1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
|
## `KFN`: k-furthest-neighbor search
The `KFN` class implements k-furthest neighbor search, a core computational task
that is useful in many machine learning situations. Either exact or approximate
furthest neighbors can be computed. mlpack's `KFN` class uses
[trees](../core/trees.md), by default the [`KDTree`](../core/trees/kdtree.md),
to provide significantly accelerated computation; depending on input options, an
efficient dual-tree or single-tree algorithm is used.
<!-- An image showing a simple reference set and query set. -->
<div style="text-align: center">
<svg width="500" height="250" viewBox="0 0 500 250" fill="none" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<!-- Border. -->
<line x1="0" y1="0" x2="500" y2="0" stroke="black" />
<line x1="500" y1="0" x2="500" y2="250" stroke="black" />
<line x1="500" y1="250" x2="0" y2="250" stroke="black" />
<line x1="0" y1="250" x2="0" y2="0" stroke="black" />
<!-- Lines between points. -->
<line x1="360" y1="170" x2="15" y2="175" stroke="black" stroke-dasharray="2" />
<line x1="110" y1="135" x2="425" y2="215" stroke="black" stroke-dasharray="2" />
<!-- Five reference points. -->
<circle cx="100" cy="55" r="5" fill="#880000" />
<circle cx="70" cy="10" r="5" fill="#880000" />
<circle cx="425" cy="215" r="5" fill="#880000" />
<circle cx="15" cy="175" r="5" fill="#880000" />
<circle cx="200" cy="220" r="5" fill="#880000" />
<text x="115" y="55" text-anchor="middle" fill="black" font-style="italic">r₀</text>
<text x="85" y="10" text-anchor="middle" fill="black" font-style="italic">r₁</text>
<text x="440" y="220" text-anchor="middle" fill="black" font-style="italic">r₂</text>
<text x="30" y="190" text-anchor="middle" fill="black" font-style="italic">r₃</text>
<text x="215" y="225" text-anchor="middle" fill="black" font-style="italic">r₄</text>
<!-- Two query points. -->
<circle cx="360" cy="170" r="5" fill="#000088" />
<circle cx="110" cy="135" r="5" fill="#000088" />
<text x="375" y="175" text-anchor="middle" fill="black" font-style="italic">q₀</text>
<text x="125" y="130" text-anchor="middle" fill="black" font-style="italic">q₁</text>
</svg>
<p style="font-size: 85%">
The exact furthest neighbor of the query point <i>q₀</i> is <i>r₃</i>.
<br />
The exact furthest neighbor of the query point <i>q₁</i> is <i>r₂</i>.
<br />
Approximate search will not return exact neighbors, but results will be close;
<br />
e.g., <i>r₁</i> could be returned as the approximate furthest neighbor of
<i>q₀</i>.
</p>
</div>
Given a _reference set_ of points and a _query set_ of queries, the `KFN` class
will compute the furthest neighbors in the reference set of every point in the
query set. If no query set is given, then `KFN` will find the furthest
neighbors of every point in the reference set; this is also called the
_all-furthest-neighbors_ problem.
<!-- TODO: link to ApproxKFN and DrusillaSelect as alternatives for higher dimensions -->
The `KFN` class supports configurable behavior, with numerous runtime and
compile-time parameters, including the distance metric, type of data, search
strategy, and tree type.
#### Simple usage example:
```c++
// Compute the 5 exact furthest neighbors of every point of random numeric data.
// All data is uniform random: 10-dimensional data. Replace with a Load()
// call or similar for a real application.
arma::mat referenceSet(10, 1000, arma::fill::randu); // 1000 points.
mlpack::KFN kfn; // Step 1: create object.
kfn.Train(referenceSet); // Step 2: set the reference set.
arma::mat distances;
arma::Mat<size_t> neighbors;
kfn.Search(5, neighbors, distances); // Step 3: find 5 furthest neighbors of
// every point in `referenceSet`.
// Note: you can also call `kfn.Search(querySet, 5, neighbors, distances)` to
// find the furthest neighbors in `referenceSet` of a different set of points.
// Print some information about the results.
std::cout << "Found " << neighbors.n_rows << " neighbors for each of "
<< neighbors.n_cols << " points in the dataset." << std::endl;
```
<p style="text-align: center; font-size: 85%"><a href="#simple-examples">More examples...</a></p>
#### Quick links:
* [Constructors](#constructors): create `KFN` objects.
* [Search strategies](#search-strategies): details of search strategies
supported by `KFN`.
* [Setting the reference set (`Train()`)](#setting-the-reference-set-train):
set the dataset that will be searched for furthest neighbors.
* [Searching for neighbors](#searching-for-neighbors): call `Search()` to
compute furthest neighbors (exact or approximate).
* [Computing quality metrics](#computing-quality-metrics) to determine how
accurate the computed furthest neighbors are, if approximate search was used.
* [Other functionality](#other-functionality) for loading, saving, and
inspecting.
* [Examples](#simple-examples) of simple usage.
* [Template parameters](#advanced-functionality-template-parameters) for
configuring behavior, including distance metrics, tree types, and different
element types.
* [Advanced examples](#advanced-examples) that make use of custom template
parameters.
#### See also:
* [`KNN` (k-nearest-neighbors)](knn.md)
* [mlpack trees](../core/trees.md)
* [mlpack geometric algorithms](../modeling.md#geometric-algorithms)
* [Tree-Independent Dual-Tree Algorithms (pdf)](https://www.ratml.org/pub/pdf/2013tree.pdf)
### Constructors
* `kfn = KFN()`
* `kfn = KFN(strategy=DUAL_TREE, epsilon=0)`
- Construct a `KFN` object, optionally using the given `strategy` for search
and `epsilon` for maximum relative approximation level.
