1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
|
(* figures pour l'article JFLA *)
open Mlpost
open Command
open Picture
open Path
open Helpers
open Num
open Num.Infix
open Point
open Box
let draw_arrow = Arrow.simple
(* Stphane *)
(** the old ugly version *)
(* let graph_sqrt = *)
(* let u = Num.cm in *)
(* let pen = Pen.circle ~tr:[Transform.scaled one] () in *)
(* let rec pg = function *)
(* | 0 -> start (knot ~r:(vec up) ~scale:u (0.,0.)) *)
(* | n -> let f = (float_of_int n /. 2.) in *)
(* concat ~style:jCurve (pg (n-1)) (knot ~scale:u (f, sqrt f)) *)
(* in *)
(* [draw (pathn ~style:jLine [(zero,u 2.); (zero,zero); (u 4.,zero)]); *)
(* draw ~pen (pg 8); *)
(* label ~pos:`Lowright (tex "$ \\sqrt x$") (pt (u 3., u (sqrt 3.))); *)
(* label ~pos:`Bot (tex "$x$") (pt (u 2., zero)); *)
(* label ~pos:`Lowleft (tex "$y$") (pt (zero, u 1.))] *)
(** the new short one :) *)
let graph_sqrt =
let u = cm 1. in
let sk = Plot.mk_skeleton 4 3 u u in
let label = (Picture.tex "$y=\\sqrt{x+\\frac{1}{2}}$", `Upleft, 3) in
let graph = Plot.draw_func ~label (fun x -> sqrt (float x +. 0.5)) sk in
seq [ graph; Plot.draw_simple_axes "$x$" "$y$" sk ]
let architecture =
let mk_box fill name m =
let m = "{\\tt " ^ m ^ "}" in
Box.tex ~stroke:(Some Color.black) ~style:RoundRect ~dx:(bp 5.) ~dy:(bp 5.)
~name ~fill m
in
let mk_unbox name m =
Box.tex ~style:RoundRect ~stroke:None ~dx:(bp 5.) ~dy:(bp 5.) ~name m
in
(* les types de base *)
let fill = Color.color "salmon" in
let num = mk_box fill "num" "Num" in
let point = mk_box fill "point" "Point" in
let path = mk_box fill "path" "Path" in
let dots = mk_unbox "dots" "$\\ldots$" in
let cmd = mk_box fill "cmd" "Command" in
let basictypes = Box.hbox ~padding:(mm 2.) [ num; point; path; dots; cmd ] in
(* compile *)
let compile = mk_unbox "compile" "\\tt Compile" in
let compile_ext =
let dx = (Box.width basictypes -/ Box.width compile) /./ 2. in
Box.hbox ~style:RoundRect ~dx ~fill ~stroke:(Some Color.black) [ compile ]
in
(* metapost *)
let metapost = mk_unbox "metapost" "\\metapost" in
let metapost_ext =
let dx = (Box.width basictypes -/ Box.width metapost) /./ 2. in
Box.hbox ~name:"mpost_ext" ~style:Rect ~dx ~stroke:(Some Color.black)
[ metapost ]
in
(* composants avancs *)
let fill = Color.color "pink" in
let box_ = mk_box fill "box" "\\phantom{p}Box\\phantom{p}" in
let shapes = mk_box fill "shapes" "\\phantom{p}Shapes\\phantom{p}" in
let arrows = mk_box fill "arrow" "\\phantom{p}Arrow\\phantom{p}" in
let advanced = Box.hbox ~pos:`Bot ~padding:(mm 2.) [ box_; shapes; arrows ] in
(* extensions *)
let fill = Color.color "blanched almond" in
let tree = mk_box fill "tree" "\\phantom{g}Tree\\phantom{g}" in
let diag = mk_box fill "diag" "\\phantom{g}Diag\\phantom{g}" in
let plot = mk_box fill "plot" "\\phantom{g}Plot\\phantom{g}" in
