical dataset. See [ARFF documentation](https://ml.cms.waikato.ac.nz/weka/arff.html). *Only for loading.* |
|---------------------------|-----------------------------|---------------------------|-------------------|
| _Metadata._ | | | |
| _(n/a)_ | `opts.Headers()` | [Numeric](#numeric-data) and [categorical](#mixed-categorical-data) data. | Returns a `std::vector<std::string>` with headers detected after loading a CSV. |
| _(n/a)_ | `opts.DatasetInfo()` | [Categorical](#mixed-categorical-data) data. | Returns a [`DatasetInfo`](#datasetinfo) with dimension information after loading, or that will be used for dimension information during saving. |
|---------------------------|-----------------------------|---------------------------|-------------------|
***Notes:***
- When `opts.HasHeaders()` is `true` while loading, the parsed headers from the CSV
file are stored into the `opts.Headers()` member, which has type
`std::vector<std::string>`. In order to access the headers after loading, an
instantiated `TextOptions` must be passed to [`Load()`](#load); if
`HasHeaders` is passed as a standalone option, the parsed headers will not be
accessible after loading.
- When `opts.Categorical()` is `true` while loading with the CSV format, any
fields where a value cannot be interpreted as numeric will be
automatically converted to a categorical dimension with values between `0`
and the number of unique values in the field/dimension. See
[categorical data](#mixed-categorical-data) for more information on this
representation.
- When `opts.Categorical()` is `true` while loading, a
[`DatasetInfo`](#datasetinfo) option is populated with information
about each of the dimensions in the dataset and stored in
`opts.DatasetInfo()`. In order to access this after loading, an instantiated
`TextOptions` must be passed to [`Load()`](#load); if `Categorical`
is passed as a standalone option, the `DatasetInfo` object will not be
accessible after loading.
- When `opts.Categorical()` is `true` while saving, the values in
`opts.DatasetInfo()` (which has type [`DatasetInfo`](#datasetinfo))
will be used to map any categorical dimensions back to their original values.
If `Categorical` was passed as a standalone option, then no
`DatasetInfo` can be set before saving, and all dimensions of the data
will be saved as numeric data.
### `ImageOptions`
The `ImageOptions` class represents options specific to [images](#image-data).
`ImageOptions` is a child class of [`DataOptions`](#dataoptions) and thus any
[standalone operators or member functions from `DataOptions`](#dataoptions-standalone-operators-and-members)
(e.g. `Fatal`, `NoFatal`, and `AutoDetect`) can also be used with
`ImageOptions`.
#### `ImageOptions` standalone operators and members
The options below can be used as standalone operators to the
[`Load()`](#load) and [`Save()`](#save) functions, or as
calls to set members of an instantiated `MatrixOptions` object.
If an option is given that does not match the type of data being loaded or
saved, if [`Fatal()`](#dataoptions-standalone-operators-and-members) is set,
then an exception will be thrown; otherwise, a warning will be printed if
[`MLPACK_PRINT_WARN`](compile.md#configuring-mlpack-with-compile-time-definitions)
is set.
| ***Standalone operator*** | ***Member function*** | ***Available for:*** | ***Description*** |
|---------------------------|---------------------------------------|----------------------------|-------------------|
| [_Formats._](#formats) | | | |
| `Image` | `opts.Format() = mlpack::FileType::ImageType;` | [Image data](#image-data). | Load in the image format detected by the header of the file; save in the image format specified by the filename's extension. |
| `PNG` | `opts.Format() = mlpack::FileType::PNG;` | [Image data](#image-data). | Load/save as a PNG image. |
| `JPG` | `opts.Format() = mlpack::FileType::JPG;` | [Image data](#image-data). | Load/save as a JPEG image. |
| `TGA` | `opts.Format() = mlpack::FileType::TGA;` | [Image data](#image-data). | Load/save as a TGA image. |
| `BMP` | `opts.Format() = mlpack::FileType::BMP;` | [Image data](#image-data). | Load/save as a BMP image. |
| `PSD` | `opts.Format() = mlpack::FileType::PSD;` | [Image data](#image-data). | Load/save as a PSD (Photoshop) image. *Only for loading.* |
| `GIF` | `opts.Format() = mlpack::FileType::GIF;` | [Image data](#image-data). | Load/save as a GIF image. *Only for loading.* |
| `PIC` | `opts.Format() = mlpack::FileType::PIC;` | [Image data](#image-data). | Load/save as a PIC (PICtor) image. *Only for loading.* |
| `PNM` | `opts.Format() = mlpack::FileType::PNM;` | [Image data](#image-data). | Load/save as a PNM (Portable Anymap) image. *Only for loading.* |
|---------------------------|---------------------------------------|----------------------------|-------------------|
| _Save behavior._ | | | |
| _(n/a)_ | `opts.Quality()` | [Image data](#image-data) with JPEG format. | Desired JPEG quality level for saving (a `size_t` in the range from 0 to 100). |
|---------------------------|---------------------------------------|----------------------------|-------------------|
| _Metadata._ | | | |
| _(n/a)_ | `opts.Height()` | [Image data](#image-data) | Returns a `size_t` representing the height in pixels of the loaded image(s), or the desired height in pixels for saving. |
| _(n/a)_ | `opts.Width()` | [Image data](#image-data) | Returns a `size_t` representing the height in pixels of the loaded image(s), or the desired height in pixels for saving. |
| _(n/a)_ | `opts.Channels()` | [Image data](#image-data) | Returns a `size_t` representing the height in pixels of the loaded image(s), or the desired height in pixels for saving. |
|---------------------------|---------------------------------------|----------------------------|-------------------|
***Notes:***
* After a call to [`Load()`](#load), if an instantiated
`ImageOptions` was passed, the `opts.Height()`, `opts.Width()`, and
`opts.Channels()` members will be set with the values found during loading.
