File: Fold

package info (click to toggle)
mlton 20061107-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 27,828 kB
  • ctags: 61,118
  • sloc: ansic: 11,446; makefile: 1,339; sh: 1,160; lisp: 900; pascal: 256; asm: 97
file content (1150 lines) | stat: -rw-r--r-- 67,541 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta name="robots" content="index,nofollow">



<title>Fold - MLton Standard ML Compiler (SML Compiler)</title>
<link rel="stylesheet" type="text/css" charset="iso-8859-1" media="all" href="common.css">
<link rel="stylesheet" type="text/css" charset="iso-8859-1" media="screen" href="screen.css">
<link rel="stylesheet" type="text/css" charset="iso-8859-1" media="print" href="print.css">


<link rel="Start" href="Home">


</head>

<body lang="en" dir="ltr">

<script src="http://www.google-analytics.com/urchin.js" type="text/javascript">
</script>
<script type="text/javascript">
_uacct = "UA-833377-1";
urchinTracker();
</script>
<table bgcolor = lightblue cellspacing = 0 style = "border: 0px;" width = 100%>
  <tr>
    <td style = "
		border: 0px;
		color: darkblue; 
		font-size: 150%;
		text-align: left;">
      <a class = mltona href="Home">MLton 20061025</a>
    <td style = "
		border: 0px;
		font-size: 150%;
		text-align: center;
		width: 50%;">
      Fold
    <td style = "
		border: 0px;
		text-align: right;">
      <table cellspacing = 0 style = "border: 0px">
        <tr style = "vertical-align: middle;">
      </table>
  <tr style = "background-color: white;">
    <td colspan = 3
	style = "
		border: 0px;
		font-size:70%;
		text-align: right;">
      <a href = "Home">Home</a>
      &nbsp;<a href = "Index">Index</a>
      &nbsp;
</table>
<div id="content" lang="en" dir="ltr">
This page describes a technique that enables convenient syntax for a number of language features that are not explicitly supported by <a href="StandardML">Standard ML</a>, including: variable number of arguments, <a href="OptionalArguments">optional arguments and labeled arguments</a>,  <a href="ArrayLiteral">array and vector literals</a>, <a href="FunctionalRecordUpdate">functional record update</a>, and (seemingly) dependently typed functions like <a href="Printf">printf</a> and scanf. <p>
The key idea to <em>fold</em> is to define functions <tt>fold</tt>, <tt>step0</tt>, and <tt>$</tt> such that the following equation holds. 
</p>

<pre class=code>
fold (a, f) (step0 h1) (step0 h2) ... (step0 hn) $
<B><FONT COLOR="#5F9EA0">=</FONT></B> f (hn (... (h2 (h1 a))))
</PRE>
<p>
 
</p>
<p>
The name <tt>fold</tt> comes because this is like a traditional list fold, where <tt>a</tt> is the <em>base element</em>, and each <em>step function</em>,  <tt>step0&nbsp;hi</tt>, corresponds to one element of the list and does one step of the fold.  The name <tt>$</tt> is chosen to mean <em>end of arguments</em> from its common use in regular-expression syntax. 
</p>
<p>
Unlike the usual list fold in which the same function is used to step over each element in the list, this fold allows the step functions to be different from each other, and even to be of different types.  Also unlike the usual list fold, this fold includes a <em>finishing function</em>, <tt>f</tt>, that is applied to the result of the fold.  The presence of the finishing function may seem odd because there is no analogy in list fold.  However, the finishing function is essential; without it, there would be no way for the folder to perform an arbitrary computation after processing all the arguments.  The examples below will make this clear. 
</p>
<p>
The functions <tt>fold</tt>, <tt>step0</tt>, and <tt>$</tt> are easy to define. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">fun</FONT></B> $ (a, f) <B><FONT COLOR="#5F9EA0">=</FONT></B> f a
<B><FONT COLOR="#A020F0">fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">id</FONT></I></B></FONT></B> x <B><FONT COLOR="#5F9EA0">=</FONT></B> x
<B><FONT COLOR="#5F9EA0">structure</FONT></B> Fold <B><FONT COLOR="#5F9EA0">=</FONT></B>
   <B><FONT COLOR="#5F9EA0">struct</FONT></B>
<B><FONT COLOR="#A020F0">      fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">fold</FONT></I></B></FONT></B> (a, f) g <B><FONT COLOR="#5F9EA0">=</FONT></B> g (a, f)
<B><FONT COLOR="#A020F0">      fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">step0</FONT></I></B></FONT></B> h (a, f) <B><FONT COLOR="#5F9EA0">=</FONT></B> fold (h a, f)
   <B><FONT COLOR="#A020F0">end</FONT></B>
</PRE>
<p>
 
</p>
<p>
We've placed <tt>fold</tt> and <tt>step0</tt> in the <tt>Fold</tt> structure but left <tt>$</tt> at the toplevel because it is convenient in code to always have <tt>$</tt> in scope.  We've also defined the identity function, <tt>id</tt>, at the toplevel since we use it so frequently. 
</p>
<p>
Plugging in the definitions, it is easy to verify the equation from above. 
<pre class=code>
fold (a, f) (step0 h1) (step0 h2) ... (step0 hn) $
<B><FONT COLOR="#5F9EA0">=</FONT></B> step0 h1 (a, f) (step0 h2) ... (step0 hn) $
<B><FONT COLOR="#5F9EA0">=</FONT></B> fold (h1 a, f) (step0 h2) ... (step0 hn) $
<B><FONT COLOR="#5F9EA0">=</FONT></B> step0 h2 (h1 a, f) ... (step0 hn) $
<B><FONT COLOR="#5F9EA0">=</FONT></B> fold (h2 (h1 a), f) ... (step0 hn) $
...
<B><FONT COLOR="#5F9EA0">=</FONT></B> fold (hn (... (h2 (h1 a))), f) $
<B><FONT COLOR="#5F9EA0">=</FONT></B> $ (hn (... (h2 (h1 a))), f)
<B><FONT COLOR="#5F9EA0">=</FONT></B> f (hn (... (h2 (h1 a))))
</PRE>
 
</p>
<h2 id="head-eb8e90f0113d0b7b2a22602f865ce3c364dd31e2">Example: variable number of arguments</h2>
<p>
The simplest example of fold is accepting a variable number of (curried) arguments.  We'll define a function <tt>f</tt> and argument <tt>a</tt> such that all of the following expressions are valid. 
</p>

<pre class=code>
f $
f a $
f a a $
f a a a $
f a a a ... a a a $ <I><FONT COLOR="#B22222">(* as many a's as we want *)</FONT></I>
</PRE>
<p>
 
</p>
<p>
Off-hand it may appear impossible that all of the above expressions are type correct SML -- how can a function <tt>f</tt> accept a variable number of curried arguments?  What could the type of <tt>f</tt> be? We'll have more to say later on how type checking works.  For now, once we have supplied the definitions below, you can check that the expressions are type correct by feeding them to your favorite SML implementation. 
</p>
<p>
It is simple to define <tt>f</tt> and <tt>a</tt>.  We define <tt>f</tt> as a folder whose base element is <tt>()</tt> and whose finish function does nothing.  We define <tt>a</tt> as the step function that does nothing. The only trickiness is that we must <a href="EtaExpansion">eta expand</a> the definition of <tt>f</tt> and <tt>a</tt> to work around the <a href="ValueRestriction">ValueRestriction</a>; we frequently use eta expansion for this purpose without mention. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> base <B><FONT COLOR="#5F9EA0">=</FONT></B> ()
<B><FONT COLOR="#A020F0">fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">finish</FONT></I></B></FONT></B> () <B><FONT COLOR="#5F9EA0">=</FONT></B> ()
<B><FONT COLOR="#A020F0">fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">step</FONT></I></B></FONT></B> () <B><FONT COLOR="#5F9EA0">=</FONT></B> ()
<B><FONT COLOR="#A020F0">val</FONT></B> f <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.fold (base, finish) z
<B><FONT COLOR="#A020F0">val</FONT></B> a <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.step0 step z
</PRE>
<p>
 
</p>
<p>
One can easily apply the fold equation to verify by hand that <tt>f</tt> applied to any number of <tt>a</tt>'s evaluates to <tt>()</tt>. 
</p>

<pre class=code>
f a ... a $
<B><FONT COLOR="#5F9EA0">=</FONT></B> finish (step (... (step base)))
<B><FONT COLOR="#5F9EA0">=</FONT></B> finish (step (... ()))
...
<B><FONT COLOR="#5F9EA0">=</FONT></B> finish ()
<B><FONT COLOR="#5F9EA0">=</FONT></B> ()
</PRE>
<p>
 
