1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
## `NaiveBayesClassifier`
The `NaiveBayesClassifier` implements a trivial Naive Bayes classifier for
numerical data. The class offers standard classification functionality. Naive
Bayes is useful for multi-class classification (i.e. classes are `0`, `1`, `2`,
etc.), and due to its simplicity scales well to large-data scenarios.
#### Simple usage example:
```c++
// Train a Naive Bayes classifier on random data and predict labels:
// All data and labels are uniform random; 5 dimensional data, 4 classes.
// Replace with a Load() call or similar for a real application.
arma::mat dataset(5, 1000, arma::fill::randu); // 1000 points.
arma::Row<size_t> labels =
arma::randi<arma::Row<size_t>>(1000, arma::distr_param(0, 3));
arma::mat testDataset(5, 500, arma::fill::randu); // 500 test points.
mlpack::NaiveBayesClassifier nbc; // Step 1: create model.
nbc.Train(dataset, labels, 4); // Step 2: train model.
arma::Row<size_t> predictions;
nbc.Classify(testDataset, predictions); // Step 3: classify points.
// Print some information about the test predictions.
std::cout << arma::accu(predictions == 2) << " test points classified as class "
<< "2." << std::endl;
```
<p style="text-align: center; font-size: 85%"><a href="#simple-examples">More examples...</a></p>
#### Quick links:
* [Constructors](#constructors): create `NaiveBayesClassifier` objects.
* [`Train()`](#training): train model.
* [`Classify()`](#classification): classify with a trained model.
* [Other functionality](#other-functionality) for loading, saving, and
inspecting.
* [Examples](#simple-examples) of simple usage and links to detailed example
projects.
* [Template parameters](#advanced-functionality-different-element-types) for
using different element types for a model.
#### See also:
* [mlpack classifiers](../modeling.md#classification)
* [`GaussianDistribution`](../core/distributions.md#gaussiandistribution)
* [Naive Bayes classifier on Wikipedia](https://en.wikipedia.org/wiki/Naive_Bayes_classifier)
### Constructors
* `nbc = NaiveBayesClassifier()`
- Initialize the model without training.
- You will need to call [`Train()`](#training) later to train the model
before calling [`Classify()`](#classification).
---
* `nbc = NaiveBayesClassifier(dimensionality, numClasses, epsilon=1e-10)`
- Initialize model to the given dimensionality and number of classes without
training.
- This is meant to be used with the incremental version of `Train()` that
takes only a single point.
---
* `nbc = NaiveBayesClassifier(data, labels, numClasses, incremental=true, epsilon=1e-10)`
- Train model, optionally specifying whether to do incremental training.
---
#### Constructor Parameters:
| **name** | **type** | **description** | **default** |
|----------|----------|-----------------|-------------|
| `data` | [`arma::mat`](../matrices.md) | [Column-major](../matrices.md#representing-data-in-mlpack) training matrix. | _(N/A)_ |
| `labels` | [`arma::Row<size_t>`](../matrices.md) | Training labels, [between `0` and `numClasses - 1`](../core/normalizing_labels.md) (inclusive). Should have length `data.n_cols`. | _(N/A)_ |
| `numClasses` | `size_t` | Number of classes in the dataset. | _(N/A)_ |
| `incremental` | `bool` | If `true`, then the model will not be reset before training, and will use a robust incremental algorithm for variance computation. | `true` |
| `epsilon` | `double` | Initial small value for sample variances, to prevent underflow (via `log(0)`). | 1e-10 |
As an alternative to passing the `epsilon` parameter, it can be set with the
standalone `Epsilon()` method: `nbc.Epsilon() = eps;` will set the value of
`epsilon` to `eps` for the next time non-incremental `Train()` or `Reset()` is
called.
### Training
If training is not done as part of the constructor call, it can be done with the
`Train()` function:
* `nbc.Train(data, labels, numClasses, incremental=true, epsilon=1e-10)`
- Train model on the given data, optionally specifying whether to do
incremental training.
- Arguments described in [Constructor Parameters](#constructor-parameters)
table above.
---
* `nbc.Train(point, label)`
- Incrementally train on a single data point with the given label.