- This does not set the reference set to be searched!
[`Train()`](#setting-the-reference-set-train) must be called before calling
[`Search()`](#searching-for-neighbors).
* `kfn = KFN(referenceSet)`
* `kfn = KFN(referenceSet, strategy=DUAL_TREE, epsilon=0)`
- Construct a `KFN` object on the given set of reference points, using the
given `strategy` for search and `epsilon` for maximum relative
approximation level.
- This will build a [`KDTree`](../core/trees/kdtree.md) with default
parameters on `referenceSet`, if `strategy` is not `NAIVE`.
- If `referenceSet` is not needed elsewhere, pass with `std::move()` (e.g.
`std::move(referenceSet)`) to avoid copying `referenceSet`. The dataset
will still be accessible via [`ReferenceSet()`](#other-functionality), but
points may be in shuffled order.
* `kfn = KFN(referenceTree)`
* `kfn = KFN(referenceTree, strategy=DUAL_TREE, epsilon=0)`
- Construct a `KFN` object with a pre-built tree `referenceTree`, which
should be of type `KFN::Tree` (a convenience typedef of
[`KDTree`](../core/trees/kdtree.md) that uses
[`FurthestNeighborStat`](../core/trees/binary_space_tree.md#furthestneighborstat)
as its
[`StatisticType`](../core/trees/binary_space_tree.md#statistictype)).
- The search strategy will be set to `strategy` and maximum relative
approximation level will be set to `epsilon`.
- If `referenceTree` is not needed elsewhere, pass with `std::move()` (e.g.
`std::move(referenceTree)`) to avoid copying `referenceTree`. The tree
will still be accessible via [`ReferenceTree()`](#other-functionality).
***Note:*** if `std::move()` is not used to pass `referenceSet` or
`referenceTree`, those objects will be copied---which can be expensive! Be sure
to use `std::move()` if possible.
---
#### Constructor Parameters:
| **name** | **type** | **description** | **default** |
|----------|----------|-----------------|-------------|
| `referenceSet` | [`arma::mat`](../matrices.md) | [Column-major](../matrices.md#representing-data-in-mlpack) matrix containing dataset to search for furthest neighbors in. | _(N/A)_ |
| `referenceTree` | `KFN::Tree` (a [`KDTree`](../core/trees/kdtree.md)) | Pre-built kd-tree on reference data. | _(N/A)_ |
| `strategy` | `enum NeighborSearchStrategy` | The search strategy that will be used when `Search()` is called. Must be one of `NAIVE`, `SINGLE_TREE`, `DUAL_TREE`, or `GREEDY_SINGLE_TREE`. [More details.](#search-strategies) | `DUAL_TREE` |
| `epsilon` | `double` | Allowed relative approximation error. `0` means exact search. Must be non-negative. | `0.0` |
***Notes:***
- By default, exact furthest neighbors are found. When `strategy` is
`SINGLE_TREE` or `DUAL_TREE`, set `epsilon` to a positive value to enable
approximation (higher `epsilon` means more approximation is allowed). See
more in [Search strategies](#search-strategies), below.
- If constructing a tree manually, the `KFN::Tree` type can be used (e.g.,
`tree = KFN::Tree(referenceData)`). `KFN::Tree` is a convenience typedef of
either [`KDTree`](../core/trees/kdtree.md) or the chosen `TreeType` if
[custom template parameters](#advanced-functionality-template-parameters) are
being used.
### Search strategies
The `KFN` class can search for furthest neighbors using one of the following
four strategies. These can be specified in the constructor as the `strategy`
parameter, or by calling `kfn.SearchStrategy() = strategy`.
* `DUAL_TREE` _(default)_: two trees will be used at search time with a
[dual-tree algorithm (pdf)](https://ratml.org/pub/pdf/2013tree.pdf) to
allow the maximum amount of pruning.
- This is generally the fastest strategy for exact search in low-to-medium
dimensions.
- Backtracking search is performed to find either exact furthest neighbors,
or approximate furthest neighbors if `kfn.Epsilon() > 0`.
* `SINGLE_TREE`: a tree built on the reference points will be traversed once
for each point whose furthest neighbors are being searched for.
- Single-tree search generally empirically
[scales logarithmically](https://en.wikipedia.org/wiki/Nearest_neighbor_search#Space_partitioning).
- Backtracking search is performed to find either exact furthest neighbors,
or approximate furthest neighbors if `kfn.Epsilon() > 0`.
* `GREEDY_SINGLE_TREE`: for each point whose furthest neighbors are being
searched for, a tree built on the reference points will be traversed in a
greedy manner---recursing directly and only to the furthest node in the tree
to find furthest neighbor candidates.
- The approximation level with this strategy cannot be controlled; the
setting of `kfn.Epsilon()` is ignored.
- Greedy single-tree search scales logarithmically (e.g. `O(log N)` for each
point whose neighbors are being computed, if the size of the reference set
is `N`); however, since no backtracking is performed, results are obtained
*extremely* efficiently.
- This strategy is most effective when
[spill trees](../core/trees/sp_tree.md) are used; to do this, use
`SPTree` or another [spill tree variant](../core/trees/spill_tree.md) as
the
[`TreeType` template parameter](#advanced-functionality-template-parameters).
* `NAIVE`: brute-force search---for each point whose furthest neighbors are
being searched for, compute the distance to *every* point in the reference
set.
- This strategy always gives exact results; the setting of `kfn.Epsilon()` is
ignored.