</p>
<h2 id="head-677e9d12eacb1c50946b3f79103afd8ab8eea31e">Example: variable-argument sum</h2>
<p>
Let's look at an example that computes something: a variable-argument function <tt>sum</tt> and a stepper <tt>a</tt> such that 
</p>

<pre class=code>
sum (a i1) (a i2) ... (a im) $ <B><FONT COLOR="#5F9EA0">=</FONT></B> i1 <B><FONT COLOR="#5F9EA0">+</FONT></B> i2 <B><FONT COLOR="#5F9EA0">+</FONT></B> ... <B><FONT COLOR="#5F9EA0">+</FONT></B> im
</PRE>
<p>
 
</p>
<p>
The idea is simple -- the folder starts with a base accumulator of <tt>0</tt> and the stepper adds each element to the accumulator, <tt>s</tt>, which the folder simply returns at the end. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> sum <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.fold (0, <B><FONT COLOR="#A020F0">fn</FONT></B> s <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> s) z
<B><FONT COLOR="#A020F0">fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">a</FONT></I></B></FONT></B> i <B><FONT COLOR="#5F9EA0">=</FONT></B> Fold.step0 (<B><FONT COLOR="#A020F0">fn</FONT></B> s <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> i <B><FONT COLOR="#5F9EA0">+</FONT></B> s)
</PRE>
<p>
 
</p>
<p>
Using the fold equation, one can verify the following. 
</p>

<pre class=code>
sum (a 1) (a 2) (a 3) $ <B><FONT COLOR="#5F9EA0">=</FONT></B> 6
</PRE>
<p>
 
</p>
<h2 id="head-1480d125a98eea997802e10f81dd1a8a9384619b">Step1</h2>
<p>
It is sometimes syntactically convenient to omit the parentheses around the steps in a fold.  This is easily done by defining a new function, <tt>step1</tt>, as follows. 
</p>

<pre class=code>
<B><FONT COLOR="#5F9EA0">structure</FONT></B> Fold <B><FONT COLOR="#5F9EA0">=</FONT></B>
   <B><FONT COLOR="#5F9EA0">struct</FONT></B>
      <B><FONT COLOR="#A020F0">open</FONT></B> Fold
<B><FONT COLOR="#A020F0">      fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">step1</FONT></I></B></FONT></B> h (a, f) b <B><FONT COLOR="#5F9EA0">=</FONT></B> fold (h (b, a), f)
   <B><FONT COLOR="#A020F0">end</FONT></B>
</PRE>
<p>
 
</p>
<p>
From the definition of <tt>step1</tt>, we have the following equivalence. 
</p>

<pre class=code>
fold (a, f) (step1 h) b
<B><FONT COLOR="#5F9EA0">=</FONT></B> step1 h (a, f) b
<B><FONT COLOR="#5F9EA0">=</FONT></B> fold (h (b, a), f)
</PRE>
<p>
 
</p>
<p>
Using the above equivalence, we can compute the following equation for <tt>step1</tt>. 
</p>

<pre class=code>
fold (a, f) (step1 h1) b1 (step1 h2) b2 ... (step1 hn) bn $
<B><FONT COLOR="#5F9EA0">=</FONT></B> fold (h1 (b1, a), f) (step1 h2) b2 ... (step1 hn) bn $
<B><FONT COLOR="#5F9EA0">=</FONT></B> fold (h2 (b2, h1 (b1, a)), f) ... (step1 hn) bn $
<B><FONT COLOR="#5F9EA0">=</FONT></B> fold (hn (bn, ... (h2 (b2, h1 (b1, a)))), f) $
<B><FONT COLOR="#5F9EA0">=</FONT></B> f (hn (bn, ... (h2 (b2, h1 (b1, a)))))
</PRE>
<p>
 
</p>
<p>
Here is an example using <tt>step1</tt> to define a variable-argument product function, <tt>prod</tt>, with a convenient syntax. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> prod <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.fold (1, <B><FONT COLOR="#A020F0">fn</FONT></B> p <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> p) z
<B><FONT COLOR="#A020F0">val</FONT></B> ` <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.step1 (<B><FONT COLOR="#A020F0">fn</FONT></B> (i, p) <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> i <B><FONT COLOR="#5F9EA0">*</FONT></B> p) z
</PRE>
<p>
 
</p>
<p>
The functions <tt>prod</tt> and <tt>`</tt> satisfy the following equation. 
<pre class=code>
prod `i1 `i2 ... `im $ <B><FONT COLOR="#5F9EA0">=</FONT></B> i1 <B><FONT COLOR="#5F9EA0">*</FONT></B> i2 <B><FONT COLOR="#5F9EA0">*</FONT></B> ... <B><FONT COLOR="#5F9EA0">*</FONT></B> im
</PRE>
 
</p>
<p>
Note that in SML, <tt>`i1</tt> is two different tokens, <tt>`</tt> and <tt>i1</tt>.  We often use <tt>`</tt> for an instance of a <tt>step1</tt> function because of its syntactic unobtrusiveness and because no space is required to separate it from an alphanumeric token. 
</p>
<p>
Also note that there are no parenthesis around the steps.  That is, the following expression is not the same as the above one (in fact, it is not type correct). 
</p>

<pre class=code>
prod (`i1) (`i2) ... (`im) $
</PRE>
<p>
 
</p>
<h2 id="head-970703bc37877d12c60099a1b012e155e9057ca7">Example: list literals</h2>
<p>
SML already has a syntax for list literals, e.g. <tt>[w,&nbsp;x,&nbsp;y,&nbsp;z]</tt>. However, using fold, we can define our own syntax. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> <B><FONT COLOR="#228B22">list</FONT></B> <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.fold ([], rev) z
<B><FONT COLOR="#A020F0">val</FONT></B> ` <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.step1 (<B><FONT COLOR="#A020F0">op</FONT></B> <B><FONT COLOR="#5F9EA0">::</FONT></B>) z
</PRE>
<p>
 
</p>
<p>
The idea is that the folder starts out with the empty list, the steps accumulate the elements into a list, and then the finishing function reverses the list at the end. 
</p>
<p>
With these definitions one can write a list like: 
</p>

<pre class=code>
<B><FONT COLOR="#228B22">list</FONT></B> `w `x `y `z $
</PRE>
<p>
 
</p>
<p>
While the example is not practically useful, it does demonstrate the need for the finishing function to be incorporated in <tt>fold</tt>. Without a finishing function, every use of <tt>list</tt> would need to be wrapped in <tt>rev</tt>, as follows. 
</p>

<pre class=code>
rev (<B><FONT COLOR="#228B22">list</FONT></B> `w `x `y `z $)
</PRE>
<p>
 
</p>
<p>
The finishing function allows us to incorporate the reversal into the definition of <tt>list</tt>, and to treat <tt>list</tt> as a truly variable argument function, performing an arbitrary computation after receiving all of its arguments. 
</p>
<p>
See <a href="ArrayLiteral">ArrayLiteral</a> for a similar use of <tt>fold</tt> that provides a syntax for array and vector literals, which are not built in to SML. 
</p>
<h2 id="head-a23a2fc1bc8d5112da93328461608221b9d8cb14">Fold right</h2>
<p>
Just as <tt>fold</tt> is analogous to a fold left, in which the functions are applied to the accumulator left-to-right, we can define a variant of <tt>fold</tt> that is analogous to a fold right, in which the functions are applied to the accumulator right-to-left.  That is, we can define functions <tt>foldr</tt> and <tt>step0</tt> such that the following equation holds. 
</p>

<pre class=code>
foldr (a, f) (step0 h1) (step0 h2) ... (step0 hn) $
<B><FONT COLOR="#5F9EA0">=</FONT></B> f (h1 (h2 (... (hn a))))
</PRE>
<p>
 
</p>
<p>
The implementation of fold right is easy, using fold.  The idea is for the fold to start with <tt>f</tt> and for each step to precompose the next <tt>hi</tt>.  Then, the finisher applies the composed function to the base value, <tt>a</tt>.  Here is the code. 
</p>

