1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
|
(* Minor tweaks by Stephen Weeks (sweeks@sweeks.com) on 2001-07-17 to turn into a
* benchmark.
* Added rand function.
*)
(*
* Matthew Thomas Fluet
* Harvey Mudd College
* Claremont, CA 91711
* e-mail: Matthew_Fluet@hmc.edu
*
* A DLX Simulator in Standard ML
*
* Description:
* The DLX Simulator is a partial implementation of the RISC instruction
* set described in Patterson's and Hennessy's _Computer Architecture_.
* Currently, the DLX Simulator implements the following instructions:
* ADD ADDI
* ADDU ADDUI
* SUB SUBI
* SUBU SUBUI
* AND ANDI
* OR ORI
* XOR XORI
*
* LHI
*
* SLL SLLI
* SRL SRLI
* SRA SRAI
*
* SEQ SEQI
* SNE SNEI
* SLT SLTI
* SGT SGTI
* SLE SLEI
* SGE SGEI
*
* LB LBU SB
* LH LHU SH
* LW SW
*
* BEQZ BNEZ
* J JR
* JAL JALR
*
* TRAP
*
* NOP
*
* Currently, the DLX Simulator uses 32 bit words for addressing and
* the register file and a 65535 word memory. To augment the memory
* a cache can be installed in the simulator, with a number of different
* caching options that can be made. Caches can also cache other caches,
* so realistic dual level caches can be simulated. Input and output
* is limited to requesting and outputing signed integers.
*
* Usage:
* DLXSimulatorCX.run_file : string -> unit
* DLXSimulatorCX.run_prog : string list -> unit;
* The DLXSimualatorCX family of structures represent different caches
* used on the simulator. The following table describes the different
* caches used:
* C1: a small level 1 cache
* DLXSimulatorCX.run_file attempts to open and execute the instructions
* in a file. DLXSimulatorCX.run_prog runs a set of instructions as
* a list of strings. Four programs are included here.
* Simple : simply outputs the number 42.
* Twos: performs the twos complement on an inputed number.
* Abs: performs the absolute value on an imputed number.
* Fact: performs the factorial on an inputed number.
* GCD: performs the greatest common divisor on two imputed numbers.
* After running, the DLX Simulator outputs a set of statistics
* concerning memory reads and writes, and cache hits and misses.
*
* Future Work:
* With the implementation of the PACK_REAL structures
* as documented in the SML'97 Basis Library, the remainder
* of the DLX instruction set should be implemented.
* Currently, without an efficient and correct means of
* converting a 32 bit word into a 32 bit float, it is
* difficult to incorporate these instructions.
* In order to finish following the current development
* model, a FPALU structure should be implemented as the
* floating point arithmetic-logic unit.
* Another possibility for future work would be to
* model a pipelined processor. Currently, the DLX Simulator
* uses a simple one cycle per instruction model.
* It should be possible to break this model and implement
* a pipeline, but it would mean a major reworking of the
* DLXSimulatorFun functor.
*
* References:
* Patterson, David A. and John L. Hennessy. _Computer Architecture: A
* Quantitative Approach: Second Edition_. San Francisco: Morgan
* Kaufmann Publishers, Inc., 1996.
*
*)
(* ************************************************************************* *)
(* sweeks added rand *)
local
open Word
val seed: word ref = ref 0w13
in
(* From page 284 of Numerical Recipes in C. *)
fun rand (): word =
let
val res = 0w1664525 * !seed + 0w1013904223
val _ = seed := res
in
res
end
end
(*
* ImmArray.sml
*
* The ImmArray structure defines an immutable array implementation.
* An immarray is stored internally as a list.
* This results in O(n) sub and update functions, as opposed
* to O(1) sub and update functions found in Array. However,
* immutable arrays are truly immutable, and can be integrated
* with a functionally programming style easier than mutable
* arrays.
*
* The ImmArray structure mimics the Array structure as much as possible.
* The most obvious deviation is that unit return types in Array are replaced
* by 'a immarray return types in ImmArray. Unlike an 'a array, an 'a immarray
* is an equality type if and only if 'a is an equality type. Further immarray
* equality is structural, rather than the "creation" equality used by Array.
* Additionally, no vector type is supported, and consequently no copyVec
* function is supported. Finally, the functions mapi and map provide
* similar functionality as modifyi and modify, but relax the constraint that
* the argument function need be of type 'a -> 'a.