- Ensure that the model has the right size and number of classes by using the
appropriate constructor form to set `dimensionality`, or by calling
`Reset()` (see [other functionality](#other-functionality)).
| **name** | **type** | **description** | **default** |
|----------|----------|-----------------|-------------|
| `point` | [`arma::vec`](../matrices.md) | [Column-major](../matrices.md) training point (i.e. one column). | _(N/A)_ |
| `label` | `size_t` | Training label, in range `0` to `numClasses`. | _(N/A)_ |
***Note***: when performing incremental training, if `data` has a different
dimensionality than the model, or if `numClasses` is different, the model will
be reset. For single-point `Train()`, if `point` has different dimensionality,
an exception will be thrown.
### Classification
Once a `NaiveBayesClassifier` model is trained, the `Classify()` member function
can be used to make class predictions for new data.
* `size_t predictedClass = nbc.Classify(point)`
- ***(Single-point)***
- Classify a single point, returning the predicted class (`0` through
`numClasses - 1`, inclusive).
---
* `nbc.Classify(point, prediction, probabilitiesVec)`
- ***(Single-point)***
- Classify a single point and compute class probabilities.
- The predicted class is stored in `prediction`.
- The probability of class `i` can be accessed with `probabilitiesVec[i]`.
---
* `nbc.Classify(data, predictions)`
- ***(Multi-point)***
- Classify a set of points.
- The prediction for data point `i` can be accessed with `predictions[i]`.
---
* `nbc.Classify(data, predictions, probabilities)`
- ***(Multi-point)***
- Classify a set of points and compute class probabilities.
- The prediction for data point `i` can be accessed with `predictions[i]`.
- The probability of class `j` for data point `i` can be accessed with
`probabilities(j, i)`.
---
#### Classification Parameters:
| **usage** | **name** | **type** | **description** |
|-----------|----------|----------|-----------------|
| _single-point_ | `point` | [`arma::vec`](../matrices.md) | Single point for classification. |
| _single-point_ | `prediction` | `size_t&` | `size_t` to store class prediction into. |
| _single-point_ | `probabilitiesVec` | [`arma::vec&`](../matrices.md) | `arma::vec&` to store class probabilities into; will have length 2. |
||||
| _multi-point_ | `data` | [`arma::mat`](../matrices.md) | Set of [column-major](../matrices.md#representing-data-in-mlpack) points for classification. |
| _multi-point_ | `predictions` | [`arma::Row<size_t>&`](../matrices.md) | Vector of `size_t`s to store class prediction into; will be set to length `data.n_cols`. |
| _multi-point_ | `probabilities` | [`arma::mat&`](../matrices.md) | Matrix to store class probabilities into (number of rows will be equal to 2; number of columns will be equal to `data.n_cols`). |
### Other Functionality
* A `NaiveBayesClassifier` model can be serialized with
[`Save()` and `Load()`](../load_save.md#mlpack-models-and-objects).
* `nbc.Probabilities()` will return a column vector of length `numClasses`
representing the prior probability of each class.
* `nbc.Means()` will return a matrix with rows equal to the dimensionality of
the model and `numClasses` columns. Column `i` represents the sample mean of
class `i`.
* `nbc.Variances()` will return a matrix with rows equal to the dimensionality
of the model and `numClasses` columns. The element at row `i` and column `j`
represents the sample variance in dimension `i` of class `j`.
* `nbc.Reset()` will reset the model to zeros; this is useful before
incremental training. The form
`nbc.Reset(dimensionality, numClasses, epsilon=1e-10)` can
also be used to set the dimensionality and number of classes in the reset
model.
* `nbc.TrainingPoints()` will return the number of points that the model has
been trained on. When `nbc.Reset()` is called, this is reset to 0.
### Simple Examples
See also the [simple usage example](#simple-usage-example) for a trivial usage
of the `NaiveBayesClassifier` class.
---
Train a Naive Bayes classifier incrementally, one point at a time, then compute
accuracy on a test set and save the model to disk.
```c++
// See https://datasets.mlpack.org/mnist.train.csv.
arma::mat dataset;
mlpack::Load("mnist.train.csv", dataset, mlpack::Fatal);
// See https://datasets.mlpack.org/mnist.train.labels.csv.
arma::Row<size_t> labels;
mlpack::Load("mnist.train.labels.csv", labels, mlpack::Fatal);
mlpack::NaiveBayesClassifier nbc(dataset.n_rows /* dimensionality */,
10 /* numClasses */);
// Iterate over all points in the dataset and call Train() on each point.
for (size_t i = 0; i < dataset.n_cols; ++i)
nbc.Train(dataset.col(i), labels[i]);
// Now compute the accuracy of the fully trained model on a test set.