<pre class=code>
<B><FONT COLOR="#5F9EA0">structure</FONT></B> Foldr <B><FONT COLOR="#5F9EA0">=</FONT></B>
   <B><FONT COLOR="#5F9EA0">struct</FONT></B>
<B><FONT COLOR="#A020F0">      fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">foldr</FONT></I></B></FONT></B> (a, f) <B><FONT COLOR="#5F9EA0">=</FONT></B> Fold.fold (f, <B><FONT COLOR="#A020F0">fn</FONT></B> g <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> g a)
<B><FONT COLOR="#A020F0">      fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">step0</FONT></I></B></FONT></B> h <B><FONT COLOR="#5F9EA0">=</FONT></B> Fold.step0 (<B><FONT COLOR="#A020F0">fn</FONT></B> g <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> g <B><FONT COLOR="#A020F0">o</FONT></B> h)
   <B><FONT COLOR="#A020F0">end</FONT></B>
</PRE>
<p>
 
</p>
<p>
Verifying the fold-right equation is straightforward, using the fold-left equation. 
</p>

<pre class=code>
foldr (a, f) (Foldr.step0 h1) (Foldr.step0 h2) ... (Foldr.step0 hn) $
<B><FONT COLOR="#5F9EA0">=</FONT></B> fold (f, <B><FONT COLOR="#A020F0">fn</FONT></B> g <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> g a) 
    (Fold.step0 (<B><FONT COLOR="#A020F0">fn</FONT></B> g <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> g <B><FONT COLOR="#A020F0">o</FONT></B> h1))
    (Fold.step0 (<B><FONT COLOR="#A020F0">fn</FONT></B> g <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> g <B><FONT COLOR="#A020F0">o</FONT></B> h2))
    ...
    (Fold.step0 (<B><FONT COLOR="#A020F0">fn</FONT></B> g <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> g <B><FONT COLOR="#A020F0">o</FONT></B> hn)) $
<B><FONT COLOR="#5F9EA0">=</FONT></B> (<B><FONT COLOR="#A020F0">fn</FONT></B> g <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> g a)
  ((<B><FONT COLOR="#A020F0">fn</FONT></B> g <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> g <B><FONT COLOR="#A020F0">o</FONT></B> hn) (... ((<B><FONT COLOR="#A020F0">fn</FONT></B> g <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> g <B><FONT COLOR="#A020F0">o</FONT></B> h2) ((<B><FONT COLOR="#A020F0">fn</FONT></B> g <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> g <B><FONT COLOR="#A020F0">o</FONT></B> h1) f))))
<B><FONT COLOR="#5F9EA0">=</FONT></B> (<B><FONT COLOR="#A020F0">fn</FONT></B> g <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> g a)
  ((<B><FONT COLOR="#A020F0">fn</FONT></B> g <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> g <B><FONT COLOR="#A020F0">o</FONT></B> hn) (... ((<B><FONT COLOR="#A020F0">fn</FONT></B> g <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> g <B><FONT COLOR="#A020F0">o</FONT></B> h2) (f <B><FONT COLOR="#A020F0">o</FONT></B> h1))))
<B><FONT COLOR="#5F9EA0">=</FONT></B> (<B><FONT COLOR="#A020F0">fn</FONT></B> g <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> g a) ((<B><FONT COLOR="#A020F0">fn</FONT></B> g <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> g <B><FONT COLOR="#A020F0">o</FONT></B> hn) (... (f <B><FONT COLOR="#A020F0">o</FONT></B> h1 <B><FONT COLOR="#A020F0">o</FONT></B> h2)))
<B><FONT COLOR="#5F9EA0">=</FONT></B> (<B><FONT COLOR="#A020F0">fn</FONT></B> g <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> g a) (f <B><FONT COLOR="#A020F0">o</FONT></B> h1 <B><FONT COLOR="#A020F0">o</FONT></B> h2 <B><FONT COLOR="#A020F0">o</FONT></B> ... <B><FONT COLOR="#A020F0">o</FONT></B> hn)
<B><FONT COLOR="#5F9EA0">=</FONT></B> (f <B><FONT COLOR="#A020F0">o</FONT></B> h1 <B><FONT COLOR="#A020F0">o</FONT></B> h2 <B><FONT COLOR="#A020F0">o</FONT></B> ... <B><FONT COLOR="#A020F0">o</FONT></B> hn) a
<B><FONT COLOR="#5F9EA0">=</FONT></B> f (h1 (h2 (... (hn a))))
</PRE>
<p>
 
</p>
<p>
One can also define the fold-right analogue of <tt>step1</tt>. 
</p>

<pre class=code>
<B><FONT COLOR="#5F9EA0">structure</FONT></B> Foldr <B><FONT COLOR="#5F9EA0">=</FONT></B>
   <B><FONT COLOR="#5F9EA0">struct</FONT></B>
      <B><FONT COLOR="#A020F0">open</FONT></B> Foldr
<B><FONT COLOR="#A020F0">      fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">step1</FONT></I></B></FONT></B> h <B><FONT COLOR="#5F9EA0">=</FONT></B> Fold.step1 (<B><FONT COLOR="#A020F0">fn</FONT></B> (b, g) <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> g <B><FONT COLOR="#A020F0">o</FONT></B> (<B><FONT COLOR="#A020F0">fn</FONT></B> a <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> h (b, a)))
   <B><FONT COLOR="#A020F0">end</FONT></B>
</PRE>
<p>
 
</p>
<h2 id="head-ab8bc412c39f88e53289115eeb16ca0026e5b292">Example: list literals via fold right</h2>
<p>
Revisiting the list literal example from earlier, we can use fold right to define a syntax for list literals that doesn't do a reversal. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> <B><FONT COLOR="#228B22">list</FONT></B> <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Foldr.foldr ([], <B><FONT COLOR="#A020F0">fn</FONT></B> l <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> l) z
<B><FONT COLOR="#A020F0">val</FONT></B> ` <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Foldr.step1 (<B><FONT COLOR="#A020F0">op</FONT></B> <B><FONT COLOR="#5F9EA0">::</FONT></B>) z
</PRE>
<p>
 
</p>
<p>
As before, with these definitions, one can write a list like: 
</p>

<pre class=code>
<B><FONT COLOR="#228B22">list</FONT></B> `w `x `y `z $
</PRE>
<p>
 
</p>
<p>
The difference between the fold-left and fold-right approaches is that the fold-right approach does not have to reverse the list at the end, since it accumulates the elements in the correct order.  In practice, MLton will simplify away all of the intermediate function composition, so the the fold-right approach will be more efficient. 
</p>
<h2 id="head-45726afdeece4355f73ffcb615f1d992001c692e">Mixing steppers</h2>
<p>
All of the examples so far have used the same step function throughout a fold.  This need not be the case.  For example, consider the following. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> n <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.fold (0, <B><FONT COLOR="#A020F0">fn</FONT></B> i <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> i) z
<B><FONT COLOR="#A020F0">val</FONT></B> I <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.step0 (<B><FONT COLOR="#A020F0">fn</FONT></B> i <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> i <B><FONT COLOR="#5F9EA0">*</FONT></B> 2) z
<B><FONT COLOR="#A020F0">val</FONT></B> O <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.step0 (<B><FONT COLOR="#A020F0">fn</FONT></B> i <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> i <B><FONT COLOR="#5F9EA0">*</FONT></B> 2 <B><FONT COLOR="#5F9EA0">+</FONT></B> 1) z
</PRE>
<p>
 
</p>
<p>
Here we have one folder, <tt>n</tt>, that can be used with two different steppers, <tt>I</tt> and <tt>O</tt>.  By using the fold equation, one can verify the following equations. 
</p>

<pre class=code>
n O $ <B><FONT COLOR="#5F9EA0">=</FONT></B> 0
n I $ <B><FONT COLOR="#5F9EA0">=</FONT></B> 1
n I O $ <B><FONT COLOR="#5F9EA0">=</FONT></B> 2
n I O I $ <B><FONT COLOR="#5F9EA0">=</FONT></B> 5
n I I I O $ <B><FONT COLOR="#5F9EA0">=</FONT></B> 14
</PRE>
<p>
 
</p>
<p>
That is, we've defined a syntax for writing binary integer constants. 
</p>
<p>
Not only can one use different instances of <tt>step0</tt> in the same fold, one can also intermix uses of <tt>step0</tt> and <tt>step1</tt>.  For example, consider the following. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> n <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.fold (0, <B><FONT COLOR="#A020F0">fn</FONT></B> i <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> i) z
<B><FONT COLOR="#A020F0">val</FONT></B> O <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.step0 (<B><FONT COLOR="#A020F0">fn</FONT></B> i <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> n <B><FONT COLOR="#5F9EA0">*</FONT></B> 8) z
<B><FONT COLOR="#A020F0">val</FONT></B> ` <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.step1 (<B><FONT COLOR="#A020F0">fn</FONT></B> (i, n) <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> n <B><FONT COLOR="#5F9EA0">*</FONT></B> 8 <B><FONT COLOR="#5F9EA0">+</FONT></B> i) z
</PRE>
<p>
 