*
* Future Work : There are random-access list implementations
* that support O(log n) sub and update functions,
* which may provide a faster implementation, although
* possibly at the expense of space and the ease of
* implementing app, foldl, foldr, modify, and map functions.
*)
signature IMMARRAY
= sig
type 'a immarray;
val maxLen : int;
val immarray : (int * 'a) -> 'a immarray;
val fromList : 'a list -> 'a immarray;
val toList : 'a immarray -> 'a list;
val tabulate : int * (int -> 'a) -> 'a immarray;
val length : 'a immarray -> int;
val sub : 'a immarray * int -> 'a;
val update : 'a immarray * int * 'a -> 'a immarray;
val extract : 'a immarray * int * int option -> 'a immarray;
val copy : {src : 'a immarray, si : int, len : int option,
dst : 'a immarray, di : int} -> 'a immarray;
val appi : (int * 'a -> unit) -> ('a immarray * int * int option)
-> unit;
val app : ('a -> unit) -> 'a immarray -> unit;
val foldli : ((int * 'a * 'b) -> 'b) -> 'b
-> ('a immarray * int * int option) -> 'b;
val foldri : ((int * 'a * 'b) -> 'b) -> 'b
-> ('a immarray * int * int option) -> 'b;
val foldl : (('a * 'b) -> 'b) -> 'b -> 'a immarray -> 'b;
val foldr : (('a * 'b) -> 'b) -> 'b -> 'a immarray -> 'b;
val mapi : ((int * 'a) -> 'b) -> ('a immarray * int * int option)
-> 'b immarray;
val map : ('a -> 'b) -> 'a immarray -> 'b immarray;
val modifyi : ((int * 'a) -> 'a) -> ('a immarray * int * int option)
-> 'a immarray;
val modify : ('a -> 'a) -> 'a immarray -> 'a immarray;
end;
structure ImmArray : IMMARRAY
= struct
(* datatype 'a immarray
* An immarray is stored internally as a list.
* The use of a constructor prevents list functions from
* treating immarray type as a list.
*)
datatype 'a immarray = IA of 'a list;
(* val maxLen : int
* The maximum length of immarrays supported.
* Technically, under this implementation, the maximum length
* of immarrays is the same as the maximum length of a list,
* but for convience and compatibility, use the Array structure's
* maximum length.
*)
val maxLen = Array.maxLen;
(* val tabulate : int * (int -> 'a) -> 'a immarray
* val immarray : int * 'a -> 'a immarray
* val fromList : 'a list -> 'a immarray
* val toList : 'a immarray -> 'a list
* val length : 'a immarray -> int
* These functions perform basic immarray functions.
* The tabulate, immarray, and fromList functions create an immarray.
* The toList function converts an immarray to a list.
* The length function returns the length of an immarray.
*)
fun tabulate (n, initfn) = IA (List.tabulate (n, initfn));
fun immarray (n, init) = tabulate (n, fn _ => init);
fun fromList l = IA l;
fun toList (IA ia) = ia;
fun length (IA ia) = List.length ia;
(* val sub : 'a immarray * int -> 'a
* val update : 'a immarray * int * 'a -> 'a immarray
* These functions sub and update an immarray by index.
*)
fun sub (IA ia, i) = List.nth (ia, i);
fun update (IA ia, i, x) = IA ((List.take (ia, i)) @
(x::(List.drop (ia, i + 1))));
(* val extract : 'a immarray * int * int option -> 'a immarray
* This function extracts an immarray slice from an immarray from
* one index either through the rest of the immarray (NONE)
* or for n elements (SOME n), as described in the
* Standard ML Basis Library.
*)
fun extract (IA ia, i, NONE) = IA (List.drop (ia, i))
| extract (IA ia, i, SOME n) = IA (List.take (List.drop (ia, i), n));
(* val copy : {src : 'a immarray, si : int, len : int option,
dst : 'a immarray, di : int} -> 'a immarray
* This function copies an immarray slice from src into dst starting
* at the di element.