* Before calling [`Load()`](#load), the value of `opts.Channels()`
can be set to the desired number of channels (1/3/4) to force loading with
that many color channels.
* The `opts.Quality()` option is only relevant when calling
[`Save()`](#save) when using the `JPG` format.
### `ModelOptions`
The `ModelOptions` class represents options specific to
[mlpack models and objects](#mlpack-models-and-objects). `ModelOptions` is a
child class of [`DataOptions`](#dataoptions) and thus any
[standalone operators or member functions from `DataOptions`](#dataoptions-standalone-operators-and-members)
(e.g. `Fatal`, `NoFatal`, and `AutoDetect`) can also be used with
`ImageOptions`.
#### `ModelOptions` standalone operators and members
The options below can be used as standalone operators to the
[`Load()`](#load) and [`Save()`](#save) functions, or as
calls to set members of an instantiated `MatrixOptions` object.
If an option is given that does not match the type of data being loaded or
saved, if [`Fatal()`](#dataoptions-standalone-operators-and-members) is set,
then an exception will be thrown; otherwise, a warning will be printed if
[`MLPACK_PRINT_WARN`](compile.md#configuring-mlpack-with-compile-time-definitions)
is set.
| ***Standalone operator*** | ***Member function*** | ***Available for:*** | ***Description*** |
|---------------------------|---------------------------------------|---------------------------|-------------------|
| [_Formats._](#formats) | | | |
| `BIN` | `opts.Format() = mlpack::FileType::BIN;` | [mlpack models and objects](#mlpack-models-and-objects) | Load/save the object using an efficient packed binary format. |
| `JSON` | `opts.Format() = mlpack::FileType::JSON;` | [mlpack models and objects](#mlpack-models-and-objects) | Load/save the object using human- and machine-readable JSON. |
| `XML` | `opts.Format() = mlpack::FileType::XML;` | [mlpack models and objects](#mlpack-models-and-objects) | Load/save the object using XML (warning: may be very large). |
|---------------------------|---------------------------------------|---------------------------|-------------------|
***Notes:***
- `FileType::BIN` (`.bin`) is recommended for the sake of size; objects in
binary format may be an order of magnitude or more smaller than JSON!
- `FileType::JSON` (`.json`) and `FileType::XML` (`.xml`) produce human-readable
files, but they may be quite large.
## Formats
The [`Load()`](#load) and [`Save()`](#save) functions
support numerous different formats for loading and saving. Not all formats are
relevant for all types of data. The table below lists standalone options that
can be used to specify the format, as well as member functions for a
[`DataOptions`](#dataoptions) object.
When `AutoDetect` (the default) is specified as the format, the actual file
format is auto-detected using the filename's extension and (if loading)
inspecting the file contents. Accepted filename extensions for each type are
given in the table.