</p>
<p>
Using the straightforward generalization of the fold equation to mixed steppers, one can verify the following equations. 
</p>

<pre class=code>
n 0 $ <B><FONT COLOR="#5F9EA0">=</FONT></B> 0
n `3 O $ <B><FONT COLOR="#5F9EA0">=</FONT></B> 24
n `1 O `7 $ <B><FONT COLOR="#5F9EA0">=</FONT></B> 71
</PRE>
<p>
 
</p>
<p>
That is, we've defined a syntax for writing octal integer constants, with a special syntax, <tt>O</tt>, for the zero digit (admittedly contrived, since one could just write <tt>`0</tt> instead of <tt>O</tt>). 
</p>
<p>
See <a href="NumericLiteral">NumericLiteral</a> for a practical extension of this approach that supports numeric constants in any base and of any type. 
</p>
<h2 id="head-c9f72c00a8519db78dbb19512887495769c7358d">(Seemingly) dependent types</h2>
<p>
A normal list fold always returns the same type no matter what elements are in the list or how long the list is.  Variable-argument fold is more powerful, because the result type can vary based both on the arguments that are passed and on their number.  This can provide the illusion of dependent types. 
</p>
<p>
For example, consider the following. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> f <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.fold ((), id) z
<B><FONT COLOR="#A020F0">val</FONT></B> a <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.step0 (<B><FONT COLOR="#A020F0">fn</FONT></B> () <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> <B><FONT COLOR="#BC8F8F">&quot;hello&quot;</FONT></B>) z
<B><FONT COLOR="#A020F0">val</FONT></B> b <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.step0 (<B><FONT COLOR="#A020F0">fn</FONT></B> () <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 13) z
<B><FONT COLOR="#A020F0">val</FONT></B> c <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.step0 (<B><FONT COLOR="#A020F0">fn</FONT></B> () <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> (1, 2)) z
</PRE>
<p>
 
</p>
<p>
Using the fold equation, one can verify the following equations. 
</p>

<pre class=code>
f a $ <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#BC8F8F">&quot;hello&quot;</FONT></B>: <B><FONT COLOR="#228B22">string</FONT></B>
f b $ <B><FONT COLOR="#5F9EA0">=</FONT></B> 13: <B><FONT COLOR="#228B22">int</FONT></B>
f c $ <B><FONT COLOR="#5F9EA0">=</FONT></B> (1, 2): <B><FONT COLOR="#228B22">int</FONT></B> <B><FONT COLOR="#5F9EA0">*</FONT></B> <B><FONT COLOR="#228B22">int</FONT></B>
</PRE>
<p>
 
</p>
<p>
That is, <tt>f</tt> returns a value of a different type depending on whether it is applied to argument <tt>a</tt>, argument <tt>b</tt>, or argument <tt>c</tt>. 
</p>
<p>
The following example shows how the type of a fold can depend on the number of arguments. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> grow <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.fold ([], <B><FONT COLOR="#A020F0">fn</FONT></B> l <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> l) z
<B><FONT COLOR="#A020F0">val</FONT></B> a <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.step0 (<B><FONT COLOR="#A020F0">fn</FONT></B> x <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> [x]) z
</PRE>
<p>
 
</p>
<p>
Using the fold equation, one can verify the following equations. 
</p>

<pre class=code>
grow $ <B><FONT COLOR="#5F9EA0">=</FONT></B> []: 'a <B><FONT COLOR="#228B22">list</FONT></B>
grow a $ <B><FONT COLOR="#5F9EA0">=</FONT></B> [[]]: 'a <B><FONT COLOR="#228B22">list</FONT></B> <B><FONT COLOR="#228B22">list</FONT></B>
grow a a $ <B><FONT COLOR="#5F9EA0">=</FONT></B> [[[]]]: 'a <B><FONT COLOR="#228B22">list</FONT></B> <B><FONT COLOR="#228B22">list</FONT></B> <B><FONT COLOR="#228B22">list</FONT></B>
</PRE>
<p>
 
</p>
<p>
Clearly, the result type of a call to the variable argument <tt>grow</tt> function depends on the number of arguments that are passed. 
</p>
<p>
As a reminder, this is well-typed SML.  You can check it out in any implementation. 
</p>
<h2 id="head-dee978912295db9e76200c094e45424c3e4d4b7c">(Seemingly) dependently-typed functional results</h2>
<p>
Fold is especially useful when it returns a curried function whose arity depends on the number of arguments.  For example, consider the following. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> makeSum <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.fold (id, <B><FONT COLOR="#A020F0">fn</FONT></B> f <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> f 0) z
<B><FONT COLOR="#A020F0">val</FONT></B> I <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.step0 (<B><FONT COLOR="#A020F0">fn</FONT></B> f <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> i <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> x <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> f (x <B><FONT COLOR="#5F9EA0">+</FONT></B> i)) z
</PRE>
<p>
 
</p>
<p>
The <tt>makeSum</tt> folder constructs a function whose arity depends on the number of <tt>I</tt> arguments and that adds together all of its arguments.  For example,  <tt>makeSum&nbsp;I&nbsp;$</tt> is of type <tt>int&nbsp;-&gt;&nbsp;int</tt> and <tt>makeSum&nbsp;I&nbsp;I&nbsp;$</tt> is of type <tt>int&nbsp;-&gt;&nbsp;int&nbsp;-&gt;&nbsp;int</tt>. 
</p>
<p>
One can use the fold equation to verify that the <tt>makeSum</tt> works correctly.  For example, one can easily check by hand the following equations. 
<pre class=code>
makeSum I $ 1 <B><FONT COLOR="#5F9EA0">=</FONT></B> 1
makeSum I I $ 1 2 <B><FONT COLOR="#5F9EA0">=</FONT></B> 3
makeSum I I I $ 1 2 3 <B><FONT COLOR="#5F9EA0">=</FONT></B> 6
</PRE>
 
</p>
<p>
Returning a function becomes especially interesting when there are steppers of different types.  For example, the following <tt>makeSum</tt> folder constructs functions that sum integers and reals. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> makeSum <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Foldr.foldr (id, <B><FONT COLOR="#A020F0">fn</FONT></B> f <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> f 0.0) z
<B><FONT COLOR="#A020F0">val</FONT></B> I <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Foldr.step0 (<B><FONT COLOR="#A020F0">fn</FONT></B> f <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> x <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> i <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> f (x <B><FONT COLOR="#5F9EA0">+</FONT></B> <B><FONT COLOR="#228B22">real</FONT></B> i)) z
<B><FONT COLOR="#A020F0">val</FONT></B> R <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Foldr.step0 (<B><FONT COLOR="#A020F0">fn</FONT></B> f <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> x: <B><FONT COLOR="#228B22">real</FONT></B> <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> r <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> f (x <B><FONT COLOR="#5F9EA0">+</FONT></B> r)) z
</PRE>
<p>
 
</p>
<p>
With these definitions, <tt>makeSum&nbsp;I&nbsp;R&nbsp;$</tt> is of type  <tt>int&nbsp;-&gt;&nbsp;real&nbsp;-&gt;&nbsp;real</tt> and <tt>makeSum&nbsp;R&nbsp;I&nbsp;I&nbsp;$</tt> is of type <tt>real&nbsp;-&gt;&nbsp;int&nbsp;-&gt;&nbsp;int&nbsp;-&gt;&nbsp;real</tt>.  One can use the foldr equation to check the following equations.  
</p>

<pre class=code>
makeSum I $ 1 <B><FONT COLOR="#5F9EA0">=</FONT></B> 1.0
makeSum I R $ 1 2.5 <B><FONT COLOR="#5F9EA0">=</FONT></B> 3.5
makeSum R I I $ 1.5 2 3 <B><FONT COLOR="#5F9EA0">=</FONT></B> 6.5
</PRE>
<p>
 
</p>
<p>
We used <tt>foldr</tt> instead of <tt>fold</tt> for this so that the order in which the specifiers <tt>I</tt> and <tt>R</tt> appear is the same as the order in which the arguments appear.  Had we used <tt>fold</tt>, things would have been reversed. 
</p>
<p>
An extension of this idea is sufficient to define <a href="Printf">Printf</a>-like functions in SML. 
</p>
<h2 id="head-82cd031b8d5489f5a7ab5198fd65d34f16cada72">An idiom for combining steps</h2>
<p>
It is sometimes useful to combine a number of steps together and name them as a single step.  As a simple example, suppose that one often sees an integer follower by a real in the <tt>makeSum</tt> example above. One can define a new <em>compound step</em> <tt>IR</tt> as follows. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> IR <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> u <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.fold u I R
</PRE>
<p>
 