// See https://datasets.mlpack.org/mnist.test.csv.
arma::mat testDataset;
mlpack::Load("mnist.test.csv", testDataset, mlpack::Fatal);
// See https://datasets.mlpack.org/mnist.test.labels.csv.
arma::Row<size_t> testLabels;
mlpack::Load("mnist.test.labels.csv", testLabels, mlpack::Fatal);
arma::Row<size_t> predictions;
nbc.Classify(dataset, predictions);
const double trainAccuracy = 100.0 *
((double) arma::accu(predictions == labels)) / labels.n_elem;
std::cout << "Accuracy of model on training data: " << trainAccuracy << "\%."
<< std::endl;
nbc.Classify(testDataset, predictions);
const double testAccuracy = 100.0 *
((double) arma::accu(predictions == testLabels)) / testLabels.n_elem;
std::cout << "Accuracy of model on test data: " << testAccuracy << "\%."
<< std::endl;
// Save the model to disk.
mlpack::Save("nbc_model.bin", nbc, mlpack::Fatal);
```
---
Load a saved Naive Bayes classifier and print some information about it.
```c++
mlpack::NaiveBayesClassifier nbc;
// Load the `NaiveBayesClassifier` model from "nbc_model.bin".
mlpack::Load("nbc_model.bin", nbc, mlpack::Fatal);
// Print information about the model.
std::cout << "The dimensionality of the model in nbc_model.bin is "
<< nbc.Means().n_rows << "." << std::endl;
std::cout << "The number of classes in the model is "
<< nbc.Probabilities().n_elem << "." << std::endl;
std::cout << "The model was trained on " << nbc.TrainingPoints() << " points."
<< std::endl;
std::cout << "The prior probabilities of each class are: "
<< nbc.Probabilities().t();
// Compute the class probabilities of a random point.
// For our random point, we'll use one of the means plus some noise.
arma::vec randomPoint = nbc.Means().col(2) +
10.0 * arma::randu<arma::vec>(nbc.Means().n_rows);
size_t prediction;
arma::vec probabilities;
nbc.Classify(randomPoint, prediction, probabilities);
std::cout << "Random point class prediction: " << prediction << "."
<< std::endl;
std::cout << "Random point class probabilities: " << probabilities.t();
```
---
See also the following fully-working examples:
- [Microchip QA Classification using `NaiveBayesClassifier`](https://github.com/mlpack/examples/blob/master/jupyter_notebook/naive_bayes/microchip_quality_control/microchip-quality-control-cpp.ipynb)
### Advanced Functionality: Different Element Types
The `NaiveBayesClassifier` class has one template parameter that can be used to
control the element type of the model. The full signature of the class is:
```
NaiveBayesClassifier<ModelMatType>
```
`ModelMatType` specifies the type of matrix used for training data and internal
representation of model parameters.
* Any matrix type that implements the Armadillo API can be used.
* `Train()` and `Classify()` functions themselves are templatized and can allow
any matrix type that has the same element type. So, for instance, a
`NaiveBayesClassifier<arma::mat>` can accept an `arma::sp_mat` for training.
The example below trains a Naive Bayes model on sparse 32-bit floating point
data, but uses dense 32-bit floating point matrices to store the model itself.
```c++
// Create random, sparse 100-dimensional data, with 3 classes.
arma::sp_fmat dataset;
dataset.sprandu(100, 5000, 0.3);
arma::Row<size_t> labels =
arma::randi<arma::Row<size_t>>(5000, arma::distr_param(0, 2));
mlpack::NaiveBayesClassifier<arma::fmat> nbc(dataset, labels, 3);
// Now classify a test point.
arma::sp_fvec point;
point.sprandu(100, 1, 0.3);
size_t prediction;
arma::fvec probabilitiesVec;
nbc.Classify(point, prediction, probabilitiesVec);
std::cout << "Prediction for random test point: " << prediction << "."
<< std::endl;
std::cout << "Class probabilities for random test point: "
<< probabilitiesVec.t();
```
***Note:*** dense objects should be used for `ModelMatType`, since in general
the mean and sample variance of sparse data is dense.
|