| ***Standalone operator*** | ***Member function*** | ***Filename extensions*** | ***Available for:*** | ***Description*** |
|---------------------------|-----------------------------------------|---------------------------|---------------------------|-------------------|
| `AutoDetect` _(default)_ | `opts.Format() = FileType::AutoDetect` | _(n/a)_ | All [data types](#types). | The format of the file is autodetected as one of the formats below. |
|---------------------------|-----------------------------------------|---------------------------|---------------------------|-------------------|
| `CSV` | `opts.Format() = FileType::CSVASCII;` | `.csv`, `.tsv` | [Numeric](#numeric-data) and [categorical](#mixed-categorical-data) data | CSV or TSV format. If loading a sparse matrix and the CSV has three columns, the data is interpreted as a [coordinate list](https://arma.sourceforge.net/docs.html#save_load_mat). |
| `ArmaAscii` | `opts.Format() = FileType::ArmaASCII;` | `.txt`, `.csv` | [Numeric](#numeric-data) data | Space-separated values as saved by Armadillo with the [`arma_ascii`](https://arma.sourceforge.net/docs.html#save_load_mat) format. |
| `RawAscii` | `opts.Format() = FileType::RawASCII;` | `.txt` | [Numeric](#numeric-data) data | Space-separated values or tab-separated values (TSV) with no header. |
| `CoordAscii` | `opts.Format() = FileType::CoordAscii;` | `.txt` (if `X` is sparse) | [Numeric](#numeric-data) data where `X` is a sparse matrix (e.g. `arma::sp_mat`). | Coordinate list format for sparse data (see [`coord_ascii`](https://arma.sourceforge.net/docs.html#save_load_mat)). |
| `ARFF` | `opts.Format() = FileType::ARFFAscii;` | `.arff` | [Categorical](#mixed-categorical-data) data | ARFF filetype. Used specifically to load mixed categorical dataset. See [ARFF documentation](https://ml.cms.waikato.ac.nz/weka/arff.html). *Only for loading.* |
| `PGM` | `opts.Format() = FileType::PGMBinary;` | `.pgm` | [Numeric](#numeric-data) data | Load/save in the PGM image format; data should have values in the range `[0, 255]`. The size of the image will be the same as the size of the matrix (after any transpose is applied). |
| `PPM` | `opts.Format() = FileType::PPMBinary;` | `.ppm` | [Numeric](#numeric-data) data | Load/save in the PPM image format; data should have values in the range `[0, 255]`. The size of the image will be the same as the size of the matrix (after any transpose is applied). |
| `HDF5` | `opts.Format() = FileType::HDF5Binary;` | `.h5`, `.hdf5`, `.hdf`, `.he5` | [Numeric](#numeric-data) data | Load/save in the [HDF5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format) binary format; only available if Armadillo is configured with [HDF5 support](https://arma.sourceforge.net/docs.html#config_hpp). |
| `ArmaBin` | `opts.Format() = FileType::ArmaBinary;` | `.bin` (if `X` is an Armadillo type) | [Numeric](#numeric-data) data | Load/save in the space-efficient [`arma_binary`](https://arma.sourceforge.net/docs.html#save_load_mat) format (packed binary data). |
| `RawBinary` | `opts.Format() = FileType::RawBinary;` | | [Numeric](#numeric-data) data | Load/save as packed binary data with no header and no size information; data will be loaded as a single column vector _(not recommended)_. |
|---------------------------|-----------------------------------------|---------------------------|---------------------------|-------------------|
| `Image` | `opts.Format() = FileType::ImageType` | _(n/a)_ | [Image data](#image-data) | Load in the image format detected by the header of the file; save in the image format specified by the filename's extension. |
| `PNG` | `opts.Format() = FileType::PNG` | `.png` | [Image data](#image-data) | Load/save as a PNG image. |
| `JPG` | `opts.Format() = FileType::JPG` | `.jpg`, `.jpeg` | [Image data](#image-data) | Load/save as a JPEG image. |
| `TGA` | `opts.Format() = FileType::TGA` | `.tga` | [Image data](#image-data) | Load/save as a TGA image. |
| `BMP` | `opts.Format() = FileType::BMP` | `.bmp` | [Image data](#image-data) | Load/save as a BMP image. |
| `PSD` | `opts.Format() = FileType::PSD` | `.psd` | [Image data](#image-data) | Load/save as a PSD (Photoshop) image. *Only for loading.* |
| `GIF` | `opts.Format() = FileType::GIF` | `.gif` | [Image data](#image-data) | Load/save as a GIF image. *Only for loading.* |
| `PIC` | `opts.Format() = FileType::PIC` | `.pic` | [Image data](#image-data) | Load/save as a PIC (PICtor) image. *Only for loading.* |
| `PNM` | `opts.Format() = FileType::PNM` | `.pnm` | [Image data](#image-data) | Load/save as a PNM (Portable Anymap) image. *Only for loading.* |
|---------------------------|-----------------------------------------|---------------------------|---------------------------|-------------------|
| `BIN` | `opts.Format() = FileType::BIN` | `.bin` | [mlpack models and objects](#mlpack-models-and-objects) | Load/save the object using an efficient packed binary format. |
| `JSON` | `opts.Format() = FileType::JSON` | `.json` | [mlpack models and objects](#mlpack-models-and-objects) | Load/save the object using human- and machine-readable JSON. |
| `XML` | `opts.Format() = FileType::XML` | `.xml` | [mlpack models and objects](#mlpack-models-and-objects) | Load/save the object using XML (warning: may be very large). |
|---------------------------|-----------------------------------------|---------------------------|---------------------------|-------------------|
## Numeric data
Standard numeric data is represented in mlpack as a
[column-major matrix](matrices.md) and a variety of formats for loading and
saving are supported.
* When calling [`Load()`](#load) and [`Save()`](#save), `X`
should have type [`arma::mat`](matrices.md) or any other supported matrix
type (e.g. `arma::fmat`, `arma::umat`, and so forth).