</p>
<p>
With this definition in place, one can verify the following. 
</p>

<pre class=code>
makeSum IR IR $ 1 2.2 3 4.4 <B><FONT COLOR="#5F9EA0">=</FONT></B> 10.6
</PRE>
<p>
 
</p>
<p>
In general, one can combine steps <tt>s1</tt>, <tt>s2</tt>, ... <tt>sn</tt> as 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">fn</FONT></B> u <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.fold u s1 s2 ... sn
</PRE>
<p>
 
</p>
<p>
The following calculation shows why a compound step behaves as the composition of its constituent steps. 
</p>

<pre class=code>
fold u (<B><FONT COLOR="#A020F0">fn</FONT></B> u <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> fold u s1 s2 ... sn)
<B><FONT COLOR="#5F9EA0">=</FONT></B> (<B><FONT COLOR="#A020F0">fn</FONT></B> u <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> fold u s1 s2 ... sn) u
<B><FONT COLOR="#5F9EA0">=</FONT></B> fold u s1 s2 ... sn
</PRE>
<p>
 
</p>
<h2 id="head-ffb763362aa4b1ab8da43465778c25a2676ba059">Post composition</h2>
<p>
Suppose we already have a function defined via fold,  <tt>w&nbsp;=&nbsp;fold&nbsp;(a,&nbsp;f)</tt>, and we would like to construct a new fold function that is like <tt>w</tt>, but applies <tt>g</tt> to the result produced by <tt>w</tt>.  This is similar to function composition, but we can't just do <tt>g&nbsp;o&nbsp;w</tt>, because we don't want to use <tt>g</tt> until <tt>w</tt> has been applied to all of its arguments and received the end-of-arguments terminator <tt>$</tt>. 
</p>
<p>
More precisely, we want to define a post-composition function <tt>post</tt> that satisfies the following equation. 
</p>

<pre class=code>
post (w, g) s1 ... sn $ <B><FONT COLOR="#5F9EA0">=</FONT></B> g (w s1 ... sn $)
</PRE>
<p>
 
</p>
<p>
Here is the definition of <tt>post</tt>. 
</p>

<pre class=code>
<B><FONT COLOR="#5F9EA0">structure</FONT></B> Fold <B><FONT COLOR="#5F9EA0">=</FONT></B>
   <B><FONT COLOR="#5F9EA0">struct</FONT></B>
      <B><FONT COLOR="#A020F0">open</FONT></B> Fold
<B><FONT COLOR="#A020F0">      fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">post</FONT></I></B></FONT></B> (w, g) s <B><FONT COLOR="#5F9EA0">=</FONT></B> w (<B><FONT COLOR="#A020F0">fn</FONT></B> (a, h) <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> s (a, g <B><FONT COLOR="#A020F0">o</FONT></B> h))
   <B><FONT COLOR="#A020F0">end</FONT></B>  
</PRE>
<p>
 
</p>
<p>
The following calculations show that <tt>post</tt> satisfies the desired equation, where <tt>w&nbsp;=&nbsp;fold&nbsp;(a,&nbsp;f)</tt>. 
</p>

<pre class=code>
post (w, g) s
<B><FONT COLOR="#5F9EA0">=</FONT></B> w (<B><FONT COLOR="#A020F0">fn</FONT></B> (a, h) <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> s (a, g <B><FONT COLOR="#A020F0">o</FONT></B> h))
<B><FONT COLOR="#5F9EA0">=</FONT></B> fold (a, f) (<B><FONT COLOR="#A020F0">fn</FONT></B> (a, h) <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> s (a, g <B><FONT COLOR="#A020F0">o</FONT></B> h))
<B><FONT COLOR="#5F9EA0">=</FONT></B> (<B><FONT COLOR="#A020F0">fn</FONT></B> (a, h) <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> s (a, g <B><FONT COLOR="#A020F0">o</FONT></B> h)) (a, f)
<B><FONT COLOR="#5F9EA0">=</FONT></B> s (a, g <B><FONT COLOR="#A020F0">o</FONT></B> f)
<B><FONT COLOR="#5F9EA0">=</FONT></B> fold (a, g <B><FONT COLOR="#A020F0">o</FONT></B> f) s
</PRE>
<p>
 
</p>
<p>
Now, suppose <tt>si&nbsp;=&nbsp;step0&nbsp;hi</tt> for <tt>i</tt> from <tt>1</tt> to <tt>n</tt>. 
</p>

<pre class=code>
post (w, g) s1 s2 ... sn $
<B><FONT COLOR="#5F9EA0">=</FONT></B> fold (a, g <B><FONT COLOR="#A020F0">o</FONT></B> f) s1 s2 ... sn $
<B><FONT COLOR="#5F9EA0">=</FONT></B> (g <B><FONT COLOR="#A020F0">o</FONT></B> f) (hn (... (h1 a)))
<B><FONT COLOR="#5F9EA0">=</FONT></B> g (f (hn (... (h1 a))))
<B><FONT COLOR="#5F9EA0">=</FONT></B> g (fold (a, f) s1 ... sn $)
<B><FONT COLOR="#5F9EA0">=</FONT></B> g (w s1 ... sn $)
</PRE>
<p>
 
</p>
<p>
For a practical example of post composition, see <a href="ArrayLiteral">ArrayLiteral</a>. 
</p>
<h2 id="head-efd0976a0ad531b6453a3782b50f0f3ff5363b1e">Lift</h2>
<p>
We now define a peculiar-looking function, <tt>lift0</tt>, that is, equationally speaking, equivalent to the identity function on a step function. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">lift0</FONT></I></B></FONT></B> s (a, f) <B><FONT COLOR="#5F9EA0">=</FONT></B> fold (fold (a, id) s $, f)
</PRE>
<p>
 
</p>
<p>
Using the definitions, we can prove the following equation. 
</p>

<pre class=code>
fold (a, f) (lift0 (step0 h)) <B><FONT COLOR="#5F9EA0">=</FONT></B> fold (a, f) (step0 h)
</PRE>
<p>
 
</p>
<p>
Here is the proof. 
</p>

<pre class=code>
fold (a, f) (lift0 (step0 h))
<B><FONT COLOR="#5F9EA0">=</FONT></B> lift0 (step0 h) (a, f)
<B><FONT COLOR="#5F9EA0">=</FONT></B> fold (fold (a, id) (step0 h) $, f)
<B><FONT COLOR="#5F9EA0">=</FONT></B> fold (step0 h (a, id) $, f)
<B><FONT COLOR="#5F9EA0">=</FONT></B> fold (fold (h a, id) $, f)
<B><FONT COLOR="#5F9EA0">=</FONT></B> fold ($ (h a, id), f)
<B><FONT COLOR="#5F9EA0">=</FONT></B> fold (id (h a), f)
<B><FONT COLOR="#5F9EA0">=</FONT></B> fold (h a, f)
<B><FONT COLOR="#5F9EA0">=</FONT></B> step0 h (a, f)
<B><FONT COLOR="#5F9EA0">=</FONT></B> fold (a, f) (step0 h)
</PRE>
<p>
 
</p>
<p>
If <tt>lift0</tt> is the identity, then why even define it?  The answer lies in the typing of fold expressions, which we have, until now, left unexplained. 
</p>
<h2 id="head-5614fd83d7c12176ea9d23d0a9a55af15cb1297f">Typing</h2>
<p>
Perhaps the most surprising aspect of fold is that it can be checked by the SML type system.  The types involved in fold expressions are complex; fortunately type inference is able to deduce them. Nevertheless, it is instructive to study the types of fold functions and steppers.  More importantly, it is essential to understand the typing aspects of fold in order to write down signatures of functions defined using fold and step. 
</p>
<p>
Here is the <tt>FOLD</tt> signature, and a recaptulation of the entire <tt>Fold</tt> structure, with additional type annotations. 
</p>

