File: int.sml

package info (click to toggle)
mlton 20061107-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 27,828 kB
  • ctags: 61,118
  • sloc: ansic: 11,446; makefile: 1,339; sh: 1,160; lisp: 900; pascal: 256; asm: 97
file content (247 lines) | stat: -rw-r--r-- 7,927 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
(* Copyright (C) 1999-2005 Henry Cejtin, Matthew Fluet, Suresh
 *    Jagannathan, and Stephen Weeks.
 * Copyright (C) 1997-2000 NEC Research Institute.
 *
 * MLton is released under a BSD-style license.
 * See the file MLton-LICENSE for details.
 *)

functor Integer (I: PRE_INTEGER_EXTRA) =
struct

open I
structure PI = Primitive.Int

val detectOverflow = Primitive.detectOverflow

val (toInt, fromInt) =
   if detectOverflow andalso
      precision' <> PI.precision'
      then if PI.<(precision', PI.precision')
             then (I.toInt, 
                   fn i =>
                   if (PI.<= (I.toInt minInt', i)
                       andalso PI.<= (i, I.toInt maxInt'))
                      then I.fromInt i
                   else raise Overflow)
             else (fn i => 
                   if (I.<= (I.fromInt PI.minInt', i)
                       andalso I.<= (i, I.fromInt PI.maxInt'))
                      then I.toInt i
                   else raise Overflow,
                   I.fromInt)
   else (I.toInt, I.fromInt)

val precision: Int.int option = SOME precision'

val maxInt: int option = SOME maxInt'
val minInt: int option = SOME minInt'

val one: int = fromInt 1
val zero: int = fromInt 0

fun quot (x, y) =
  if y = zero
    then raise Div
    else if detectOverflow andalso x = minInt' andalso y = ~one
           then raise Overflow
           else I.quot (x, y)
             
fun rem (x, y) =
  if y = zero
    then raise Div
    else if x = minInt' andalso y = ~one
           then zero
           else I.rem (x, y)
   
fun x div y =
  if x >= zero
    then if y > zero
           then I.quot (x, y)
           else if y < zero
                  then if x = zero
                         then zero
                         else I.quot (x - one, y) -? one
                  else raise Div
    else if y < zero
           then if detectOverflow andalso x = minInt' andalso y = ~one
                  then raise Overflow
                  else I.quot (x, y)
           else if y > zero
                  then I.quot (x + one, y) -? one
                  else raise Div

fun x mod y =
  if x >= zero
    then if y > zero
           then I.rem (x, y)
           else if y < zero
                  then if x = zero
                         then zero
                         else I.rem (x - one, y) +? (y + one)
                  else raise Div
    else if y < zero
           then if x = minInt' andalso y = ~one
                  then zero
                  else I.rem (x, y)
           else if y > zero
                  then I.rem (x + one, y) +? (y - one)
                  else raise Div

val sign: int -> Int.int =
  fn i => if i = zero
            then (0: Int.int)
          else if i < zero
            then (~1: Int.int)
          else (1: Int.int)
               
fun sameSign (x, y) = sign x = sign y
  
fun abs (x: int) = if x < zero then ~ x else x

val {compare, min, max} = Util.makeCompare (op <)

(* fmt constructs a string to represent the integer by building it into a
 * statically allocated buffer.  For the most part, this is a textbook
 * algorithm: loop starting at the end of the buffer; we use rem to
 * extract the next digit to put into the buffer; and we use quot to
 * figure out the part of the integer that we haven't yet formatted.
 * However, this function uses the negative absolute value of the input
 * number, which allows it to take into account minInt without any
 * special-casing.  This requires the rem function to behave in a very
 * specific way, or else things will go terribly wrong.  This may be a
 * concern when porting to platforms where the division hardware has a
 * different interpretation than SML about what happens when doing
 * division of negative numbers.
 *)
local
   (* Allocate a buffer large enough to hold any formatted integer in any radix.
    * The most that will be required is for minInt in binary.
    *)
   val maxNumDigits = PI.+ (precision', 1)
   val one = One.make (fn () => CharArray.array (maxNumDigits, #"\000"))
in
   fun fmt radix (n: int): string =
      One.use
      (one, fn buf =>
       let
          val radix = fromInt (StringCvt.radixToInt radix)
          fun loop (q, i: Int.int) =
             let
                val _ =
                   CharArray.update
                   (buf, i, StringCvt.digitToChar (toInt (~? (rem (q, radix)))))
                val q = quot (q, radix)
             in
                if q = zero
                   then
                      let
                         val start =
                            if n < zero
                               then
                                  let
                                     val i = PI.- (i, 1)
                                     val () = CharArray.update (buf, i, #"~")
                                  in
                                     i
                                  end
                            else i
                      in
                         CharArraySlice.vector
                         (CharArraySlice.slice (buf, start, NONE))
                      end
                else loop (q, PI.- (i, 1))
             end
       in
          loop (if n < zero then n else ~? n, PI.- (maxNumDigits, 1))
       end)
end      

val toString = fmt StringCvt.DEC
         
fun scan radix reader s =
   let
      (* Works with the negative of the number so that minInt can be scanned. *)
      val s = StringCvt.skipWS reader s
      fun charToDigit c =
         case StringCvt.charToDigit radix c of
            NONE => NONE
          | SOME n => SOME (fromInt n)
      val radixInt = fromInt (StringCvt.radixToInt radix)
      fun finishNum (s, n) =
         case reader s of
            NONE => SOME (n, s)
          | SOME (c, s') =>
               case charToDigit c of
                  NONE => SOME (n, s)
                | SOME n' => finishNum (s', n * radixInt - n')
      fun num s =
         case (reader s, radix) of
            (NONE, _) => NONE
          | (SOME (#"0", s), StringCvt.HEX) =>
               (case reader s of
                   NONE => SOME (zero, s)
                 | SOME (c, s') =>
                      if c = #"x" orelse c = #"X" then
                         case reader s' of
                            NONE => SOME (zero, s)
                          | SOME (c, s') =>
                               case charToDigit c of
                                  NONE => SOME (zero, s)
                                | SOME n => finishNum (s', ~? n)
                      else
                         case charToDigit c of
                            NONE => SOME (zero, s)
                          | SOME n => finishNum (s', ~? n))
          | (SOME (c, s), _) =>
               case charToDigit c of
                  NONE => NONE
                | SOME n => finishNum (s, ~? n)
    fun negate s =
       case num s of
          NONE => NONE
        | SOME (n, s) => SOME (~ n, s)
  in
     case reader s of
        NONE => NONE
      | SOME (c, s') =>
           case c of
              #"~" => num s'
            | #"-" => num s'
            | #"+" => negate s'
            | _ => negate s
  end
      
val fromString = StringCvt.scanString (scan StringCvt.DEC)

fun power {base, exp} =
  if Primitive.safe andalso exp < zero
    then raise Fail "Int.power"
    else let
           fun loop (exp, accum) =
             if exp <= zero
               then accum
               else loop (exp - one, base * accum)
         in loop (exp, one)
         end
end

structure Int8 = Integer (Primitive.Int8)

structure Int16 = Integer (Primitive.Int16)

structure Int32 = Integer (Primitive.Int32)
structure Int = Int32
structure IntGlobal: INTEGER_GLOBAL = Int
open IntGlobal

structure Int64 = 
   struct
      local
         structure P = Primitive.Int64
         structure I = Integer (P)
      in
         open I
         val toWord = P.toWord
      end
   end