*)
fun copy {src, si, len, dst=IA ia, di}
= let
val IA sia = extract (src, si, len);
val pre = List.take (ia, di);
val post = case len
of NONE => List.drop (ia, di+(List.length sia))
| SOME n => List.drop (ia, di+n);
in
IA (pre @ sia @ post)
end;
(* val appi : ('a * int -> unit) -> ('a immarray * int * int option)
* -> unit
* val app : ('a -> unit) -> 'a immarray -> unit
* These functions apply a function to every element
* of an immarray. The appi function also provides the
* index of the element as an argument to the applied function
* and uses an immarray slice argument.
*)
local
fun appi_aux f i [] = ()
| appi_aux f i (h::t) = (f(i,h); appi_aux f (i + 1) t);
in
fun appi f (IA ia, i, len) = let
val IA sia = extract (IA ia, i, len);
in
appi_aux f i sia
end;
end;
fun app f immarr = appi (f o #2) (immarr, 0, NONE);
(* val foldli : (int * 'a * 'b -> 'b) -> 'b
* -> ('a immarray * int * int option) -> 'b;
* val foldri : (int * 'a * 'b -> 'b) -> 'b
* -> ('a immarray * int * int option) -> 'b;
* val foldl : ('a * 'b -> 'b) -> 'b -> 'a immarray -> 'b
* val foldr : ('a * 'b -> 'b) -> 'b -> 'a immarray -> 'b
* These functions fold a function over every element
* of an immarray. The foldri and foldli functions also provide
* the index of the element as an argument to the folded function
* and uses an immarray slice argument.
*)
local
fun foldli_aux f b i [] = b
| foldli_aux f b i (h::t) = foldli_aux f (f(i,h,b)) (i+1) t;
fun foldri_aux f b i [] = b
| foldri_aux f b i (h::t) = f(i,h,foldri_aux f b (i+1) t);
in
fun foldli f b (IA ia, i, len)
= let
val IA ia2 = extract (IA ia, i, len);
in
foldli_aux f b i ia2
end;
fun foldri f b (IA ia, i, len)
= let
val IA ia2 = extract (IA ia, i, len);
in
foldri_aux f b i ia2
end;
end;
fun foldl f b (IA ia) = foldli (fn (_,i,x) => f(i,x)) b (IA ia, 0, NONE);
fun foldr f b (IA ia) = foldri (fn (_,i,x) => f(i,x)) b (IA ia, 0, NONE);
(* val mapi : ('a * int -> 'b) -> 'a immarray -> 'b immarray
* val map : ('a -> 'b) -> 'a immarray -> 'b immarray
* These functions map a function over every element
* of an immarray. The mapi function also provides the
* index of the element as an argument to the mapped function
* and uses an immarray slice argument. Although there are
* similarities between mapi and modifyi, note that when mapi is
* used with an immarray slice, the resulting immarray is the
* same size as the slice. This is necessary to preserve the
* type of the resulting immarray. Thus, mapi with the identity
* function reduces to the extract function.
*)
local
fun mapi_aux f i [] = []
| mapi_aux f i (h::t) = (f (i,h))::(mapi_aux f (i + 1) t);
in
fun mapi f (IA ia, i, len) = let
val IA ia2 = extract (IA ia, i, len);
in
IA (mapi_aux f i ia2)
end;
end;
fun map f (IA ia)= mapi (f o #2) (IA ia, 0, NONE);
(* val modifyi : (int * 'a -> 'a) -> ('a immarray * int * int option)
* -> 'a immarray
* val modify : ('a -> 'a) -> 'a immarray -> 'a immarray
* These functions apply a function to every element of an immarray
* in left to right order and returns a new immarray where corresponding
* elements are replaced by their modified values. The modifyi
* function also provides the index of the element as an argument
* to the mapped function and uses an immarray slice argument.
*)
local
fun modifyi_aux f i [] = []
| modifyi_aux f i (h::t) = (f (i,h))::(modifyi_aux f (i + 1) t);
in
fun modifyi f (IA ia, i, len)
= let
val pre = List.take (ia, i);
val IA ia2 = extract (IA ia, i, len);
val post = case len
of NONE => []
| SOME n => List.drop (ia, i+n);
in
IA (pre @ (modifyi_aux f i ia2) @ post)
end;
end;
fun modify f (IA ia) = modifyi (f o #2) (IA ia, 0, NONE);
end;
(* ************************************************************************* *)
(*
* ImmArray2.sml
*
* The ImmArray2 structure defines a two dimensional immutable array
* implementation. An immarray2 is stored internally as an immutable
* array of immutable arrays. As such, the ImmArray2 makes heavy use
* of the ImmArray structure.