* When calling [`Load()`](#load) with a vector `filenames`, all files
must have the same number of dimensions and header names (if using
CSVs with headers). All files will be concatenated into the output matrix `X`.
* When loading and saving with an instantiated [`DataOptions`](#dataoptions)
object, the [`MatrixOptions`](#matrixoptions) and
[`TextOptions`](#textoptions) subtypes can be used.
* Supported formats are CSV, TSV, text, binary, ARFF, and others;
see [the table of format options](#formats).
### Numeric data load/save examples
Load two datasets, print information about them, modify them, and save them back
to disk.
```c++
// Throw an exception if loading fails with the Fatal option.
// See https://datasets.mlpack.org/satellite.train.csv.
arma::mat dataset;
mlpack::Load("satellite.train.csv", dataset, mlpack::Fatal);
// See https://datasets.mlpack.org/satellite.train.labels.csv.
arma::Row<size_t> labels;
mlpack::Load("satellite.train.labels.csv", labels, mlpack::Fatal);
// Print information about the data.
std::cout << "The data in 'satellite.train.csv' has: " << std::endl;
std::cout << " - " << dataset.n_cols << " points." << std::endl;
std::cout << " - " << dataset.n_rows << " dimensions." << std::endl;
std::cout << "The labels in 'satellite.train.labels.csv' have: " << std::endl;
std::cout << " - " << labels.n_elem << " labels." << std::endl;
std::cout << " - A maximum label of " << labels.max() << "." << std::endl;
std::cout << " - A minimum label of " << labels.min() << "." << std::endl;
// Modify and save the data. Add 2 to the data and drop the last column.
dataset += 2;
dataset.shed_col(dataset.n_cols - 1);
labels.shed_col(labels.n_cols - 1);
// Don't throw an exception if saving fails. Technically there is no need to
// explicitly specify NoFatal---it is the default.
mlpack::Save("satellite.train.mod.csv", dataset, mlpack::NoFatal);
mlpack::Save("satellite.train.labels.mod.csv", labels, mlpack::NoFatal);
```
---
Load a dataset stored in a binary format and save it as a CSV.
```c++
// See https://datasets.mlpack.org/iris.bin.
arma::mat dataset;
mlpack::Load("iris.bin",
dataset, mlpack::Fatal + mlpack::ArmaBin);
// Save it back to disk as a CSV.
mlpack::Save("iris.converted.csv", dataset, mlpack::CSV);
```
---
Load a dataset that has a semicolon as a separator instead of a comma.
```c++
// First write the semicolon file to disk.
std::fstream f;
f.open("semicolon.csv", std::fstream::out);
f << "1; 2; 3; 4" << std::endl;
f << "5; 6; 7; 8" << std::endl;
f << "9; 10; 11; 12" << std::endl;
// Now create a TextOptions and specify that the separator is a semicolon.
// Since all of the elements are integers, we load into an `arma::umat` (a
// matrix that holds unsigned integers) instead of an `arma::mat`.
arma::umat dataset;
mlpack::TextOptions opts;
opts.Semicolon() = true;
// Note that instead of `opts` we could just specify `Semicolon` instead!
mlpack::Load("semicolon.csv", dataset, opts);
std::cout << "The data in 'semicolon.csv' has: " << std::endl;
std::cout << " - " << dataset.n_cols << " points." << std::endl;
std::cout << " - " << dataset.n_rows << " dimensions." << std::endl;
```
---
Load a dataset with missing elements, and replace the missing elements with NaN
using the [`MissingToNan`](#textoptions-standalone-operators-and-members) option.
```c++
// First write a CSV file to disk with some missing values.
std::fstream f;
f.open("missing_to_nan.csv", std::fstream::out);
// Missing 2 value in the first row.
f << "1, , 3, 4" << std::endl;
f << "5, 6, 7, 8" << std::endl;
f << "9, 10, 11, 12" << std::endl;
arma::mat dataset;
mlpack::TextOptions opts;
opts.MissingToNan() = true;
// Note that instead of `opts` we could just specify `MissingToNan` instead!
mlpack::Load("missing_to_nan.csv", dataset, opts);
// Print information about the data.
std::cout << "Loaded data:" << std::endl;
std::cout << dataset;
```
---
Load a CSV into a 32-bit floating point matrix and print the headers (column names).
```c++
// See https://datasets.mlpack.org/Admission_Predict.csv.
arma::fmat dataset;
// We have to make a TextOptions object so that we can recover the headers.
mlpack::TextOptions opts;
opts.Format() = mlpack::FileType::CSVASCII;
opts.HasHeaders() = true;
mlpack::Load("Admission_Predict.csv", dataset, opts);
std::cout << "Found " << opts.Headers().size() << " columns." << std::endl;
for (size_t i = 0; i < opts.Headers().size(); ++i)
{
std::cout << " - Column " << i << ": '" << opts.Headers()[i] << "'."