let extensions = Box.hbox ~pos:`Bot ~padding:(mm 2.) [ tree; diag; plot ] in
(* wrapping *)
let pyramid =
let pen = Pen.scale (Num.bp 1.0) Pen.square in
Box.vbox ~padding:(mm 2.) ~pen ~dx:(bp 5.) ~dy:(bp 5.) ~style:RoundRect
~stroke:(Some Color.black)
[ extensions; advanced; basictypes; compile_ext; metapost_ext ]
in
let mlpost = mk_unbox "mlpost" "\\tt Mlpost" in
let mlpost_ext =
let dx = (Box.width pyramid -/ Box.width mlpost) /./ 2. in
Box.hbox ~dx [ mlpost ]
in
let full = Box.vbox ~padding:(mm (-1.)) [ mlpost_ext; pyramid ] in
let _ = Box.set_stroke Color.black (Box.nth 1 full) in
(* arrows *)
let arrows =
let mp = Box.get "mpost_ext" full in
List.map
(fun n ->
Helpers.box_label_arrow ~outd:(Path.vec Point.down) ~pos:`Bot
(Picture.make Command.nop) (Box.get n full) mp)
(* une variante *)
(* let mp = Box.get "metapost" full in *)
(* List.map *)
(* (fun n -> Helpers.box_arrow *)
(* (Box.get n full) mp) *)
[ "num"; "point"; "path"; "dots"; "cmd" ]
in
seq [ seq arrows; Box.draw full ]
(* Romain *)
open Num
let state = Box.tex ~style:Circle ~stroke:(Some Color.black)
let final = Box.box ~style:Circle
let transition states tex anchor ?outd ?ind x_name y_name =
let x = Box.get x_name states and y = Box.get y_name states in
let outd = match outd with None -> None | Some a -> Some (vec (dir a)) in
let ind = match ind with None -> None | Some a -> Some (vec (dir a)) in
Arrow.draw ~tex ~anchor (cpath ?outd ?ind x y)
(*let loop box =
let c = Box.ctr box in
let a = Point.shift c (pt (cm 0., cm (-0.8))) in
let p = Path.pathk [
knotp ~r: (vec (dir 225.)) c;
knotp a;
knotp ~l: (vec (dir 135.)) c;
] in
let bp = Box.bpath box in
cut_after bp (cut_before bp p)*)
(*
let loop states tex pos name =
let box = Box.get name states in
let fdir, angle, x, y = match pos with
| `Top -> Box.north, 0., 0., 0.4
| `Left -> Box.west, 90., (-0.4), 0.
| `Bot -> Box.south, 180., 0., (-0.4)
| `Right -> Box.north, 270., 0.4, 0.
in
let a = Point.shift (fdir box) (Point.pt (cm x, cm y)) in
let c = Box.ctr box in
let p = Path.pathk [
knotp ~r: (vec (dir (angle +. 45.))) c;
knotp a;
knotp ~l: (vec (dir (angle -. 45.))) c;
] in
let bp = Box.bpath box in
Arrow.draw ~tex ~pos: (pos :> Command.position)
(cut_after bp (cut_before bp p))
*)
let loop states tex name =
let box = Box.get name states in
let a = Point.shift (Box.south box) (Point.pt (cm 0., cm (-0.4))) in
let c = Box.ctr box in
let p =
Path.pathk
[ knotp ~r:(vec (dir 225.)) c; knotp a; knotp ~l:(vec (dir 135.)) c ]
in
let bp = Box.bpath box in
Arrow.draw ~tex ~anchor:`Bot (cut_after bp (cut_before bp p))
let arrow_loop_explain_kind =
Arrow.add_belt ~point:0.9
(Arrow.add_line ~dashed:Dash.evenly ~to_point:0.1
(Arrow.add_line ~dashed:Dash.evenly ~from_point:0.9
(Arrow.add_line ~from_point:0.1 ~to_point:0.9 Arrow.empty)))