*
* The ImmArray2 structure mimics the Array2 structure as much as possible.
* The most obvious deviation is that unit return types in Array2 are replaced
* by 'a immarray2 return types in ImmArray2. Unlike an 'a array,
* an 'a immarray2 is an equality type if and only if 'a is an equality type.
* Further immarray2 equality is structural, rather than the "creation"
* equality used by Array2. Also, the 'a region type is not included in
* ImmArray2, but all functions in Array2 that require 'a regions are present
* with arguments taken in the natural order. Finally, the functions mapi
* and map provide similar functionality as modifyi and modify, but relax
* the constraint that the argument function need be of type 'a -> 'a.
*)
signature IMMARRAY2
= sig
type 'a immarray2;
datatype traversal = RowMajor | ColMajor
val immarray2 : int * int * 'a -> 'a immarray2;
val tabulate : traversal -> int * int * ((int * int) -> 'a)
-> 'a immarray2;
val fromList : 'a list list -> 'a immarray2;
val dimensions : 'a immarray2 -> int * int;
val sub : 'a immarray2 * int * int -> 'a;
val update : 'a immarray2 * int * int * 'a -> 'a immarray2;
val extract : 'a immarray2 * int * int * int option * int option
-> 'a immarray2;
val copy : {src : 'a immarray2, si : int, sj : int,
ilen : int option, jlen : int option,
dst : 'a immarray2, di : int, dj : int} -> 'a immarray2;
val nRows : 'a immarray2 -> int;
val nCols : 'a immarray2 -> int;
val row : 'a immarray2 * int -> 'a ImmArray.immarray;
val column : 'a immarray2 * int -> 'a ImmArray.immarray;
val appi : traversal -> (int * int * 'a -> unit)
-> ('a immarray2 * int * int * int option * int option)
-> unit;
val app : traversal -> ('a -> unit) -> 'a immarray2 -> unit;
val foldli : traversal -> ((int * int * 'a * 'b) -> 'b) -> 'b
-> ('a immarray2 * int * int * int option * int option)
-> 'b
val foldri : traversal -> ((int * int * 'a * 'b) -> 'b) -> 'b
-> ('a immarray2 * int * int * int option * int option)
-> 'b
val foldl : traversal -> (('a * 'b) -> 'b) -> 'b -> 'a immarray2 -> 'b
val foldr : traversal -> (('a * 'b) -> 'b) -> 'b -> 'a immarray2 -> 'b
val mapi : traversal -> (int * int * 'a -> 'b)
-> ('a immarray2 * int * int * int option * int option)
-> 'b immarray2;
val map : traversal -> ('a -> 'b) -> 'a immarray2 -> 'b immarray2;
val modifyi : traversal -> ((int * int * 'a) -> 'a)
-> ('a immarray2 * int * int * int option * int option)
-> 'a immarray2;
val modify : traversal -> ('a -> 'a) -> 'a immarray2 -> 'a immarray2;
end;
structure ImmArray2 : IMMARRAY2
= struct
(* datatype 'a immarray2
* An immarray2 is stored internally as an immutable array
* of immutable arrays. The use of a contructor prevents ImmArray
* functions from treating the immarray2 type as an immarray.
*)
datatype 'a immarray2 = IA2 of 'a ImmArray.immarray ImmArray.immarray;
datatype traversal = RowMajor | ColMajor
(* val tabulate : traversal -> int * int * (int * int -> 'a)
* -> 'a immarray2
* val immarray2 : int * int * 'a -> 'a immarray2
* val fromList : 'a list list -> 'a immarray2
* val dmensions : 'a immarray2 -> int * int
* These functions perform basic immarray2 functions.
* The tabulate and immarray2 functions create an immarray2.
* The fromList function converts a list of lists into an immarray2.
* Unlike Array2.fromList, fromList will accept lists of different
* lengths, allowing one to create an immarray2 in which the
* rows have different numbers of columns, although it is likely that
* exceptions will be raised when other ImmArray2 functions are applied
* to such an immarray2. Note that dimensions will return the
* number of columns in row 0.
* The dimensions function returns the dimensions of an immarray2.