<< std::endl;
}
```
---
Load a CSV containing a coordinate list into a sparse matrix and print the
overall size of the loaded matrix.
```c++
// See https://datasets.mlpack.org/movielens-100k.csv.
arma::sp_mat dataset;
// A 3-column CSV into a sparse matrix is interpreted as a coordinate list.
mlpack::Load("movielens-100k.csv", dataset, mlpack::CSV);
std::cout << "Loaded data from movielens-100k.csv; matrix size: "
<< dataset.n_rows << " x " << dataset.n_cols << "." << std::endl;
```
---
## Mixed categorical data
mlpack supports mixed categorical data, e.g., data where some dimensions take
only categorical values (e.g. `0`, `1`, `2`, etc.). When using mlpack, string
data and other non-numerical data must be mapped to categorical values and
represented as part of an `arma::mat` or other matrix type. Category metadata
is stored in an auxiliary [`DatasetInfo`](#datasetinfo) object.
* When calling [`Load()`](#load) and [`Save()`](#save), `X`
should have type [`arma::mat`](matrices.md) or any other supported matrix
type (e.g. `arma::fmat`, `arma::umat`, and so forth).
* To load categorical data, either the
[`Categorical`](#textoptions-standalone-operators-and-members) standalone
option must be passed, or an instantiated [`TextOptions`](#textoptions)
`opts` must be passed with `opts.Categorical() = true`.
* Supported formats are CSV, TSV, text, and ARFF; see
[the table of format options](#formats).
* When loading, each unique non-numeric value is mapped (sequentially) to
positive integers. Any columns with non-numeric values are marked as
categorical.
* To access mappings from each categorical value to its original value after
load, as well as which dimensions are categorical, an instantiated
[`TextOptions`](#textoptions) `opts` must be passed to
[`Load()`](#load); then, the associated
[`DatasetInfo`](#datasetinfo) is accessible via
[`opts.DatasetInfo()`](#textoptions-standalone-operators-and-members).
* When saving, reverse mappings from positive integers to the original unique
non-numeric values in `opts.DatasetInfo()` are applied. To set these
mappings, as well as which dimensions are categorical, an instantiated
[`TextOptions`](#textoptions) `opts` must be passed to
[`Save()`](#save) with
[`opts.DatasetInfo()`](#textoptions-standalone-operators-and-members) set
accordingly.
Categorical data is supported by a number of mlpack algorithms, including
[`DecisionTree`](methods/decision_tree.md),
[`HoeffdingTree`](methods/hoeffding_tree.md), and
[`RandomForest`](methods/random_forest.md).
### `DatasetInfo`
mlpack represents categorical data via the use of the auxiliary
`DatasetInfo` object, which stores information about which dimensions are
numeric or categorical and allows conversion from the original category values
to the numeric values used to represent those categories.
For loading and saving categorical data, an instantiated
[`TextOptions`](#textoptions) must be passed to [`Load()`](#load) or
[`Save()`](#save); this object contains a `DatasetInfo` object,
accessible via the
[`.DatasetInfo()`](#textoptions-standalone-operators-and-members) method; e.g.,
`opts.DatasetInfo()`.
#### Accessing and setting properties
This documentation uses `info` as the name of the `DatasetInfo` object,
but if a categorical dataset has been loaded with [`Load()`](#load),
it is instead suggested to use `opts.DatasetInfo()` in place of `info`.
- `info = DatasetInfo(dimensionality)`
* Create a `DatasetInfo` object with the given dimensionality
* All dimensions are assumed to be numeric (not categorical).
- `info.Type(d)`
* Get the type (categorical or numeric) of dimension `d`.
* Returns a `Datatype`, either `Datatype::numeric` or
`Datatype::categorical`.
* Calling `info.Type(d) = t` will set a dimension to type `t`, but this
should only be done before `info` is used with `Load()` or
`Save()`.
- `info.NumMappings(d)`
* Get the number of categories in dimension `d` as a `size_t`.
* Returns `0` if dimension `d` is numeric.
- `info.Dimensionality()`
* Return the dimensionality of the object as a `size_t`.
---
#### Map to and from numeric values
- `info.MapString<double>(value, d)`
* Given `value` (a `std::string`), return the `double` representing the
categorical mapping (an integer value) of `value` in dimension `d`.
* If a mapping for `value` does not exist in dimension `d`, a new mapping is
created, and `info.NumMappings(d)` is increased by one.
* If dimension `d` is numeric and `value` cannot be parsed as a numeric
value, then dimension `d` is changed to categorical and a new mapping is
returned.
- `info.UnmapString(mappedValue, d)`
* Given `mappedValue` (a `size_t`), return the `std::string` containing the
original category that mapped to the value `mappedValue` in dimension `d`.
* If dimension `d` is not categorical, a `std::invalid_argument` is thrown.