- Brute-force search scales poorly, with a runtime cost of `O(N)` per point,
where `N` is the size of the reference set.
- However, brute-force search does not suffer from
[poor performance in high dimensions](https://en.wikipedia.org/wiki/K-d_tree#Degradation_in_performance_with_high-dimensional_data) as trees often do.
- When this strategy is used, no tree structure is used.
### Setting the reference set (`Train()`)
If the reference set was not set in the constructor, or if it needs to be
changed to a new reference set, the `Train()` method can be used.
* `kfn.Train(referenceSet)`
- Set the reference set to `referenceSet`.
- This will build a [`KDTree`](../core/trees/kdtree.md) with default
parameters on `referenceSet`, if `strategy` is not
[`NAIVE`](#search-strategies).
- If `referenceSet` is not needed elsewhere, pass with `std::move()` (e.g.
`std::move(referenceSet)`) to avoid copying `referenceSet`. The dataset
will still be accessible via [`ReferenceSet()`](#other-functionality), but
points may be in shuffled order.
* `kfn.Train(referenceTree)`
- Set the reference tree to `referenceTree`, which should be of type
`KFN::Tree` (a convenience typedef of [`KDTree`](../core/trees/kdtree.md)
that uses
[`FurthestNeighborStat`](../core/trees/binary_space_tree.md#furthestneighborstat)
as its
[`StatisticType`](../core/trees/binary_space_tree.md#statistictype)).
- If `referenceTree` is not needed elsewhere, pass with `std::move()` (e.g.
`std::move(referenceTree)`) to avoid copying `referenceTree`. The tree
will still be accessible via [`ReferenceTree()`](#other-functionality).
### Searching for neighbors
Once the reference set and parameters are set, searching for furthest neighbors
can be done with the `Search()` method.
* `kfn.Search(k, neighbors, distances)`
- Search for the `k` furthest neighbors of all points in the reference set
(e.g. [`kfn.ReferenceSet()`](#other-functionality)), storing the results in
`neighbors` and `distances`.
- `neighbors` and `distances` will be set to have `k` rows and
`kfn.ReferenceSet().n_cols` columns.
- `neighbors(i, j)` (e.g. the `i`th row and `j`th column of `neighbors`) will
hold the column index of the `i`th furthest neighbor of the `j`th point in
`kfn.ReferenceSet()`.
- That is, the `i`th furthest neighbor of `kfn.ReferenceSet().col(j)` is
`kfn.ReferenceSet().col(neighbors(i, j))`.
- `distances(i, j)` will hold the distance between the `j`th point in
`kfn.ReferenceSet()` and its `i`th furthest neighbor.
* `kfn.Search(querySet, k, neighbors, distances)`
- Search for the `k` furthest neighbors in the reference set of all points in
`querySet`, storing the results in `neighbors` and `distances`.
- `neighbors` and `distances` will be set to have `k` rows and
`querySet.n_cols` columns.
- `neighbors(i, j)` (e.g. the `i`th row and `j`th column of `neighbors`) will
hold the column index in `kfn.ReferenceSet()` of the `i`th furthest
neighbor of the `j`th point in `querySet`.
- That is, the `i`th furthest neighbor of `querySet.col(j)` is
`kfn.ReferenceSet().col(neighbors(i, j))`.
- `distances(i, j)` will hold the distance between the `j`th point in
`querySet` and its `i`th furthest neighbor in `kfn.ReferenceSet()`.
***Notes***:
* If `kfn.Epsilon() > 0` and the search strategy is
[`DUAL_TREE` or `SINGLE_TREE`](#search-strategies), then
the search will return approximate furthest neighbors within a relative
distance of `kfn.Epsilon()` of the true furthest neighbor.
* `kfn.Epsilon()` is ignored when the search strategy is
[`GREEDY_SINGLE_TREE` or `NAIVE`](#search-strategies).
* When using a `queryTree` multiple times, the bounds in the tree must be
reset. Call `kfn.ResetTree(queryTree)` after each call to `Search()` to
reset the bounds, or call `node.Stat().Reset()` on each node in `queryTree`.
* When searching for approximate neighbors, it is possible that no furthest
neighbor candidate will be found. If this is true, then the corresponding
element in `neighbors` will be set to `SIZE_MAX` (e.g. `size_t(-1)`), and the
corresponding element in `distances` will be set to `0`.
---
#### Search Parameters:
| **name** | **type** | **description** |
|----------|----------|-----------------|
| `querySet` | [`arma::mat`](../matrices.md) | [Column-major](../matrices.md#representing-data-in-mlpack) matrix of query points for which the furthest neighbors in the reference set should be found. |
| `k` | `size_t` | Number of furthest neighbors to search for. |
| `neighbors` | [`arma::Mat<size_t>`](../matrices.md) | Matrix to store indices of furthest neighbors into. Will be set to size `k` x `N`, where `N` is the number of points in the query set (if specified), or the reference set (if not). |
| `distances` | [`arma::mat`](../matrices.md) | Matrix to store distances to furthest neighbors into. Will be set to the same size as `neighbors`. |
### Computing quality metrics
If approximate furthest neighbor search is performed (e.g. if
`kfn.Epsilon() > 0`), and exact furthest neighbors are known, it is possible to
compute quality metrics of the approximate search.
* `double error = kfn.EffectiveError(computedDistances, exactDistances)`
- Given a matrix of exact distances and computed approximate distances, both
with the same size (rows equal to `k`, columns equal to the number of
points in the query or reference set), compute the average relative error
of the computed distances.
- Any neighbors with distance 0 (e.g. no furthest neighbor candidate found)
in `exactDistances` will be ignored for the computation.