let loop_explain =
let construct_pattern = Dash.pattern [ Dash.on (bp 0.2); Dash.off (bp 1.) ] in
let arc_arrow =
Arrow.add_head
~head:(Arrow.head_classic ~dashed:construct_pattern)
(Arrow.add_line ~dashed:construct_pattern Arrow.empty)
in
let s = state "~~~~~~~~~~~" in
let pt x y = Point.pt (cm x, cm y) in
let p x y = Point.shift (Box.ctr s) (pt x y) in
let a_pos = p 0. (-2.) in
let angle = 180. in
let c = Box.ctr s in
let arrow_path =
Path.pathk
[
knotp ~r:(vec (dir (angle +. 45.))) c;
knotp a_pos;
knotp ~l:(vec (dir (angle -. 45.))) c;
]
in
let vert = Path.pathk [ knotp (p 0. 2.); knotp (p 0. (-3.)) ] in
let len = 1.2 in
let diag1 = Path.pathk [ knotp (p len len); knotp (p (-.len) (-.len)) ] in
let diag2 = Path.pathk [ knotp (p len (-.len)); knotp (p (-.len) len) ] in
let construct = Command.draw ~dashed:construct_pattern in
let circle = Path.shift (pt 0.64 0.) (Path.scale (cm 2.) Path.fullcircle) in
let arc = cut_before vert (cut_after diag2 (cut_after vert circle)) in
seq
[
Box.draw s;
Command.dotlabel ~pos:`Lowleft (Picture.tex "$A$") a_pos;
Arrow.draw ~kind:arrow_loop_explain_kind arrow_path;
construct vert;
construct diag1;
construct diag2;
Arrow.draw ~tex:"$45^{\\circ}$" ~anchor:`Upleft ~kind:arc_arrow arc;
]
(*
let initial states pos name =
let x = Box.get name states in
let p = match pos with
| `Left -> Box.west x
| `Right -> Box.east x
| `Top -> Box.north x
| `Bot -> Box.south x
in
Arrow.draw (Path.pathp [ Point.shift p (Point.pt (cm (-0.3), zero)); p ])
*)
let initial (states : Box.t) (name : string) : Command.t =
let b = Box.get name states in
let p = Box.west b in
Arrow.draw (Path.pathp [ Point.shift p (Point.pt (cm (-0.3), zero)); p ])
let automate_1 =
let states =
Box.vbox ~padding:(cm 0.8)
[
Box.hbox ~padding:(cm 1.4)
[ state ~name:"alpha" "$\\alpha$"; state "$\\beta$" ];
final (state "$\\gamma$");
]
in
Box.draw states
let automate =
let states =
Box.vbox ~padding:(cm 0.8)
[
Box.hbox ~padding:(cm 1.4)
[ state ~name:"alpha" "$\\alpha$"; state ~name:"beta" "$\\beta$" ];
final ~name:"gamma" (state "$\\gamma$");
]
in
seq
[
Box.draw states;
transition states "a" `Lowleft "alpha" "gamma";
transition states "b" `Lowright "gamma" "beta";
transition states "c" `Top ~outd:25. ~ind:335. "alpha" "beta";
transition states "d" `Bot ~outd:205. ~ind:155. "beta" "alpha";
loop states "e" "gamma";
initial states "alpha";
]
let arrow_metapost =
seq
[
Helpers.draw_simple_arrow
~outd:(vec (dir 90.))
~ind:(vec (dir 90.))
(Point.pt (cm 0., cm 0.5))
(Point.pt (cm 2., cm 0.5));
Helpers.draw_simple_arrow
(Point.pt (cm 4., cm 0.5))
(Point.pt (cm 6., cm 0.5));
Helpers.draw_simple_arrow ~dashed:Dash.evenly
~outd:(vec (dir 90.))
(Point.pt (cm 8., cm 0.))
(Point.pt (cm 10., cm 0.));
Helpers.draw_simple_arrow
~pen:(Pen.scale (bp 2.5) Pen.square)
(Point.pt (cm 12., cm 0.))