---
### Categorical data load/save examples
Load and manipulate an ARFF file.
```c++
// Load a categorical dataset.
arma::mat dataset;
// Define a TextOptions to load categorical data.
mlpack::TextOptions opts;
opts.Fatal() = true;
opts.Categorical() = true;
// See https://datasets.mlpack.org/covertype.train.arff.
mlpack::Load("covertype.train.arff", dataset, opts);
// Print information about the data.
std::cout << "The data in 'covertype.train.arff' has: " << std::endl;
std::cout << " - " << dataset.n_cols << " points." << std::endl;
std::cout << " - " << opts.DatasetInfo().Dimensionality() << " dimensions."
<< std::endl;
arma::Row<size_t> labels;
// We need to have a second options, since we are loading two different
// data types and extension.
mlpack::TextOptions labelOpts;
labelOpts.Fatal() = true;
// See https://datasets.mlpack.org/covertype.train.labels.csv.
mlpack::Load("covertype.train.labels.csv", labels, labelOpts);
// Print information about each dimension.
for (size_t d = 0; d < opts.DatasetInfo().Dimensionality(); ++d)
{
if (opts.DatasetInfo().Type(d) == mlpack::Datatype::categorical)
{
std::cout << " - Dimension " << d << " is categorical with "
<< opts.DatasetInfo().NumMappings(d) << " categories." << std::endl;
}
else
{
std::cout << " - Dimension " << d << " is numeric." << std::endl;
}
}
// Modify the 5th point. Increment any numeric values, and set any categorical
// values to the string "hooray!".
for (size_t d = 0; d < opts.DatasetInfo().Dimensionality(); ++d)
{
if (opts.DatasetInfo().Type(d) == mlpack::Datatype::categorical)
{
// This will create a new mapping if the string "hooray!" does not already
// exist as a category for dimension d..
dataset(d, 4) = opts.DatasetInfo().MapString<double>("hooray!", d);
}
else
{
dataset(d, 4) += 1.0;
}
}
```
---
Manually create a [`DatasetInfo`](#datasetinfo) object and use it to
save a categorical dataset.
```c++
// This will manually create the following data matrix (shown as it would appear
// in a CSV):
//
// 1, TRUE, "good", 7.0, 4
// 2, FALSE, "good", 5.6, 3
// 3, FALSE, "bad", 6.1, 4
// 4, TRUE, "bad", 6.1, 1
// 5, TRUE, "unknown", 6.3, 0
// 6, FALSE, "unknown", 5.1, 2
//
// Although the last dimension is numeric, we will take it as a categorical
// dimension.
arma::mat dataset(5, 6); // 6 data points in 5 dimensions.
mlpack::DatasetInfo info(5);
// Set types of dimensions. By default they are numeric so we only set
// categorical dimensions.
info.Type(1) = mlpack::Datatype::categorical;
info.Type(2) = mlpack::Datatype::categorical;
info.Type(4) = mlpack::Datatype::categorical;
// The first dimension is numeric.
dataset(0, 0) = 1;
dataset(0, 1) = 2;
dataset(0, 2) = 3;
dataset(0, 3) = 4;
dataset(0, 4) = 5;
dataset(0, 5) = 6;
// The second dimension is categorical.
dataset(1, 0) = info.MapString<double>("TRUE", 1);
dataset(1, 1) = info.MapString<double>("FALSE", 1);
dataset(1, 2) = info.MapString<double>("FALSE", 1);
dataset(1, 3) = info.MapString<double>("TRUE", 1);
dataset(1, 4) = info.MapString<double>("TRUE", 1);
dataset(1, 5) = info.MapString<double>("FALSE", 1);
// The third dimension is categorical.
dataset(2, 0) = info.MapString<double>("good", 2);
dataset(2, 1) = info.MapString<double>("good", 2);
dataset(2, 2) = info.MapString<double>("bad", 2);
dataset(2, 3) = info.MapString<double>("bad", 2);
dataset(2, 4) = info.MapString<double>("unknown", 2);
dataset(2, 5) = info.MapString<double>("unknown", 2);
// The fourth dimension is numeric.
dataset(3, 0) = 7.0;
dataset(3, 1) = 5.6;
dataset(3, 2) = 6.1;
dataset(3, 3) = 6.1;
dataset(3, 4) = 6.3;
dataset(3, 5) = 5.1;
// The fifth dimension is categorical. Note that `info` will choose to assign
// category values in the order they are seen, even if the category can be
// parsed as a number. So, here, the value '4' will be assigned category '0',
// since it is seen first.
dataset(4, 0) = info.MapString<double>("4", 4);
dataset(4, 1) = info.MapString<double>("3", 4);
dataset(4, 2) = info.MapString<double>("4", 4);
dataset(4, 3) = info.MapString<double>("1", 4);
dataset(4, 4) = info.MapString<double>("0", 4);
dataset(4, 5) = info.MapString<double>("2", 4);
// Print the dataset with mapped categories.
dataset.print("Dataset with mapped categories");
// Print the mappings for the third dimension.
std::cout << "Mappings for dimension 3: " << std::endl;
for (size_t i = 0; i < info.NumMappings(2); ++i)
{
std::cout << " - \"" << info.UnmapString(i, 2) << "\" maps to " << i << "."