- `computedDistances` and `exactDistances` should be matrices produced by
[`kfn.Search()`](#searching-for-neighbors).
- When dual-tree or single-tree search was used, `error` will be no greater
than [`kfn.Epsilon()`](#other-functionality).
* `double recall = kfn.Recall(computedNeighbors, trueNeighbors)`
- Given a matrix containing indices of exact furthest neighbors and computed
approximate neighbors, both with the same size (rows equal to `k`, columns
equal to the number of points in the query or reference set), compute the
recall (percentage of true neighbors found).
- `computedNeighbors` and `trueNeighbors` should be matrices produced by
[`kfn.Search()`](#searching-for-neighbors).
- The recall will be between `0.0` and `1.0`, with `1.0` indicating perfect
recall.
### Other functionality
- `kfn.ReferenceSet()` will return a `const arma::mat&` representing the data
points in the reference set. This matrix cannot be modified.
* If a
[custom `MatType` template parameter](#advanced-functionality-template-parameters)
has been specified, then the return type will be `const MatType&`.
- `kfn.ReferenceTree()` will return a `KFN::Tree*` (a
[`KDTree`](../core/trees/kdtree.md) with
[`FurthestNeighborStat`](../core/trees/binary_space_tree.md#furthestneighborstat)
as the
[`StatisticType`](../core/trees/binary_space_tree.md#statistictype)).
* This is the tree that will be used at search time, if the search strategy
is not [`NAIVE`](#search-strategies).
* If the search strategy was [`NAIVE`](#search-strategies) when the
object was constructed, then `kfn.ReferenceTree()` will return `nullptr`.
* If a
[custom `TreeType` template parameter](#advanced-functionality-template-parameters)
has been specified, then `KFN::Tree*` will be that type of tree, not a
`KDTree`.
- `kfn.SearchStrategy()` will return the [search strategy](#search-strategies)
that will be used when `kfn.Search()` is called.
* `kfn.SearchStrategy() = newStrategy` will set the
[search strategy](#search-strategies) to `newStrategy`.
* `newStrategy` must be one of the supported search strategies.
- `kfn.Epsilon()` returns a `double` representing the allowed level of
approximation. If `0` and `kfn.SearchStrategy()` is either dual- or
single-tree search, then `kfn.Search()` will return exact results.
* `kfn.Epsilon() = eps` will set the allowed level of approximation to `eps`.
* `eps` must be greater than or equal to `0.0`.
- After calling `kfn.Search()`, `kfn.BaseCases()` will return a `size_t`
representing the number of point-to-point distance computations that were
performed, if a [tree-traversing search strategy](#search-strategies) was
used.
- After calling `kfn.Search()`, `kfn.Scores()` will return a `size_t`
indicating the number of tree nodes that were visited during search, if a
[tree-traversing search strategy](#search-strategies) was used.
- A `KFN` object can be serialized with
[`Save()` and `Load()`](../load_save.md#mlpack-models-and-objects).
Note that for large reference sets, this will also serialize the dataset
(`kfn.ReferenceSet()`) and the tree (`kfn.Tree()`), and so the resulting file
may be quite large.
- `KFN::Tree` is a convenience typedef representing the type of the tree that
is used for searching.
* By default, this is a [`KDTree`](../core/trees/kdtree.md); specifically:
`KFN::Tree` is `KDTree<EuclideanDistance, FurthestNeighborStat, arma::mat>`.
* If a
[custom `TreeType`, `DistanceType`, and/or `MatType`](#advanced-functionality-template-parameters)
are specified, then
`KFNType<DistanceType, TreeType, MatType>::Tree = TreeType<DistanceType, FurthestNeighborStat, MatType>`.
* A custom tree can be built and passed to
[`Train()`](#setting-the-reference-set-train) or the
[constructor](#constructors) with, e.g., `tree = KFN::Tree(referenceSet)`
or `tree = KFN::Tree(std::move(referenceSet))`.
### Simple examples
Find the exact furthest neighbor of every point in the `cloud` dataset.
```c++
// See https://datasets.mlpack.org/cloud.csv.
arma::mat dataset;
mlpack::Load("cloud.csv", dataset);
// Construct the KFN object; this will avoid copies via std::move(), and build a
// kd-tree on the dataset.
mlpack::KFN kfn(std::move(dataset));
arma::mat distances;
arma::Mat<size_t> neighbors;
// Compute the exact furthest neighbor.
kfn.Search(1, neighbors, distances);
// Print the furthest neighbor and distance of the fifth point in the dataset.
std::cout << "Point 4:" << std::endl;
std::cout << " - Point values: " << kfn.ReferenceSet().col(4).t();
std::cout << " - Index of furthest neighbor: " << neighbors(0, 4) << "."
<< std::endl;
std::cout << " - Distance to furthest neighbor: " << distances(0, 4) << "."
<< std::endl;
```
---
Split the `corel-histogram` dataset into two sets, and find the exact furthest
neighbor in the first set of every point in the second set.
```c++
// See https://datasets.mlpack.org/corel-histogram.csv.
arma::mat dataset;
mlpack::Load("corel-histogram.csv", dataset);
// Split the dataset into two equal-sized sets randomly with `Split()`.
arma::mat referenceSet, querySet;
mlpack::Split(dataset, referenceSet, querySet, 0.5);
// Construct the KFN object, building a tree on the reference set. Copies are
// avoided by the use of `std::move()`.
mlpack::KFN kfn(std::move(referenceSet));
arma::mat distances;
arma::Mat<size_t> neighbors;
// Compute the exact furthest neighbor in `referenceSet` of every point in
// `querySet`.
kfn.Search(querySet, 1, neighbors, distances);
// Print information about the dual-tree traversal.
std::cout << "Dual-tree traversal computed " << kfn.BaseCases()
<< " point-to-point distances and " << kfn.Scores()
<< " tree node-to-tree node distances." << std::endl;
// Print information about furthest neighbors of the points in the query set.
std::cout << "The furthest neighbor of query point 3 is reference point index "
<< neighbors(0, 3) << ", with distance " << distances(0, 3) << "."