<pre class=code>
<B><FONT COLOR="#5F9EA0">signature</FONT></B> FOLD <B><FONT COLOR="#5F9EA0">=</FONT></B>
   <B><FONT COLOR="#5F9EA0">sig</FONT></B>
      <B><FONT COLOR="#A020F0">type</FONT></B> ('a, 'b, 'c, 'd) step <B><FONT COLOR="#5F9EA0">=</FONT></B> 'a <B><FONT COLOR="#5F9EA0">*</FONT></B> ('b <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'c) <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'd
      <B><FONT COLOR="#A020F0">type</FONT></B> ('a, 'b, 'c, 'd) t <B><FONT COLOR="#5F9EA0">=</FONT></B> ('a, 'b, 'c, 'd) step <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'd
      <B><FONT COLOR="#A020F0">type</FONT></B> ('a1, 'a2, 'b, 'c, 'd) step0 <B><FONT COLOR="#5F9EA0">=</FONT></B>
         ('a1, 'b, 'c, ('a2, 'b, 'c, 'd) t) step
      <B><FONT COLOR="#A020F0">type</FONT></B> ('a11, 'a12, 'a2, 'b, 'c, 'd) step1 <B><FONT COLOR="#5F9EA0">=</FONT></B>
         ('a12, 'b, 'c, 'a11 <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> ('a2, 'b, 'c, 'd) t) step
         
      <B><FONT COLOR="#A020F0">val</FONT></B> fold: 'a <B><FONT COLOR="#5F9EA0">*</FONT></B> ('b <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'c) <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> ('a, 'b, 'c, 'd) t
      <B><FONT COLOR="#A020F0">val</FONT></B> lift0: ('a1, 'a2, 'a2, 'a2, 'a2) step0
                 <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> ('a1, 'a2, 'b, 'c, 'd) step0
      <B><FONT COLOR="#A020F0">val</FONT></B> post: ('a, 'b, 'c1, 'd) t <B><FONT COLOR="#5F9EA0">*</FONT></B> ('c1 <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'c2)
                <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> ('a, 'b, 'c2, 'd) t
      <B><FONT COLOR="#A020F0">val</FONT></B> step0: ('a1 <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'a2) <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> ('a1, 'a2, 'b, 'c, 'd) step0
      <B><FONT COLOR="#A020F0">val</FONT></B> step1: ('a11 <B><FONT COLOR="#5F9EA0">*</FONT></B> 'a12 <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'a2)
                 <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> ('a11, 'a12, 'a2, 'b, 'c, 'd) step1
   <B><FONT COLOR="#A020F0">end</FONT></B>

<B><FONT COLOR="#5F9EA0">structure</FONT></B> Fold:<B><FONT COLOR="#5F9EA0">&gt;</FONT></B> FOLD <B><FONT COLOR="#5F9EA0">=</FONT></B>
   <B><FONT COLOR="#5F9EA0">struct</FONT></B>
      <B><FONT COLOR="#A020F0">type</FONT></B> ('a, 'b, 'c, 'd) step <B><FONT COLOR="#5F9EA0">=</FONT></B> 'a <B><FONT COLOR="#5F9EA0">*</FONT></B> ('b <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'c) <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'd

      <B><FONT COLOR="#A020F0">type</FONT></B> ('a, 'b, 'c, 'd) t <B><FONT COLOR="#5F9EA0">=</FONT></B> ('a, 'b, 'c, 'd) step <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'd

      <B><FONT COLOR="#A020F0">type</FONT></B> ('a1, 'a2, 'b, 'c, 'd) step0 <B><FONT COLOR="#5F9EA0">=</FONT></B>
         ('a1, 'b, 'c, ('a2, 'b, 'c, 'd) t) step

      <B><FONT COLOR="#A020F0">type</FONT></B> ('a11, 'a12, 'a2, 'b, 'c, 'd) step1 <B><FONT COLOR="#5F9EA0">=</FONT></B>
         ('a12, 'b, 'c, 'a11 <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> ('a2, 'b, 'c, 'd) t) step

<B><FONT COLOR="#A020F0">      fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">fold</FONT></I></B></FONT></B> (a: 'a, f: 'b <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'c)
               (g: ('a, 'b, 'c, 'd) step): 'd <B><FONT COLOR="#5F9EA0">=</FONT></B>
         g (a, f)

<B><FONT COLOR="#A020F0">      fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">step0</FONT></I></B></FONT></B> (h: 'a1 <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'a2)
                (a1: 'a1, f: 'b <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'c): ('a2, 'b, 'c, 'd) t <B><FONT COLOR="#5F9EA0">=</FONT></B>
         fold (h a1, f)

<B><FONT COLOR="#A020F0">      fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">step1</FONT></I></B></FONT></B> (h: 'a11 <B><FONT COLOR="#5F9EA0">*</FONT></B> 'a12 <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'a2)
                (a12: 'a12, f: 'b <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'c)
                (a11: 'a11): ('a2, 'b, 'c, 'd) t <B><FONT COLOR="#5F9EA0">=</FONT></B>
         fold (h (a11, a12), f)

<B><FONT COLOR="#A020F0">      fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">lift0</FONT></I></B></FONT></B> (s: ('a1, 'a2, 'a2, 'a2, 'a2) step0)
                (a: 'a1, f: 'b <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'c): ('a2, 'b, 'c, 'd) t <B><FONT COLOR="#5F9EA0">=</FONT></B>
         fold (fold (a, id) s $, f)
            
<B><FONT COLOR="#A020F0">      fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">post</FONT></I></B></FONT></B> (w: ('a, 'b, 'c1, 'd) t,
                g: 'c1 <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'c2)
               (s: ('a, 'b, 'c2, 'd) step): 'd <B><FONT COLOR="#5F9EA0">=</FONT></B>
         w (<B><FONT COLOR="#A020F0">fn</FONT></B> (a, h) <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> s (a, g <B><FONT COLOR="#A020F0">o</FONT></B> h))
   <B><FONT COLOR="#A020F0">end</FONT></B>
</PRE>
<p>
 
</p>
<p>
That's a lot to swallow, so let's walk through it one step at a time. First, we have the definition of type <tt>Fold.step</tt>. 
<pre class=code>
<B><FONT COLOR="#A020F0">type</FONT></B> ('a, 'b, 'c, 'd) step <B><FONT COLOR="#5F9EA0">=</FONT></B> 'a <B><FONT COLOR="#5F9EA0">*</FONT></B> ('b <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'c) <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'd
</PRE>
 
</p>
<p>
As a fold proceeds over its arguments, it maintains two things: the accumulator, of type <tt>'a</tt>, and the finishing function, of type <tt>'b&nbsp;-&gt;&nbsp;'c</tt>.  Each step in the fold is a function that takes those two pieces (i.e. <tt>'a&nbsp;*&nbsp;('b&nbsp;-&gt;&nbsp;'c)</tt> and does something to them (i.e. produces <tt>'d</tt>).  The result type of the step is completely left open to be filled in by type inference, as it is an arrow type that is capable of consuming the rest of the arguments to the fold. 
</p>
<p>
A folder, of type <tt>Fold.t</tt>, is a function that consumes a single step.   
<pre class=code>
<B><FONT COLOR="#A020F0">type</FONT></B> ('a, 'b, 'c, 'd) t <B><FONT COLOR="#5F9EA0">=</FONT></B> ('a, 'b, 'c, 'd) step <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'd
</PRE>
 
</p>
<p>
Expanding out the type, we have: 
<pre class=code>
<B><FONT COLOR="#A020F0">type</FONT></B> ('a, 'b, 'c, 'd) t <B><FONT COLOR="#5F9EA0">=</FONT></B> ('a <B><FONT COLOR="#5F9EA0">*</FONT></B> ('b <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'c) <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'd) <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'd
</PRE>
 
</p>
<p>
This shows that the only thing a folder does is to hand its accumulator (<tt>'a</tt>) and finisher (<tt>'b&nbsp;-&gt;&nbsp;'c</tt>) to the next step (<tt>'a&nbsp;*&nbsp;('b&nbsp;-&gt;&nbsp;'c)&nbsp;-&gt;&nbsp;'d</tt>).  If SML had first-class polymorphism, we would write the fold type as follows. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">type</FONT></B> ('a, 'b, 'c) t <B><FONT COLOR="#5F9EA0">=</FONT></B> Forall 'd. ('a, 'b, 'c, 'd) step <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'd
</PRE>
<p>
 
</p>
<p>
This type definition shows that a folder had nothing to do with the rest of the fold, it only deals with the next step. 
</p>
<p>
We now can understand the type of <tt>fold</tt>, which takes the initial value of the accumulator and the finishing function, and constructs a folder, i.e. a function awaiting the next step. 
<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> fold: 'a <B><FONT COLOR="#5F9EA0">*</FONT></B> ('b <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'c) <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> ('a, 'b, 'c, 'd) t
<B><FONT COLOR="#A020F0">fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">fold</FONT></I></B></FONT></B> (a: 'a, f: 'b <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'c)
         (g: ('a, 'b, 'c, 'd) step): 'd <B><FONT COLOR="#5F9EA0">=</FONT></B>
   g (a, f)
</PRE>
 