<< std::endl;
}
// Now `dataset` is ready for use with an mlpack algorithm that supports
// categorical data. We will save it to `categorical-data.csv`.
mlpack::TextOptions opts;
opts.Categorical() = true;
opts.DatasetInfo() = std::move(info);
mlpack::Save("categorical-data.csv", dataset, opts);
```
---
## Image data
mlpack load, saves, and modifies image data using the
[STB library](https://github.com/nothings/stb/). STB is a
header-only library that is bundled with mlpack; but, it is also possible to use
a version of STB
[available on the system](compile.md#configuring-mlpack-with-compile-time-definitions).
When loading images, each image is represented as a flattened single column
vector in a data matrix; each row of the resulting vector will correspond to a
single pixel value (between 0 and 255) in a single channel. If an
[`ImageOptions`](#imageoptions) was passed to [`Load()`](#load), it
will be populated with the metadata of the image.
Images are flattened along rows, with channel values interleaved, starting from
the top left. Thus, the value of the pixel at position `(x, y)` in channel `c`
will be contained in element/row `y * (channels) + x * (width * channels) + c`
of the flattened vector.
* Supported image loading formats are JPEG, PNG, TGA, BMP, PSD, GIF, PIC, and
PNM; see [the table of formats](#formats) for more details.
* Multiple images can be loaded into the columns of a single matrix using the
overload of [`Save`](#save) that takes a vector of `filenames`.
* Supported image saving formats are JPEG, PNG, TGA, and BMP.
* Accessing the metadata of an image after loading can be done with
`opts.Width()`, `opts.Height()`, and `opts.Channels()`. See the
[`ImageOptions` member documentation](#imageoptions-standalone-operators-and-members)
for more details.
* mlpack offers several utility functions for image modification and preprocessing, documented in
[Image preprocessing](core/images.md).
---
When working with images, the following overload for
[`Save()`](#save) is also available:
* `Save(filenames, X, opts)`
- Save each column in `X` (an `arma::mat` or other
[matrix type](matrices.md)) as a separate image.
- `filenames` is a `std::vector<std::string>` representing all the images that
should be saved.
- `opts` is an [`ImageOptions`](#imageoptions) that contains image metadata.
- `opts.Width()`, `opts.Height()`, `opts.Channels()`, and `opts.Quality()`
should be set to the desired parameters before calling; see
[`ImageOptions` members](#imageoptions-standalone-operators-and-members)
for more details.
- The `i`th column of `X` will be saved to the `i`th filename in `filenames`.
- If all images are saved successfully, `true` will be returned.
<!-- TODO: is this always true? for all types? -->
***Note:*** when loading and saving images, if the element type of `X` is not
`unsigned char` (e.g. if `image` is not `arma::Mat<unsigned char>`, when
loading, the data will be temporarily loaded as `unsigned char`s and then
converted, and when saving, `X` will be converted to `unsigned char`s before
saving.
### Image data load/save examples
Load a single image, but don't store the metadata (so, e.g., height, width, and
number of channels are unavailable after loading!).
```
// See https://www.mlpack.org/static/img/numfocus-logo.png.
arma::mat image;
mlpack::Load("numfocus-logo.png", image, PNG);
// If we wanted image metadata, we would need to pass an ImageOptions. See the
// next example.
//
// We could also specify `Image` instead of `PNG` if we did not care which image
// format was used, but just that *some* image format was used.
std::cout << "The image in 'numfocus-logo.png' has " << image.n_rows
<< " pixels." << std::endl;
```
---
Load and save a single image:
```c++
// See https://www.mlpack.org/static/img/numfocus-logo.png.
mlpack::ImageOptions opts;
opts.Fatal() = true;
arma::mat matrix;
mlpack::Load("numfocus-logo.png", matrix, opts /* format autodetected */);
// `matrix` should now contain one column.