(Point.pt (cm 14., cm 1.));
]
let arrow_demo_path =
Path.pathp [ Point.pt (zero, zero); Point.pt (cm 2., zero) ]
let arrow_simple = Arrow.draw ~kind:Arrow.triangle_full arrow_demo_path
let arrow_loop_explain =
let pt x y = Point.pt (cm x, cm y) in
let draw2 = Arrow.point_to_point ~kind:arrow_loop_explain_kind in
seq
[
draw2 ~outd:(vec (dir 45.)) ~ind:(vec (dir 45.)) (pt 0. 0.25) (pt 3. 0.25);
draw2 (pt 5. 0.25) (pt 8. 0.25);
draw2 ~outd:(vec (dir 45.)) (pt 10. 0.) (pt 13. 0.);
]
(* Johannes *)
open Box
let uml_client, uml =
let classblock name attr_list method_list =
let vbox = Box.vbox ~pos:`Left in
Box.vblock ~pos:`Left ~name
[
tex ("{\\bf " ^ name ^ "}");
vbox (List.map tex attr_list);
vbox (List.map tex method_list);
]
in
let a =
classblock "BankAccount"
[ "balance : Dollars = $0$" ]
[ "deposit (amount : Dollars)"; "withdraw (amount : Dollars)" ]
in
let b = classblock "Client" [ "name : String"; "address : String" ] [] in
let diag = Box.vbox ~padding:(cm 1.) [ a; b ] in
( Box.draw b,
seq
[
Box.draw diag;
box_label_arrow ~pos:`Left (Picture.tex "owns") (get "Client" diag)
(get "BankAccount" diag);
] )
open Tree
let sharing =
let tex s = tex ~name:s ~style:Circle ~dx:two ~dy:two s in
let tree =
bin (tex "a")
(bin (tex "b")
(leaf (tex "c"))
(bin (tex "d") (leaf (tex "e")) (leaf (tex "f"))))
(node (tex "g") [ leaf (tex "h") ])
in
let tree = to_box tree in
seq
[
Box.draw tree;
box_arrow (get "h" tree) (get "f" tree);
box_arrow (get "g" tree) (get "d" tree);
]
let arrowpic =
pic ~stroke:None
(Picture.make (draw_arrow (Path.path ~scale:cm [ (0., 0.); (0., -1.) ])))
let harrowpic =
pic ~stroke:None ~name:"harrow"
(Picture.make (draw_arrow (Path.path ~scale:cm [ (0., 0.); (1., 0.) ])))
let texttt s = tex ("{\\tt " ^ s ^ "}")
let sharingcompile =
let code =
Box.vbox ~pos:`Left
(List.map texttt [ "path f = ...;"; "path d = ...e...f...;"; "..." ])
in
let b =
Box.hbox ~padding:(cm 2.)
(List.map
(fun (b, name) -> Box.box ~dx:(cm 0.5) ~name ~stroke:None b)
[
(Box.pic ~stroke:None (Picture.make sharing), "tree"); (code, "code");
])
in
let arrow x y = box_arrow (get x b) (get y b) in
seq [ Box.draw b; arrow "tree" "code" ]
let stages =
let dx = bp 5. and dy = bp 5. in
let tex' = tex ~style:RoundRect ~dx ~dy in
let tex = tex' ~stroke:(Some Color.black) in
let box name = box ~stroke:None ~dx:(mm 2.) ~name in
let fml = box "fml" (tex "figure.ml") in
let fmp = box "fmp" (tex "figure.mp") in
let ps =
box "ps"
(vbox ~stroke:(Some Color.black) ~style:RoundRect ~dx ~dy
[ tex' "figure.1"; tex' "(\\postscript)" ])
in
let all = hbox ~padding:(cm 3.5) [ fml; fmp; ps ] in
seq
[
Box.draw all;
box_labelbox_arrow ~pos:`Top
(vbox [ tex "\\ocaml"; arrowpic; tex' "compiler \\& ex\\'ecuter" ])
(get "fml" all) (get "fmp" all);
box_labelbox_arrow ~pos:`Top
(vbox [ tex "\\metapost"; arrowpic; tex' "interpr\\'eter" ])
(get "fmp" all) (get "ps" all);
]
let simple =
seq
[
Box.draw (tex "\\LaTeX");
Box.draw (shift (Point.pt (cm 1., zero)) (circle (empty ())));
]
let align =
seq [ Box.draw (hbox ~padding:(cm 1.) [ tex "\\LaTeX"; circle (empty ()) ]) ]
let persistance =
let b = hbox ~padding:(cm 1.) [ tex "\\LaTeX"; circle (empty ()) ] in
Box.draw (vbox [ b; set_stroke Color.black b; b ])
(* Bresenham (JCF) *)
(* the data to plot are computed here *)
let x2 = 9
let y2 = 6
let bresenham_data =
let a = Array.create (x2 + 1) 0 in
let y = ref 0 in
let e = ref ((2 * y2) - x2) in
for x = 0 to x2 do
a.(x) <- !y;
if !e < 0 then e := !e + (2 * y2)
else (
y := !y + 1;
e := !e + (2 * (y2 - x2)) )
done;
a
(* drawing *)
let stroke = Some Color.black
let width = bp 10.