</p>
<p>
Continuing on, we have the type of step functions. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">type</FONT></B> ('a1, 'a2, 'b, 'c, 'd) step0 <B><FONT COLOR="#5F9EA0">=</FONT></B> 
   ('a1, 'b, 'c, ('a2, 'b, 'c, 'd) t) step
</PRE>
<p>
 
</p>
<p>
Expanding out the type a bit gives: 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">type</FONT></B> ('a1, 'a2, 'b, 'c, 'd) step0 <B><FONT COLOR="#5F9EA0">=</FONT></B> 
   'a1 <B><FONT COLOR="#5F9EA0">*</FONT></B> ('b <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'c) <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> ('a2, 'b, 'c, 'd) t
</PRE>
<p>
 
</p>
<p>
So, a step function takes the accumulator (<tt>'a1</tt>) and finishing function (<tt>'b&nbsp;-&gt;&nbsp;'c</tt>), which will be passed to it by the previous folder, and transforms them to a new folder.  This new folder has a new accumulator (<tt>'a2</tt>) and the same finishing function. 
</p>
<p>
Again, imagining that SML had first-class polymorphism makes the type clearer. 
<pre class=code>
<B><FONT COLOR="#A020F0">type</FONT></B> ('a1, 'a2) step0 <B><FONT COLOR="#5F9EA0">=</FONT></B> 
   Forall ('b, 'c). ('a1, 'b, 'c, ('a2, 'b, 'c) t) step
</PRE>
 
</p>
<p>
Thus, in essence, a <tt>step0</tt> function is a wrapper around a function of type <tt>'a1&nbsp;-&gt;&nbsp;'a2</tt>, which is exactly what the definition of <tt>step0</tt> does. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> step0: ('a1 <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'a2) <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> ('a1, 'a2, 'b, 'c, 'd) step0
<B><FONT COLOR="#A020F0">fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">step0</FONT></I></B></FONT></B> (h: 'a1 <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'a2)
          (a1: 'a1, f: 'b <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'c): ('a2, 'b, 'c, 'd) t <B><FONT COLOR="#5F9EA0">=</FONT></B>
   fold (h a1, f)
</PRE>
<p>
 
</p>
<p>
It is not much beyond <tt>step0</tt> to understand <tt>step1</tt>. 
<pre class=code>
<B><FONT COLOR="#A020F0">type</FONT></B> ('a11, 'a12, 'a2, 'b, 'c, 'd) step1 <B><FONT COLOR="#5F9EA0">=</FONT></B>
   ('a12, 'b, 'c, 'a11 <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> ('a2, 'b, 'c, 'd) t) step
</PRE>
 
</p>
<p>
A <tt>step1</tt> function takes the accumulator (<tt>'a12</tt>) and finisher (<tt>'b&nbsp;-&gt;&nbsp;'c</tt>) passed to it by the previous folder and transforms them into a function that consumes the next argument (<tt>'a11</tt>) and produces a folder that will continue the fold with a new accumulator (<tt>'a2</tt>) and the same finisher. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">step1</FONT></I></B></FONT></B> (h: 'a11 <B><FONT COLOR="#5F9EA0">*</FONT></B> 'a12 <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'a2)
          (a12: 'a12, f: 'b <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'c)
          (a11: 'a11): ('a2, 'b, 'c, 'd) t <B><FONT COLOR="#5F9EA0">=</FONT></B>
   fold (h (a11, a12), f)
</PRE>
<p>
 
</p>
<p>
With first-class polymorphism, a <tt>step1</tt> function is more clearly seen as a wrapper around a binary function of type  <tt>'a11&nbsp;*&nbsp;'a12&nbsp;-&gt;&nbsp;'a2</tt>. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">type</FONT></B> ('a11, 'a12, 'a2) step1 <B><FONT COLOR="#5F9EA0">=</FONT></B>
   Forall ('b, 'c). ('a12, 'b, 'c, 'a11 <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> ('a2, 'b, 'c) t) step
</PRE>
<p>
 
</p>
<p>
The type of <tt>post</tt> is clear: it takes a folder with a finishing function that produces type <tt>'c1</tt>, and a function of type  <tt>'c1&nbsp;-&gt;&nbsp;'c2</tt> to postcompose onto the folder.  It returns a new folder with a finishing function that produces type <tt>'c2</tt>. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> post: ('a, 'b, 'c1, 'd) t <B><FONT COLOR="#5F9EA0">*</FONT></B> ('c1 <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'c2)
          <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> ('a, 'b, 'c2, 'd) t
<B><FONT COLOR="#A020F0">fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">post</FONT></I></B></FONT></B> (w: ('a, 'b, 'c1, 'd) t,
          g: 'c1 <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'c2)
         (s: ('a, 'b, 'c2, 'd) step): 'd <B><FONT COLOR="#5F9EA0">=</FONT></B>
   w (<B><FONT COLOR="#A020F0">fn</FONT></B> (a, h) <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> s (a, g <B><FONT COLOR="#A020F0">o</FONT></B> h))
</PRE>
<p>
 
</p>
<p>
We will return to <tt>lift0</tt> after an example. 
</p>
<h2 id="head-e13dce34fe568689c1beb05e209023d50ff036df">An example typing</h2>
<p>
Let's type check our simplest example, a variable-argument fold. Recall that we have a folder <tt>f</tt> and a stepper <tt>a</tt> defined as follows. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> f <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.fold ((), <B><FONT COLOR="#A020F0">fn</FONT></B> () <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> ()) z
<B><FONT COLOR="#A020F0">val</FONT></B> a <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.step0 (<B><FONT COLOR="#A020F0">fn</FONT></B> () <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> ()) z
</PRE>
<p>
 
</p>
<p>
Since the accumulator and finisher are uninteresting, we'll use some abbreviations to simplify things. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">type</FONT></B> 'd step <B><FONT COLOR="#5F9EA0">=</FONT></B> (<B><FONT COLOR="#228B22">unit</FONT></B>, <B><FONT COLOR="#228B22">unit</FONT></B>, <B><FONT COLOR="#228B22">unit</FONT></B>, 'd) Fold.step
<B><FONT COLOR="#A020F0">type</FONT></B> 'd fold <B><FONT COLOR="#5F9EA0">=</FONT></B> 'd step <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'd
</PRE>
<p>
 
</p>
<p>
With these abbreviations, <tt>f</tt> and <tt>a</tt> have the following polymorphic types. 
<pre class=code>
f: 'd fold
a: 'd step
</PRE>
 
</p>
<p>
Suppose we want to type check  
<pre class=code>
f a a a $: <B><FONT COLOR="#228B22">unit</FONT></B>
</PRE>
 As a reminder, the fully parenthesized expression is  
<pre class=code>
((((f a) a) a) a) $
</PRE>
 The observation that we will use repeatedly is that for any type <tt>z</tt>, if <tt>f:&nbsp;z&nbsp;fold</tt> and <tt>s:&nbsp;z&nbsp;step</tt>, then <tt>f&nbsp;s:&nbsp;z</tt>. So, if we want  
<pre class=code>
(f a a a) $: <B><FONT COLOR="#228B22">unit</FONT></B>
</PRE>
  then we must have  
<pre class=code>
f a a a: <B><FONT COLOR="#228B22">unit</FONT></B> fold
$: <B><FONT COLOR="#228B22">unit</FONT></B> step
</PRE>
 Applying the observation again, we must have  
<pre class=code>
f a a: <B><FONT COLOR="#228B22">unit</FONT></B> fold fold
a: <B><FONT COLOR="#228B22">unit</FONT></B> fold step
</PRE>
 
</p>
<p>
Applying the observation two more times leads to the following type derivation. 
</p>

<pre class=code>
f: <B><FONT COLOR="#228B22">unit</FONT></B> fold fold fold fold  a: <B><FONT COLOR="#228B22">unit</FONT></B> fold fold fold step
f a: <B><FONT COLOR="#228B22">unit</FONT></B> fold fold fold     a: <B><FONT COLOR="#228B22">unit</FONT></B> fold fold step
f a a: <B><FONT COLOR="#228B22">unit</FONT></B> fold fold        a: <B><FONT COLOR="#228B22">unit</FONT></B> fold step
f a a a: <B><FONT COLOR="#228B22">unit</FONT></B> fold           $: <B><FONT COLOR="#228B22">unit</FONT></B> step
f a a a $: <B><FONT COLOR="#228B22">unit</FONT></B>
</PRE>
<p>
 