// Print information about the image.
std::cout << "Information about the image in 'numfocus-logo.png': "
<< std::endl;
std::cout << " - " << opts.Width() << " pixels in width." << std::endl;
std::cout << " - " << opts.Height() << " pixels in height." << std::endl;
std::cout << " - " << opts.Channels() << " color channels." << std::endl;
std::cout << "Value at pixel (x=3, y=4) in the first channel: ";
const size_t index = (4 * opts.Width() * opts.Channels()) +
(3 * opts.Channels());
std::cout << matrix[index] << "." << std::endl;
// Increment each pixel value, but make sure they are still within the bounds.
matrix += 1;
matrix.clamp(0, 255);
mlpack::Save("numfocus-logo-mod.png", matrix, opts);
```
---
Load and save multiple images:
```c++
// Load some favicons from websites associated with mlpack.
std::vector<std::string> images;
// See the following files:
// - https://datasets.mlpack.org/images/mlpack-favicon.png
// - https://datasets.mlpack.org/images/ensmallen-favicon.png
// - https://datasets.mlpack.org/images/armadillo-favicon.png
// - https://datasets.mlpack.org/images/bandicoot-favicon.png
images.push_back("mlpack-favicon.png");
images.push_back("ensmallen-favicon.png");
images.push_back("armadillo-favicon.png");
images.push_back("bandicoot-favicon.png");
mlpack::ImageOptions opts;
opts.Channels() = 1; // Force loading in grayscale.
opts.Fatal() = true;
arma::mat matrix;
mlpack::Load(images, matrix, opts);
// Print information about what we loaded.
std::cout << "Loaded " << matrix.n_cols << " images. Images are of size "
<< opts.Width() << " x " << opts.Height() << " with " << opts.Channels()
<< " color channel." << std::endl;
// Invert images.
matrix = (255.0 - matrix);
// Save as compressed JPEGs with low quality.
opts.Quality() = 75;
std::vector<std::string> outImages;
outImages.push_back("mlpack-favicon-inv.jpeg");
outImages.push_back("ensmallen-favicon-inv.jpeg");
outImages.push_back("armadillo-favicon-inv.jpeg");
outImages.push_back("bandicoot-favicon-inv.jpeg");
mlpack::Save(outImages, matrix, opts);
```
## mlpack models and objects
Machine learning models and any mlpack object (i.e. anything in the `mlpack::`
namespace) can be saved with [`Save()`](#save) and loaded with
[`Load()`](#load). Serialization is performed using the
[cereal](https://uscilab.github.io/cereal/) serialization toolkit.
* When calling [`Load()`](#load) and [`Save()`](#save), `X`
should be the desired mlpack model or object type.
* When loading and saving with an instantiated [`DataOptions`](#dataoptions)
object, the [`ModelOptions`](#modeloptions) subtype can be used.
* Supported formats are binary, JSON, and XML; see
[the table of format options](#formats).
***Note:*** when loading an object that was saved in the binary format
([`BIN`](#modeloptions-standalone-operators-and-members)), the C++ type of the
object must be ***exactly the same*** (including template parameters) as the
type used to save the object. If not, undefined behavior will occur---most
likely a crash.
### mlpack models and objects load/save examples
Simple example: create a `math::Range` object, then save and load it.
```c++
mlpack::math::Range r(3.0, 6.0);
// How we can use DataOptions with loading / saving objects.
mlpack::DataOptions opts;
opts.Fatal() = true;
opts.Format() = mlpack::FileType::BIN;
// Save the Range to 'range.bin', using the name "range".
mlpack::Save("range.bin", r, opts);
// Load the range into a new object.
mlpack::math::Range r2;
mlpack::Load("range.bin", r2, mlpack::BIN + mlpack::Fatal);
std::cout << "Loaded range: [" << r2.Lo() << ", " << r2.Hi() << "]."
<< std::endl;
// Modify and save the range as JSON.
r2.Lo() = 4.0;
mlpack::Save("range.json", r2, mlpack::JSON + mlpack::Fatal);
// Now 'range.json' will contain the following:
//
// {
// "range": {
// "cereal_class_version": 0,
// "hi": 6.0,
// "lo": 4.0
// }
// }
```
---
Train a [`LinearRegression`](methods/linear_regression.md) model and save it to
disk, then reload it.
```c++
// See https://datasets.mlpack.org/admission_predict.csv.
arma::mat data;
mlpack::Load("admission_predict.csv", data, mlpack::NoFatal);
// See https://datasets.mlpack.org/admission_predict.responses.csv.
arma::rowvec responses;
mlpack::Load("admission_predict.responses.csv", responses, mlpack::Fatal);
// Train a linear regression model, fitting an intercept term and using an L2
// regularization parameter of 0.3.
mlpack::LinearRegression lr(data, responses, 0.3, true);
// Save the model using the binary format as a standalone parameter, throwing an
// exception on failure.
mlpack::Save("lr-model.bin", lr, mlpack::Fatal + mlpack::BIN);
std::cout << "Saved model to lr-model.bin." << std::endl;
// Now load the model back, using format autodetection on the filename
// extension.
mlpack::LinearRegression loadedModel;
if (!mlpack::Load("lr-model.bin", loadedModel))
{
std::cout << "Model not loaded successfully from 'lr-model.bin'!"
<< std::endl;
}
else
{
std::cout << "Model loaded successfully from 'lr-model.bin' with "
<< "intercept value of " << loadedModel.Parameters()[0] << "."
<< std::endl;
}
```
|