and height = bp 10.
let bresenham0 =
let g =
Box.gridi (x2 + 1) (y2 + 1) (fun i j ->
let fill =
if bresenham_data.(i) = y2 - j then Some Color.red else None
in
Box.empty ~width ~height ?fill ~stroke ())
in
Box.draw g
let bresenham =
let g =
Box.gridi (x2 + 1) (y2 + 1) (fun i j ->
let fill =
if bresenham_data.(i) = y2 - j then Some Color.red else None
in
Box.empty ~width ~height ?fill ~stroke ())
in
let get i j = Box.nth i (Box.nth (y2 - j) g) in
let label pos s point i j =
Command.label ~pos (Picture.tex s) (point (get i j))
in
seq
[
Box.draw g;
label `Bot "0" Box.south 0 0;
label `Bot "$x_2$" Box.south x2 0;
label `Left "0" Box.west 0 0;
label `Left "$y_2$" Box.west 0 y2;
]
(* cercles de Ford (merci Claude) *)
let ford n =
let u x = Num.bp (200.0 *. x) in
let circle x y r =
Command.draw ~color:Color.black
(Path.shift (Point.pt (u x, u y)) (Path.scale (u (2. *. r)) fullcircle))
in
let rec aux acc p1 q1 p2 q2 =
let p = p1 + p2 in
let q = q1 + q2 in
if q > n then acc
else
let fq = float q in
let fr = 0.5 /. fq /. fq in
let acc = circle (float p /. fq) fr fr :: acc in
let acc = aux acc p1 q1 p q in
aux acc p q p2 q2
in
let l = aux [] 0 1 1 1 in
let pic = Picture.make (Command.seq l) in
Picture.scale (Num.bp 30.0) pic
(* blocks mmoire *)
let simple_block =
let b = Box.hblock ~pos:`Bot [ Box.tex "a"; Box.tex "b"; Box.tex "C" ] in
Box.draw b
let pointer_arrow a b =
let p = pathp [ Box.ctr a; Box.ctr b ] in
let p = Path.cut_after (Box.bpath b) p in
let pen = Pen.scale (Num.bp 4.) Pen.circle in
Command.draw ~pen (pathp [ Box.ctr a ]) ++ draw_arrow p
let block_arrow =
let a =
Box.empty ~width:(bp 10.) ~height:(bp 10.) ~stroke:(Some Color.black) ()
in
let g = Box.hbox ~padding:(cm 1.) [ a; a ] in
seq [ Box.draw g; pointer_arrow (Box.nth 0 g) (Box.nth 1 g) ]
let cons hd tl =
let p1 = tex ~name:"hd" hd in
let p2 =
if tl then empty ~name:"tl" ~width:(bp 10.) ()
else tex ~name:"tl" "\\ensuremath{\\bot}"
in
hblock [ p1; p2 ]
let draw_list l =
let rec make = function
| [] -> assert false
| [ x ] -> [ cons x false ]
| x :: l -> cons x true :: make l
in
let l = hbox ~padding:(Num.bp 30.) (make l) in
let rec arrows = function
| [] | [ _ ] -> nop
| b1 :: (b2 :: _ as l) ->
pointer_arrow (Box.get "tl" b1) (Box.get "hd" b2) ++ arrows l
in
seq [ Box.draw l; arrows (Array.to_list (Box.elts l)) ]
let list123 = draw_list [ "1"; "2"; "3" ]
let another_list =
draw_list (List.map (fun n -> Printf.sprintf "$\\sqrt{%d}$" n) [ 1; 2; 3; 4 ])
let deps =
let node s =
Box.round_rect ~name:s ~dx:zero
(Box.tex ("{\\tt\\phantom{p}" ^ s ^ "\\phantom{p}}"))
in
let ellipsis = Box.tex ~name:"..." "\\phantom{p}\\dots\\phantom{lp}" in
let b =
vbox ~padding:(bp 30.)