<< std::endl;
std::cout << "The L2-norm of reference point " << neighbors(0, 3) << " is "
<< arma::norm(kfn.ReferenceSet().col(neighbors(0, 3)), 2) << "."
<< std::endl;
// Compute the average furthest neighbor distance for all points in the query
// set.
const double averageDist = arma::mean(arma::vectorise(distances));
std::cout << "Average distance between a query point and its furthest "
<< "neighbor: " << averageDist << "." << std::endl;
```
---
Perform approximate single-tree search to find 5 furthest neighbors of the first
point in a subset of the `LCDM` dataset.
```c++
// See https://datasets.mlpack.org/lcdm_tiny.csv.
arma::mat dataset;
mlpack::Load("lcdm_tiny.csv", dataset);
// Build a KFN object on the LCDM dataset, and pass with `std::move()` so that
// we can avoid copying the dataset. Set the search strategy to single-tree.
mlpack::KFN kfn(std::move(dataset), mlpack::SINGLE_TREE);
// Now we will compute the 5 furthest neighbors of the first point in the
// dataset.
arma::mat distances;
arma::Mat<size_t> neighbors;
kfn.Search(kfn.ReferenceSet().col(0), 5, neighbors, distances);
std::cout << "The five furthest neighbors of the first point in the LCDM "
<< "dataset are:" << std::endl;
for (size_t k = 0; k < 5; ++k)
{
std::cout << " - " << neighbors(k, 0) << " (with distance " << distances(k, 0)
<< ")." << std::endl;
}
```
---
Use greedy single-tree search to find 5 approximate furthest neighbors of every
point in the `cloud` dataset. Then, compute the exact furthest neighbors, and
use these to find the average error and recall of the approximate search.
***Note***: greedy single-tree search is far more effective when using spill
trees---see the [advanced examples](#advanced-examples) for another example that
does exactly that.
```c++
// See https://datasets.mlpack.org/cloud.csv.
arma::mat dataset;
mlpack::Load("cloud.csv", dataset);
// Build a tree on the dataset and set the search strategy to the greedy single
// tree strategy.
mlpack::KFN kfn(std::move(dataset), mlpack::GREEDY_SINGLE_TREE);
// Compute the 5 approximate furthest neighbors of every point in the dataset.
arma::mat distances;
arma::Mat<size_t> neighbors;
kfn.Search(5, neighbors, distances);
std::cout << "Greedy approximate kFN search computed " << kfn.BaseCases()
<< " point-to-point distances and visited " << kfn.Scores()
<< " tree nodes in total." << std::endl;
// Now switch to exact computation and compute the true neighbors and distances.
arma::Mat<size_t> trueNeighbors;
arma::mat trueDistances;
kfn.SearchStrategy() = mlpack::DUAL_TREE;
kfn.Epsilon() = 0.0;
kfn.Search(5, trueNeighbors, trueDistances);
// Compute the recall and effective error.
const double recall = kfn.Recall(neighbors, trueNeighbors);
const double effectiveError = kfn.EffectiveError(distances, trueDistances);
std::cout << "Recall of greedy search: " << recall << "." << std::endl;
std::cout << "Effective error of greedy search: " << effectiveError << "."
<< std::endl;
```
---
Build a `KFN` object on the `cloud` dataset and save it to disk.
```c++
// See https://datasets.mlpack.org/cloud.csv.
arma::mat dataset;
mlpack::Load("cloud.csv", dataset);
// Build the reference tree.
mlpack::KFN kfn(std::move(dataset));
// Save the KFN object to disk with the name 'kfn'.
mlpack::Save("kfn.bin", kfn);
std::cout << "Successfully saved KFN model to 'kfn.bin'." << std::endl;
```
---
Load a `KFN` object from disk, and inspect the
[`KDTree`](../core/trees/kdtree.md) that is held in the object.
```c++
// Load the KFN object with name 'kfn' from 'kfn.bin'.
mlpack::KFN kfn;
mlpack::Load("kfn.bin", kfn);
// Inspect the KDTree held by the KFN object.
std::cout << "The KDTree in the KFN object in 'kfn.bin' holds "
<< kfn.ReferenceTree().NumDescendants() << " points." << std::endl;
std::cout << "The root of the tree has " << kfn.ReferenceTree().NumChildren()
<< " children." << std::endl;
if (kfn.ReferenceTree().NumChildren() == 2)
{
std::cout << " - The left child holds "
<< kfn.ReferenceTree().Child(0).NumDescendants() << " points."
<< std::endl;
std::cout << " - The right child holds "
<< kfn.ReferenceTree().Child(1).NumDescendants() << " points."
<< std::endl;
}
```
---
Compute the 5 approximate furthest neighbors of two subsets of the
`corel-histogram` dataset using a pre-built query tree. Then, reuse the query
tree to compute the exact neighbors and compute the effective error.