</p>
<p>
So, each application is a fold that consumes the next step, producing a fold of one smaller type. 
</p>
<p>
One can expand some of the type definitions in <tt>f</tt> to see that it is indeed a function that takes four curried arguments, each one a step function. 
</p>

<pre class=code>
f: <B><FONT COLOR="#228B22">unit</FONT></B> fold fold fold step 
   <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> <B><FONT COLOR="#228B22">unit</FONT></B> fold fold step
   <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> <B><FONT COLOR="#228B22">unit</FONT></B> fold step
   <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> <B><FONT COLOR="#228B22">unit</FONT></B> step
   <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> <B><FONT COLOR="#228B22">unit</FONT></B>
</PRE>
<p>
 
</p>
<p>
This example shows why we must eta expand uses of <tt>fold</tt> and <tt>step0</tt> to work around the value restriction and make folders and steppers polymorphic.  The type of a fold function like <tt>f</tt> depends on the number of arguments, and so will vary from use to use. Similarly, each occurrence of an argument like <tt>a</tt> has a different type, depending on the number of remaining arguments. 
</p>
<p>
This example also shows that the type of a folder, when fully expanded, is exponential in the number of arguments: there are as many nested occurrences of the <tt>fold</tt> type constructor as there are arguments, and each occurence duplicates its type argument.  One can observe this exponential behavior in a type checker that doesn't share enough of the representation of types (e.g. one that represents types as trees rather than directed acyclic graphs). 
</p>
<p>
Generalizing this type derivation to uses of fold where the accumulator and finisher are more interesting is straightforward.  One simply includes the type of the accumulator, which may change, for each step, and the type of the finisher, which doesn't change from step to step. 
</p>
<h2 id="head-f1a127be542fc4a883aa37976ca48c19faf93b98">Typing lift</h2>
<p>
The lack of first-class polymorphism in SML causes problems if one wants to use a step in a first-class way.  Consider the following <tt>double</tt> function, which takes a step, <tt>s</tt>, and produces a composite step that does <tt>s</tt> twice. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">double</FONT></I></B></FONT></B> s <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> u <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.fold u s s
</PRE>
<p>
 
</p>
<p>
The definition of <tt>double</tt> is not type correct.  The problem is that the type of a step depends on the number of remaining arguments but that the parameter <tt>s</tt> is not polymorphic, and so can not be used in two different positions. 
</p>
<p>
Fortunately, we can define a function, <tt>lift0</tt>, that takes a monotyped step function and <em>lifts</em> it into a polymorphic step function.   This is apparent in the type of <tt>lift0</tt>. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> lift0: ('a1, 'a2, 'a2, 'a2, 'a2) step0
           <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> ('a1, 'a2, 'b, 'c, 'd) step0
<B><FONT COLOR="#A020F0">fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">lift0</FONT></I></B></FONT></B> (s: ('a1, 'a2, 'a2, 'a2, 'a2) step0)
          (a: 'a1, f: 'b <B><FONT COLOR="#5F9EA0">-</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> 'c): ('a2, 'b, 'c, 'd) t <B><FONT COLOR="#5F9EA0">=</FONT></B>
   fold (fold (a, id) s $, f)
</PRE>
<p>
 
</p>
<p>
The following definition of <tt>double</tt> uses <tt>lift0</tt>, appropriately eta wrapped, to fix the problem. 
<pre class=code>
<B><FONT COLOR="#A020F0">fun </FONT></B><B><FONT COLOR="#0000FF"><B><I><FONT COLOR="#000000">double</FONT></I></B></FONT></B> s <B><FONT COLOR="#5F9EA0">=</FONT></B>
   <B><FONT COLOR="#A020F0">let</FONT></B>
      <B><FONT COLOR="#A020F0">val</FONT></B> s <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.lift0 s z
   <B><FONT COLOR="#A020F0">in</FONT></B>
      <B><FONT COLOR="#A020F0">fn</FONT></B> u <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.fold u s s
   <B><FONT COLOR="#A020F0">end</FONT></B>
</PRE>
 
</p>
<p>
With that definition of <tt>double</tt> in place, we can use it as in the following example. 
</p>

<pre class=code>
<B><FONT COLOR="#A020F0">val</FONT></B> f <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.fold ((), <B><FONT COLOR="#A020F0">fn</FONT></B> () <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> ()) z
<B><FONT COLOR="#A020F0">val</FONT></B> a <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.step0 (<B><FONT COLOR="#A020F0">fn</FONT></B> () <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> ()) z
<B><FONT COLOR="#A020F0">val</FONT></B> a2 <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> double a z
<B><FONT COLOR="#A020F0">val</FONT></B> () <B><FONT COLOR="#5F9EA0">=</FONT></B> f a a2 a a2 $
</PRE>
<p>
 
</p>
<p>
Of course, we must eta wrap the call <tt>double</tt> in order to use its result, which is a step function, polymorphically. 
</p>
<h2 id="head-031723e7e62f3a194de0e2e7e9aa28cd46815d0f">Hiding the type of the accumulator</h2>
<p>
For clarity and to avoid mistakes, it can be useful to hide the type of the accumulator in a fold.  Reworking the simple variable-argument example to do this leads to the following. 
</p>

<pre class=code>
<B><FONT COLOR="#5F9EA0">structure</FONT></B> S:<B><FONT COLOR="#5F9EA0">&gt;</FONT></B>
  <B><FONT COLOR="#5F9EA0">sig</FONT></B>
     <B><FONT COLOR="#A020F0">type</FONT></B> ac
     <B><FONT COLOR="#A020F0">val</FONT></B> f: (ac, ac, <B><FONT COLOR="#228B22">unit</FONT></B>, 'd) Fold.t
     <B><FONT COLOR="#A020F0">val</FONT></B> s: (ac, ac, 'b, 'c, 'd) Fold.step0
  <B><FONT COLOR="#A020F0">end</FONT></B> <B><FONT COLOR="#5F9EA0">=</FONT></B>
  <B><FONT COLOR="#5F9EA0">struct</FONT></B>
     <B><FONT COLOR="#A020F0">type</FONT></B> ac <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#228B22">unit</FONT></B>
     <B><FONT COLOR="#A020F0">val</FONT></B> f <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.fold ((), <B><FONT COLOR="#A020F0">fn</FONT></B> () <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> ()) z
     <B><FONT COLOR="#A020F0">val</FONT></B> s <B><FONT COLOR="#5F9EA0">=</FONT></B> <B><FONT COLOR="#A020F0">fn</FONT></B> z <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> Fold.step0 (<B><FONT COLOR="#A020F0">fn</FONT></B> () <B><FONT COLOR="#5F9EA0">=</FONT></B><B><FONT COLOR="#5F9EA0">&gt;</FONT></B> ()) z
  <B><FONT COLOR="#A020F0">end</FONT></B>
</PRE>
<p>
 
</p>
<p>
The idea is to name the accumulator type and use opaque signature matching to make it abstract.  This can prevent improper manipulation of the accumulator by client code and ensure invariants that the folder and stepper would like to maintain. 
</p>
<p>
For a practical example of this technique, see <a href="ArrayLiteral">ArrayLiteral</a>. 
</p>
<h2 id="head-a4bc8bf5caf54b18cea9f58e83dd4acb488deb17">Also see</h2>
<p>
Fold has a number of practical applications.  Here are some of them. 
</p>

    <ul>

    <li>
<p>
 <a href="ArrayLiteral">ArrayLiteral</a> 
</p>
</li>
    <li>
<p>
 <a href="Fold01N">Fold01N</a> 
</p>
</li>
    <li>
<p>
 <a href="FunctionalRecordUpdate">FunctionalRecordUpdate</a> 
</p>
</li>
    <li>
<p>
 <a href="NumericLiteral">NumericLiteral</a> 
</p>
</li>
    <li>
<p>
 <a href="OptionalArguments">OptionalArguments</a> 
</p>
</li>
    <li>
<p>
 <a href="Printf">Printf</a> 
</p>
</li>
    <li>
<p>
 <a href="VariableArityPolymorphism">VariableArityPolymorphism</a> 
</p>
</li>
</ul>

</div>



<p>
<hr>
Last edited on 2006-03-28 00:58:28 by <span title="adsl-71-141-33-187.dsl.snfc21.sbcglobal.net"><a href="StephenWeeks">StephenWeeks</a></span>.
</body></html>