[
node "mlpost.mli";
hbox ~padding:(bp 25.)
[ node "num.ml"; node "point.ml"; ellipsis; node "path.ml" ];
node "types.mli";
]
in
let arrow b1 b2 = box_arrow (Box.get b1 b) (Box.get b2 b) in
seq
[
Box.draw b;
iterl
(fun s -> arrow "mlpost.mli" s ++ arrow s "types.mli")
[ "num.ml"; "point.ml"; "path.ml"; "..." ];
]
let sous_typage =
let tt s = Box.tex ~name:s ("\\tt `" ^ s) in
let b =
tabularl ~hpadding:(bp 10.) ~vpadding:(bp 10.)
[
[ tt "Upleft"; tt "Top"; tt "Upright" ];
[ tt "Left"; tt "Center"; tt "Right" ];
[ tt "Lowleft"; tt "Bot"; tt "Lowright" ];
]
in
let group l color =
let bl = Box.group ~style:RoundRect (List.map (fun s -> Box.get s b) l) in
Command.draw ~color (bpath bl)
in
seq
[
group [ "Left"; "Center"; "Right" ] Color.red;
group [ "Top"; "Center"; "Bot" ] Color.blue;
Box.draw b;
]
let texttt x = "\\texttt{" ^ x ^ "}"
let circularity =
let box x =
Box.tex ~name:x ~style:Box.RoundRect ~stroke:(Some Color.orange)
~fill:Color.yellow ~dx:(Num.cm 0.1) ~dy:(Num.cm 0.1) x
in
let dir x = Path.vec (Point.dir x) in
let transform = box "Transform" in
let point = box "Point" in
let picture = box "Picture" in
let command = box "Command" in
let circ x y = Box.vbox ~padding:(Num.cm 0.75) [ x; y ] in
let hbox =
Box.hbox ~padding:(Num.cm 2.5)
[ circ transform point; circ picture command ]
in
let arrow_down x y tex =
let x = Box.get x hbox in
let y = Box.get y hbox in
let tex = texttt tex in
Arrow.draw ~tex ~anchor:`Left (Box.cpath ~outd:(dir 225.) x y)
in
let arrow_up x y tex =
let x = Box.get x hbox in
let y = Box.get y hbox in
let tex = texttt tex in
Arrow.draw ~tex ~anchor:`Right (Box.cpath ~outd:(dir 45.) y x)
in
seq
[
Box.draw hbox;
arrow_down "Transform" "Point" "shifted";
arrow_up "Transform" "Point" "transform";
arrow_down "Picture" "Command" "make";
arrow_up "Picture" "Command" "draw\\_pic";
]
let circularity_solution =
let box title contents =
Box.vbox ~pos:`Left [ Box.tex (texttt title); contents ]
in
let box_tex title contents =
let contents = List.map (fun line -> Box.tex (texttt line)) contents in
box title
(Box.vbox ~name:title ~pos:`Left ~style:RoundRect
~stroke:(Some Color.orange) ~fill:(Color.rgb8 255 255 150) contents)
in
let box_hbox title contents =
box title
(Box.hbox ~pos:`Top ~padding:(Num.cm 0.1) ~dx:(Num.cm 0.1)
~dy:(Num.cm 0.1) ~style:RoundRect ~stroke:(Some Color.red)
~fill:(Color.rgb8 255 255 210) contents)
in
let mlpost_mli =
box_tex "mlpost.mli"
[ "module rec Num: sig ... end~~~~~~~~~~~"; "and Point: ..." ]
in
let num_ml = box_tex "num.ml" [ "type t = ..."; "let cm = ..." ] in
let color_ml = box_tex "color.ml" [ "type t = ..." ] in
let box_ml = box_tex "box.ml" [ "type t = ..." ] in
let types_mli =
box_tex "types.mli" [ "type num = ..."; "and point = ..."; "and box = ..." ]
in
let mlpost = box_hbox "Mlpost" [ num_ml; color_ml; box_ml ] in
let all = Box.vbox ~padding:(Num.cm 0.2) [ mlpost_mli; mlpost; types_mli ] in