```c++
// See https://datasets.mlpack.org/corel-histogram.csv.
arma::mat dataset;
mlpack::Load("corel-histogram.csv", dataset);
// Split the covertype dataset into two parts of equal size.
arma::mat referenceSet, querySet;
mlpack::Split(dataset, referenceSet, querySet, 0.5);
// Build the KFN object, passing the reference set with `std::move()` to avoid a
// copy. We use the default dual-tree strategy for search and set the maximum
// allowed relative error to 0.1 (10%).
mlpack::KFN kfn(std::move(referenceSet), mlpack::DUAL_TREE, 0.1);
// Now build a tree on the query points. This is a KDTree, and we manually
// specify a leaf size of 50 points. Note that the KDTree rearranges the
// ordering of points in the query set.
mlpack::KFN::Tree queryTree(std::move(querySet));
// Compute the 5 approximate furthest neighbors of all points in the query set.
arma::mat distances;
arma::Mat<size_t> neighbors;
kfn.Search(queryTree, 5, neighbors, distances);
// Now compute the exact neighbors---but since we are using dual-tree search and
// an externally-constructed query tree, we must reset the bounds!
arma::mat trueDistances;
arma::Mat<size_t> trueNeighbors;
kfn.ResetTree(queryTree);
kfn.Epsilon() = 0;
kfn.Search(queryTree, 5, trueNeighbors, trueDistances);
// Compute the effective error.
const double effectiveError = kfn.EffectiveError(distances, trueDistances);
std::cout << "Effective error of approximate dual-tree search was "
<< effectiveError << " (limit via kfn.Epsilon() was 0.1)." << std::endl;
```
---
<!-- TODO: add some KFN examples to the examples repository! -->
### Advanced functionality: template parameters
The `KFN` class is a typedef of the configurable `KFNType` class, which has five
template parameters that can be used for custom behavior. The full signature of
the class is:
```
KFNType<DistanceType,
TreeType,
MatType,
DualTreeTraversalType,
SingleTreeTraversalType>
```
* `DistanceType`: specifies the [distance metric](../core/distances.md) to be
used for finding furthest neighbors.
* `TreeType`: specifies the type of [tree](../core/trees.md) to be used for
indexing points for fast tree-based search.
* `MatType`: specifies the type of matrix used for representation of data.
* `DualTreeTraversalType`: specifies the
[traversal](../../developer/trees.md#traversals) strategy that will be used
when searching with the dual-tree strategy.
* `SingleTreeTraversalType`: specifies the
[traversal](../../developer/trees.md#traversals) strategy that will be used
when searching with the dual-tree strategy.
When custom template parameters are specified:
* The `referenceSet` and `querySet` parameters to
[the constructor](#constructors),
[`Train()`](#setting-the-reference-set-train), and
[`Search()`](#searching-for-neighbors) must have type `MatType` instead of
`arma::mat`.
* The `distances` parameter to [`Search()`](#searching-for-neighbors) should
have type `MatType`.
* The convenience typedef `Tree` (e.g. `KFNType<DistanceType, TreeType, MatType, DualTreeTraversalType, SingleTreeTraversalType>::Tree`) will be equivalent to
`TreeType<DistanceType, FurthestNeighborStat, MatType>`.
* All tree parameters (`referenceTree` and `queryTree`) should have type
`TreeType<DistanceType, FurthestNeighborStat, MatType>`.
---
#### `DistanceType`
* Specifies the distance metric that will be used when searching for furthest
neighbors.
* The default distance type is
[`EuclideanDistance`](../core/distances.md#lmetric).
* Many [pre-implemented distance metrics](../core/distances.md) are available
for use, such as [`ManhattanDistance`](../core/distances.md#lmetric) and
[`ChebyshevDistance`](../core/distances.md#lmetric) and others.
* [Custom distance metrics](../../developer/distances.md) are easy to
implement, but *must* satisfy the triangle inequality to provide correct
results when searching with trees (e.g. `kfn.SearchStrategy()` is not
`NAIVE`).
- ***NOTE:*** the cosine distance ***does not*** satisfy the triangle
inequality.
<!-- TODO: link to FastMKS or some other solution for the cosine distance -->
---
#### `TreeType`
* Specifies the tree type that will be built on the reference set (and
possibly query set), if `kfn.SearchStrategy()` is not `NAIVE`.
* The default tree type is [`KDTree`](../core/trees/kdtree.md).
* Numerous [pre-implemented tree types](../core/trees.md) are available for
use.
* [Custom trees](../../developer/trees.md) are very difficult to implement, but
it is possible if desired.
- If you have implemented a fully-working `TreeType` yourself, please
contribute it upstream if possible!
---
#### `MatType`
* Specifies the type of matrix to use for representing data (the reference set
and the query set).
* The default `MatType` is `arma::mat` (dense 64-bit precision matrix).
* Any matrix type implementing the Armadillo API will work; so, for instance,
`arma::fmat` or `arma::sp_mat` can also be used.
---
#### `DualTreeTraversalType`
* Specifies the [traversal strategy](../../developer/trees.md#traversals) to
use when performing a dual-tree search to find furthest neighbors (e.g. when
`kfn.SearchStrategy()` is `DUAL_TREE`).
* By default, the [`TreeType`](#treetype)'s default dual-tree traversal (e.g.
`TreeType<DistanceType, FurthestNeighborStat, MatType>::DualTreeTraversalType`)
will be used.
* In general, this parameter does not need to be specified, except when a
custom type of traversal is desired.
- For instance, the [`SpillTree`](../core/trees/spill_tree.md) class provides
the
[`DefeatistDualTreeTraversal`](../core/trees/spill_tree.md#tree-traversals)
strategy, which is a specific greedy strategy for spill trees when
performing approximate nearest neighbor search (however, it can also be
used for approximate furthest neighbor search!).
