1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
(**************************************************************************)
(* *)
(* Copyright (C) Johannes Kanig, Stephane Lescuyer *)
(* Jean-Christophe Filliatre, Romain Bardou and Francois Bobot *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Library General Public *)
(* License version 2.1, with the special exception on linking *)
(* described in file LICENSE. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(**************************************************************************)
open Mlpost
open Num
open Box
open Command
open Point
open Path
module Co = Color
module P = Pen
module T = Transform
module N = Num
module H = Helpers
let a = 0., 0.
let b = 1., 0.
let c = 0., 1.
let l = [a ; b ; c]
let d1 = 1, draw (path ~style:jLine ~scale:N.cm l)
let d2 = 2, draw (path ~style:jLine ~scale:N.cm ~cycle:jLine l)
let d4 =
let pen = Pen.scale (bp 4.) Pen.circle in
4, draw ~pen (path ~scale:N.cm [a])
let d5 = 5,
let pen = Pen.scale (bp 4.) P.circle in
seq [ draw (path ~style:jLine ~scale:N.cm ~cycle:jLine l);
seq (List.map (fun point -> draw ~pen (path ~scale:N.cm [point])) l) ]
let d7 = 7,
let a , b, c = cmp a, cmp b, cmp c in
seq [draw (path ~style:jLine ~scale:N.cm ~cycle:jLine l) ;
draw (pathp [ segment 0.5 a b ; c]) ;
draw (pathp [ segment 0.5 b c ; a]) ;
draw (pathp [ segment 0.5 c a ; b]) ; ]
let d12 = 12,
let pen = Pen.scale two Pen.circle in
let cl = List.map Color.gray [0.8;0.6;0.4] in
seq
(List.map2
(fun (a,b) color ->
draw ~pen ~color (path ~style:jLine ~scale:N.cm [a;b]))
[a,b;b,c;c,a] cl)
let triangle =
path ~scale:N.cm ~style:jLine ~cycle:jLine [(0.,0.);(1.,0.);(0.,1.)]
let d20 =
20, fill ~color:(Color.gray 0.8) triangle
let d21 =
21, seq [fill ~color:(Color.gray 0.8) triangle; draw triangle]
let d22 =
let pen = Pen.scale two Pen.circle in
22, seq [fill ~color:(Color.gray 0.8) triangle; draw ~pen triangle]
let d23 =
let pen = Pen.scale two Pen.circle in
23, seq [draw ~pen triangle; fill ~color:(Color.gray 0.8) triangle]
let d60 =
let a = p ~scale:N.cm (0.,0.) in
let b = p ~scale:N.cm ((-0.5), 1.) in
let c = p ~scale:N.cm (2., 1.5) in
let d = p ~scale:N.cm (1.5, 0.) in
let pen = Pen.scale two Pen.circle in
seq [ draw ~pen (jointpathp [a;d] [jControls b c]);
draw ~color:(Co.gray 0.8) (pathp ~style:jLine [b;c]);
H.draw_simple_arrow a b; H.draw_simple_arrow d c; ]
let d111 =
let a = Path.shift (p ~scale:N.cm (0.5, 0.))