let arrow dir x y =
let x = Box.get x all in
let y = Box.get y all in
Arrow.draw (Box.cpath ~outd:(Path.vec (Point.dir dir)) x y)
in
seq
[
Box.draw all;
arrow 270. "num.ml" "types.mli";
arrow 320. "color.ml" "types.mli";
arrow 270. "box.ml" "types.mli";
]
let () = Metapost.emit "sous_typage" sous_typage
let () = Metapost.emit "automate_1" automate_1
let () = Metapost.emit "automate" automate
let () = Metapost.emit "loop_explain" loop_explain
let () = Metapost.emit "uml_client" uml_client
let () = Metapost.emit "uml" uml
let () = Metapost.emit "graph_sqrt" graph_sqrt
let () = Metapost.emit "architecture" architecture
let () = Metapost.emit "bresenham0" bresenham0
let () = Metapost.emit "bresenham" bresenham
let () = Metapost.emit "sharing" sharing
let () = Metapost.emit "tree_compile" sharingcompile
let () = Metapost.emit "arrow_metapost" arrow_metapost
let () = Metapost.emit "arrow_simple" arrow_simple
let () = Metapost.emit "arrow_loop_explain" arrow_loop_explain
let () = Metapost.emit "stages" stages
let () = Metapost.emit "simple" simple
let () = Metapost.emit "align" align
let () = Metapost.emit "persistance" persistance
let () = Metapost.emit "ford" (Command.draw_pic (ford 17))
let () = Metapost.emit "simple_block" simple_block
let () = Metapost.emit "block_arrow" block_arrow
let () = Metapost.emit "list123" list123
let () = Metapost.emit "another_list" another_list
let () = Metapost.emit "deps" deps
let () = Metapost.emit "circularity" circularity
let () = Metapost.emit "circularity_solution" circularity_solution
open Box
let pen = Pen.scale (Num.bp 4.) Pen.circle
let text = tex ~stroke:None ~dx:zero
let texttt ?fill ?name s = text ?fill ?name ("\\texttt{" ^ s ^ "}")
let pointer_arrow ?outd ?ind a b =
let r = outd and l = ind in
let p = pathk [ knotp ?r (Box.ctr a); knotp ?l (Box.ctr b) ] in
let p = cut_after (Box.bpath b) p in
Command.draw ~pen (pathp [ Box.ctr a ]) ++ draw_arrow p
let self_arrow a b =
let b = nth 0 b in
let ya = ypart (ctr a) in
let xb = xpart (ctr b) in
let xright = xpart (ctr a) +/ multf 0.7 (width a) in
let ytop = ypart (ctr b) +/ multf 1.1 (height b) in
let p =
pathk ~style:jLine
[
knotp (ctr a);
knotp (Point.pt (xright, ya));
knotp (Point.pt (xright, ytop));
knotp (Point.pt (xb, ytop));
knotp (north b);
]
in
let p = cut_after (Box.bpath b) p in
Command.draw ~pen (pathp [ Box.ctr a ]) ++ draw_arrow p
let closure1 =
let height = bp 10. in
let pointer ?name () = empty ?name ~width:(bp 15.) ~height () in
let b =
hbox ~padding:(bp 50.) ~pos:`Top
[
vbox ~padding:(bp 30.)
[
hbox ~padding:(bp 20.) ~pos:`Top
[
texttt ~name:"pow" "pow";
vblock ~name:"closure pow" [ tex "code"; pointer () ];
];
hbox ~padding:(bp 20.) ~pos:`Top
[
texttt ~name:"sum" "sum";
vblock ~name:"closure sum"
[ tex "code"; tex "\\small 0.001"; pointer (); pointer () ];
];
];
vbox ~padding:(bp 15.)