---
#### `SingleTreeTraversalType`
* Specifies the [traversal strategy](../../developer/trees.md#traversals) to
use when performing a single-tree search to find furthest neighbors (e.g.
when `kfn.SearchStrategy()` is `SINGLE_TREE`).
* By default, the [`TreeType`](#treetype)'s default dual-tree traversal (e.g.
`TreeType<DistanceType, FurthestNeighborStat, MatType>::SingleTreeTraversalType`)
will be used.
* In general, this parameter does not need to be specified, except when a
custom type of traversal is desired.
- For instance, the [`SpillTree`](../core/trees/spill_tree.md) class provides
the
[`DefeatistSingleTreeTraversal`](../core/trees/spill_tree.md#tree-traversals)
strategy, which is a specific greedy strategy for spill trees when
performing approximate nearest neighbor search (however, it can also be
used for approximate furthest neighbor search!).
---
### Advanced examples
Perform exact furthest neighbor search to find the furthest neighbor of every
point in the `cloud` dataset, using 32-bit floats to represent the data.
```c++
// See https://datasets.mlpack.org/cloud.csv.
arma::fmat dataset;
mlpack::Load("cloud.csv", dataset);
// Construct the KFN object; this will avoid copies via std::move(), and build a
// kd-tree on the dataset.
mlpack::KFNType<mlpack::EuclideanDistance, mlpack::KDTree, arma::fmat> kfn(
std::move(dataset));
arma::fmat distances; // This type is arma::fmat, just like the dataset.
arma::Mat<size_t> neighbors;
// Compute the exact furthest neighbor.
kfn.Search(1, neighbors, distances);
// Print the furthest neighbor and distance of the fifth point in the dataset.
std::cout << "Point 4:" << std::endl;
std::cout << " - Point values: " << kfn.ReferenceSet().col(4).t();
std::cout << " - Index of furthest neighbor: " << neighbors(0, 4) << "."
<< std::endl;
std::cout << " - Distance to furthest neighbor: " << distances(0, 4) << "."
<< std::endl;
```
---
Perform approximate single-tree furthest neighbor search using the Chebyshev
(L-infinity) distance as the distance metric.
```c++
// See https://datasets.mlpack.org/cloud.csv.
arma::mat dataset;
mlpack::Load("cloud.csv", dataset);
// Construct the KFN object; this will avoid copies via std::move(), and build a
// kd-tree on the dataset.
mlpack::KFNType<mlpack::ChebyshevDistance> kfn(std::move(dataset),
mlpack::SINGLE_TREE, 0.2);
arma::mat distances;
arma::Mat<size_t> neighbors;
// Compute the exact furthest neighbor.
kfn.Search(1, neighbors, distances);
// Print the furthest neighbor and distance of the fifth point in the dataset.
std::cout << "Point 4:" << std::endl;
std::cout << " - Point values: " << kfn.ReferenceSet().col(4).t();
std::cout << " - Index of approximate furthest neighbor: " << neighbors(0, 4)
<< "." << std::endl;
std::cout << " - Chebyshev distance to approximate furthest neighbor: "
<< distances(0, 4) << "." << std::endl;
```
---
Use an [Octree](../core/trees/octree.md) (a tree known to be faster in very few
dimensions) to find the exact furthest neighbors of all the points in a tiny
subset of the 3-dimensional LCDM dataset.
```c++
// See https://datasets.mlpack.org/lcdm_tiny.csv.
arma::mat dataset;
mlpack::Load("lcdm_tiny.csv", dataset);
// Construct the KFN object with Octrees.
mlpack::KFNType<mlpack::EuclideanDistance, mlpack::Octree> kfn(
std::move(dataset));
arma::mat distances;
arma::Mat<size_t> neighbors;
// Find the exact furthest neighbor of every point.
kfn.Search(1, neighbors, distances);
// Print the average, minimum, and maximum furthest neighbor distances.
std::cout << "Average furthest neighbor distance: " <<
arma::mean(arma::vectorise(distances)) << "." << std::endl;
std::cout << "Minimum furthest neighbor distance: " <<
arma::min(arma::vectorise(distances)) << "." << std::endl;
std::cout << "Maximum furthest neighbor distance: " <<
arma::max(arma::vectorise(distances)) << "." << std::endl;
```
---
Using a 32-bit floating point representation, split the `lcdm_tiny` dataset into
a query and a reference set, and then use `KFN` with preconstructed random
projection trees ([`RPTree`](../core/trees/rp_tree.md)) to find the 5
approximate furthest neighbors of each point in the query set with the Manhattan
distance. Then, compute exact furthest neighbors and the average error and
recall.
```c++
// See https://datasets.mlpack.org/lcdm_tiny.csv.
arma::fmat dataset;
mlpack::Load("lcdm_tiny.csv", dataset);
// Split the dataset into a query set and a reference set (each with the same
// size).
arma::fmat referenceSet, querySet;
mlpack::Split(dataset, referenceSet, querySet, 0.5);
// This is the type of tree we will build on the datasets.
using TreeType = mlpack::RPTree<mlpack::ManhattanDistance,
mlpack::FurthestNeighborStat,
arma::fmat>;
// Note that we could also define TreeType as below (it is the same type!):
//
// using TreeType = mlpack::KFNType<mlpack::ManhattanDistance,
// mlpack::RPTree,
// arma::fmat>::Tree;
// We build the trees here with std::move() in order to avoid copying data.
//
// For RPTrees, this reorders the points in the dataset, but if original indices
// are needed, trees can be constructed with mapping objects. (See the RPTree
// documentation for more details.)