(Path.scale (N.cm 2.) fullcircle) in
let t = [T.rotated 120.] in
let b = transform t a in
let c = transform t b in
seq
(List.map (fun (color, p) -> fill ~color p)
[ Co.red, a ; Co.green, b; Co.blue, c; Co.yellow, build_cycle [a;b];
Co.cyan, build_cycle [b;c]; Co.magenta, build_cycle [c;a];
Co.white, build_cycle [a;b;c] ] @ List.map draw [a;b;c])
let deuxpi = 2.*.3.14159
let d130 =
let sq = path ~style:jLine ~scale:N.cm ~cycle:jLine
[(0.,0.);(2.,0.);(2.,2.);(0.,2.)] in
(** on peut pas utiliser la resolution de MetaPost donc on
construit la transform à la main.. :-/ *)
let ratio = sqrt (3.28 /. 4.) in
let angle = atan (0.2 /. 1.8) *. 360. /. deuxpi in
let v = pt (Num.cm 0.2, Num.cm 0.) in
let t = [T.rotated angle; T.scaled (bp ratio); T.shifted v] in
let rec apply acc = function 0 -> acc | n -> apply (transform t acc) (n-1) in
let cmd i =
let p = apply sq (2*i) in
seq [fill ~color:(Color.gray 0.8) p;
fill ~color:Color.white (transform t p)]
in
130, iter 0 49 cmd
let d140 =
let cmd i =
let s = 1. -. ((float_of_int i) *. 0.01) in
fill ~color:(Color.gray s)
(Path.scale (Num.cm (2.*.s)) fullcircle)
in
140, seq [iter 0 99 cmd;
draw ~pen:(Pen.scale two Pen.circle)
(Path.scale (Num.cm 2.) fullcircle)]
let d149 =
let step = deuxpi /. 720. in
let couleur x =
let dblx = 2.*.x in
if x > 0.5 then Color.rgb (dblx-.1.) 0. (2.-.dblx)
else Color.rgb (1.-.dblx) 0. dblx in
let pt angle = (2.*.sin(2.*.angle), 2.*.cos(3.*.angle)) in
let pen = Pen.scale two Pen.circle in
let cmd i =
let angle = step *. (float_of_int i) in
draw ~color:(couleur (angle /. deuxpi)) ~pen
(path ~scale:N.cm [pt angle])
in
149,Command.iter 0 719 cmd
let d195 =
let n = 8 and u x = 5.*. (float_of_int x) in
let un = u n and u1 = u 1 and udemi = (u 1) /. 5. in
let color = Color.gray 0.8 in
let t i j = T.shifted (pt (Num.mm (u i), Num.mm (u j))) in
let row i =
let col j =
if (i+j) mod 2 = 1 then
let strip k =
let kf = (float_of_int k) *. udemi in let umk = u1 -. kf in
let udp = kf +. udemi and udm = umk -. udemi in
let l =
if k mod 2 = 1 then [(kf,0.); (u1,umk); (u1,udm); (udp,0.)]
else [(0.,kf); (umk,u1); (udm,u1); (0.,udp)]
in fill ~color (transform [t i j]
(path ~style:jLine ~scale:N.mm ~cycle:jLine l))
in
Command.iter 0 4 strip
else Command.nop
in
Command.iter 0 (n-1) col
in
let grid i =
let ui = u i in
seq [draw (path ~style:jLine ~scale:N.mm [(0.,ui); (un, ui)]);
draw (path ~style:jLine ~scale:N.mm [(ui,0.); (ui, un)])]
in
195, seq [Command.iter 0 (n-1) row; Command.iter 0 (n) grid]
let d267 =
let tex = tex ~stroke:(Some Color.black) in
let rose = Color.rgb 1. 0.5 0.5 in
let a = tex ~fill:rose ~style:RoundBox "D\\'ebut" in
let b = Box.shift (cmp (2., 0.)) (tex ~fill:rose ~style:RoundBox "Fin") in
let path angle a b =
cut_after (bpath b)
(cut_before (bpath a)
(jointpathk
[knotp ~r:(vec (dir angle)) (Box.ctr a);
knotp ~r:(vec (dir (-. angle))) (Box.ctr b)] [jCurve]))
in
seq [Box.draw a; Box.draw b;
Arrow.simple (path 45. a b); Arrow.simple (path (-135.) b a)]
let min = -1.
let max = 1.
let b = (cycle ~style:jLine (path ~style:jLine [(min,min);(max,min);(max,max);(min,max)]))
(* Pour avoir une echelle *)
let embed (id,p) =
id,seq [p;draw b;fill ~color:Color.white b]
let figs =
[ d1; d2; d4; d5; d7; d12; d20; d21; d22; d23; 60, d60; 111, d111;
d130; d140; d149; d195; 267,d267 ]
let mpostfile = "othergraphs"
let cairostfile = "testother_cairo"
let texfile = "othergraphs.tex"
(*
let _ =
Metapost.generate_mp mpostfile figs;
Generate.generate_tex texfile "othergraphs/mpost" "othergraph" figs
*)
let _ =
Sys.chdir "test";
if Cairost.supported then
begin
Metapost.generate mpostfile ~pdf:true figs;
Cairost.generate_pdfs cairostfile figs;
Generate.generate_tex_cairo texfile "othergraphs/mpost" "othergraphs"
"testother_cairo" figs;
end
else
begin
Metapost.generate mpostfile ~pdf:true figs;
Generate.generate_tex ~pdf:true texfile "othergraphs/mpost" "othergraphs" figs;
end
|