[
texttt ~name:"f" "f";
vblock ~name:"closure f" [ tex "code"; texttt "n"; pointer () ];
];
]
in
let arrow ?outd ?ind (x, i) (y, j) =
pointer_arrow ?outd ?ind (nth i (get x b)) (nth j (get y b))
in
let self_arrow x i = self_arrow (nth i (get x b)) (get x b) in
let label s x i =
Command.label ~pos:`Left
(Picture.tex ("\\tt\\tiny " ^ s))
(Box.west (nth i (get x b)))
in
[
Box.draw b;
Helpers.box_arrow (get "pow" b) (nth 0 (get "closure pow" b));
self_arrow "closure pow" 1;
label "pow" "closure pow" 1;
Helpers.box_arrow (get "f" b) (nth 0 (get "closure f" b));
arrow ~outd:(vec left) ~ind:(vec left) ("closure f", 2) ("closure pow", 0);
label "i" "closure f" 1;
label "pow" "closure f" 2;
Helpers.box_arrow (get "sum" b) (nth 0 (get "closure sum" b));
self_arrow "closure sum" 3;
label "sum" "closure sum" 3;
label "eps" "closure sum" 1;
label "f" "closure sum" 2;
arrow ~outd:(vec right) ~ind:(vec right) ("closure sum", 2) ("closure f", 0);
]
let () = Metapost.emit "closure1" (seq closure1)
open Tree
let mlposttree =
let tex = tex ~stroke:(Some Color.black) ~style:RoundRect in
let leaf s = leaf (Box.tex s) in
let node s = node ~arrow_style:Undirected (tex s) in
[
draw
(node "\\mlpost"
[
node "\\ocaml" [ leaf "\\dots"; leaf "\\dots" ];
node "\\metapost" [ node "\\LaTeX" []; leaf "\\dots" ];
]);
]
let () = Metapost.emit "mlposttree" (seq mlposttree)
let why_platform =
let tabular l =
"{\\begin{tabular}{l}" ^ String.concat " \\\\ " l ^ "\\end{tabular}}"
in
let dx = bp 5. and dy = bp 5. in
let space ~name b = rect ~stroke:None ~name ~dx ~dy b in
let green s =
space ~name:s
(round_rect ~dx ~dy ~stroke:None ~fill:Color.lightgreen (tex s))
in
let pink s =
space ~name:s
(shadow
(rect ~dx ~dy ~fill:(Color.color "light pink")
(tex ("\\large\\sf " ^ s))))
in
let interactive =
tex ~name:"interactive"
(tabular [ "Interactive provers"; "(Coq, PVS,"; "Isabelle/HOL, etc.)" ])
in
let automatic =
tex ~name:"automatic"
(tabular
[
"Automatic provers"; "(Alt-Ergo, Simplify,"; "Yices, Z3, CVC3, etc.)";
])
in
let b =
tabularl ~hpadding:(bp 20.) ~vpadding:(bp 30.)
[
[
green "Annotated C programs";
empty ();
green "JML-annotated Java programs";
];
[ pink "Caduceus"; green "Why program"; pink "Krakatoa" ];
[ empty (); pink "Why"; empty () ];
[ interactive; green "verification conditions"; automatic ];
]
in
let arrow x y =
let p = Box.cpath (get x b) (get y b) in
Arrow.draw_thick ~line_color:Color.red ~width:(bp 4.) ~head_width:(bp 10.)
~fill_color:Color.red (Path.point 0. p) (Path.point 1. p)
in
[
Box.draw b;
arrow "Annotated C programs" "Caduceus";
arrow "Caduceus" "Why program";
arrow "JML-annotated Java programs" "Krakatoa";
arrow "Krakatoa" "Why program";
arrow "Why program" "Why";
arrow "Why" "verification conditions";
arrow "verification conditions" "interactive";
arrow "verification conditions" "automatic";
]
let () = Metapost.emit "why_platform" (seq why_platform)
(*
Local Variables:
compile-command: "make figures.mp"
End:
*)
|