TreeType referenceTree(std::move(referenceSet));
TreeType queryTree(std::move(querySet));
// Construct the KFN object with the prebuilt reference tree.
mlpack::KFNType<mlpack::ManhattanDistance, mlpack::RPTree, arma::fmat> kfn(
std::move(referenceTree), mlpack::DUAL_TREE, 0.1 /* max 10% error */);
// Find 5 approximate furthest neighbors.
arma::fmat approxDistances;
arma::Mat<size_t> approxNeighbors;
kfn.Search(queryTree, 5, approxNeighbors, approxDistances);
std::cout << "Computed approximate neighbors." << std::endl;
// Now compute exact neighbors. When reusing the query tree, this requires
// resetting the statistics inside the query tree manually.
arma::fmat exactDistances;
arma::Mat<size_t> exactNeighbors;
kfn.ResetTree(queryTree);
kfn.Epsilon() = 0.0; // Error tolerance is now 0% (exact search).
kfn.Search(queryTree, 5, exactNeighbors, exactDistances);
std::cout << "Computed exact neighbors." << std::endl;
// Compute error measures.
const double recall = kfn.Recall(approxNeighbors, exactNeighbors);
const double effectiveError = kfn.EffectiveError(approxDistances,
exactDistances);
std::cout << "Recall of approximate search: " << recall << "." << std::endl;
std::cout << "Effective relative error of approximate search: "
<< effectiveError << " (vs. limit of 0.1)." << std::endl;
```
---
Use [spill trees](../core/trees/sp_tree.md) to perform greedy single-tree
approximate furthest neighbor search on the `cloud` dataset, and compare with
the other spill tree traversers and exact results. Compare with the results in
the [simple examples](#simple-examples) section where the default
[`KDTree`](../core/trees/kdtree.md) is used---spill trees perform significantly
better for greedy search!
```c++
// See https://datasets.mlpack.org/cloud.csv.
arma::mat dataset;
mlpack::Load("cloud.csv", dataset);
// Build a spill tree on the dataset and set the search strategy to the greedy
// single tree strategy. We will build the tree manually, so that we can
// configure the build-time parameters (see the SPTree documentation for more
// details).
using TreeType = mlpack::SPTree<mlpack::EuclideanDistance,
mlpack::FurthestNeighborStat,
arma::mat>;
TreeType referenceTree(std::move(dataset), 10.0 /* tau, overlap parameter */);
mlpack::KFNType<mlpack::EuclideanDistance,
mlpack::SPTree,
arma::mat,
// Use the special defeatist spill tree traversers.
TreeType::template DefeatistDualTreeTraverser,
TreeType::template DefeatistSingleTreeTraverser> kfn(
std::move(referenceTree), mlpack::GREEDY_SINGLE_TREE);
arma::mat greedyDistances, dualDistances, singleDistances, exactDistances;
arma::Mat<size_t> greedyNeighbors, dualNeighbors, singleNeighbors,
exactNeighbors;
// Compute the 5 approximate furthest neighbors of every point in the dataset.
kfn.Search(5, greedyNeighbors, greedyDistances);
std::cout << "Greedy approximate kFN search computed " << kfn.BaseCases()
<< " point-to-point distances and visited " << kfn.Scores()
<< " tree nodes in total." << std::endl;
// Now do the same thing, but with defeatist dual-tree search. Note that
// defeatist dual-tree search is not backtracking, so we don't need to set
// kfn.Epsilon().
kfn.SearchStrategy() = mlpack::DUAL_TREE;
kfn.Search(5, dualNeighbors, dualDistances);
std::cout << "Dual-tree approximate kFN search computed " << kfn.BaseCases()
<< " point-to-point distances and visited " << kfn.Scores()
<< " tree nodes in total." << std::endl;
// Finally, use defeatist single-tree search.
kfn.SearchStrategy() = mlpack::SINGLE_TREE;
kfn.Search(5, singleNeighbors, singleDistances);
std::cout << "Single-tree approximate kFN search computed " << kfn.BaseCases()
<< " point-to-point distances and visited " << kfn.Scores()
<< " tree nodes in total." << std::endl;
// Now switch to the exact naive strategy and compute the true neighbors and
// distances.
kfn.SearchStrategy() = mlpack::NAIVE;
kfn.Epsilon() = 0.0;
kfn.Search(5, exactNeighbors, exactDistances);
// Compute the recall and effective error for each strategy.
const double greedyRecall = kfn.Recall(greedyNeighbors, exactNeighbors);
const double dualRecall = kfn.Recall(dualNeighbors, exactNeighbors);
const double singleRecall = kfn.Recall(singleNeighbors, exactNeighbors);
const double greedyError = kfn.EffectiveError(greedyDistances, exactDistances);
const double dualError = kfn.EffectiveError(dualDistances, exactDistances);
const double singleError = kfn.EffectiveError(singleDistances, exactDistances);
// Print the results. To tune the results, try constructing the SPTrees
// manually and specifying different construction parameters.
std::cout << std::endl;
std::cout << "Recall with spill trees:" << std::endl;
std::cout << " - Greedy search: " << greedyRecall << "." << std::endl;
std::cout << " - Dual-tree search: " << dualRecall << "." << std::endl;
std::cout << " - Single-tree search: " << singleRecall << "." << std::endl;
std::cout << std::endl;
std::cout << "Effective error with spill trees:" << std::endl;
std::cout << " - Greedy search: " << greedyError << "." << std::endl;
std::cout << " - Dual-tree search: " << dualError << "." << std::endl;
std::cout << " - Single-tree search: " << singleError << "." << std::endl;
```
|