*)
fun tabulate RowMajor (r, c, initfn)
= let
fun initrow r = ImmArray.tabulate (c, fn ic => initfn (r,ic));
in
IA2 (ImmArray.tabulate (r, fn ir => initrow ir))
end
| tabulate ColMajor (r, c, initfn)
= turn (tabulate RowMajor (c,r, fn (c,r) => initfn(r,c)))
and immarray2 (r, c, init) = tabulate RowMajor (r, c, fn (_, _) => init)
and fromList l
= IA2 (ImmArray.tabulate (length l,
fn ir => ImmArray.fromList (List.nth(l,ir))))
and dimensions (IA2 ia2) = (ImmArray.length ia2,
ImmArray.length (ImmArray.sub (ia2, 0)))
(* turn : 'a immarray2 -> 'a immarray2
* This function reverses the rows and columns of an immarray2
* to allow handling of ColMajor traversals.
*)
and turn ia2 = let
val (r,c) = dimensions ia2;
in
tabulate RowMajor (c,r,fn (cc,rr) => sub (ia2,rr,cc))
end
(* val sub : 'a immarray2 * int * int -> 'a
* val update : 'a immarray2 * int * int * 'a -> 'a immarray2
* These functions sub and update an immarray2 by indices.
*)
and sub (IA2 ia2, r, c) = ImmArray.sub(ImmArray.sub (ia2, r), c);
fun update (IA2 ia2, r, c, x)
= IA2 (ImmArray.update (ia2, r,
ImmArray.update (ImmArray.sub (ia2, r),
c, x)));
(* val extract : 'a immarray2 * int * int *
* int option * int option -> 'a immarray2
* This function extracts a subarray from an immarray2 from
* one pair of indices either through the rest of the
* immarray2 (NONE, NONE) or for the specfied number of elements.
*)
fun extract (IA2 ia2, i, j, rlen, clen)
= IA2 (ImmArray.map (fn ia => ImmArray.extract (ia, j, clen))
(ImmArray.extract (ia2, i, rlen)));
(* val nRows : 'a immarray2 -> int
* val nCols : 'a immarray2 -> int
* These functions return specific dimensions of an immarray2.
*)
fun nRows (IA2 ia2) = (#1 o dimensions) (IA2 ia2);
fun nCols (IA2 ia2) = (#2 o dimensions) (IA2 ia2);
(* val row : immarray2 * int -> ImmArray.immarray
* val column : immarray2 * int -> ImmArray.immarray
* These functions extract an entire row or column from
* an immarray2 by index, returning the row or column as
* an ImmArray.immarray.
*)
fun row (ia2, r) = let
val (c, _) = dimensions ia2;
in
ImmArray.tabulate (c, fn i => sub (ia2, r, i))
end;
fun column (ia2, c) = let
val (_, r) = dimensions ia2;
in
ImmArray.tabulate (r, fn i => sub (ia2, i, c))
end;
(* val copy : {src : 'a immarray2, si : int, sj : int,
* ilen : int option, jlen : int option,
* dst : 'a immarray2, di : int, dj : int};
* This function copies an immarray2 slice from src int dst starting
* at the di,dj element.
*)
fun copy {src, si, sj, ilen, jlen, dst=IA2 ia2, di, dj}
= let
val nilen = case ilen
of NONE => SOME ((nRows src) - si)
| SOME n => SOME n;
in
IA2 (ImmArray.modifyi (fn (r, ia)
=> ImmArray.copy {src=row (src, si+r-di),
si=sj, len=jlen,
dst=ia, di=dj})
(ia2, di, nilen))
end;
(* val appi : traversal -> ('a * int * int -> unit) -> 'a immarray2
* -> unit
* val app : traversal -> ('a -> unit) -> 'a immarray2 -> unit
* These functions apply a function to every element
* of an immarray2. The appi function also provides the
* indices of the element as an argument to the applied function
* and uses an immarray2 slice argument.
*)
fun appi RowMajor f (IA2 ia2, i, j, rlen, clen)
= ImmArray.appi (fn (r,ia) => ImmArray.appi (fn (c,x) => f(r,c,x))
(ia, j, clen))
(ia2, i, rlen)
| appi ColMajor f (ia2, i, j, rlen, clen)
= appi RowMajor (fn (c,r,x) => f(r,c,x)) (turn ia2, j, i, clen, rlen);
fun app tr f (IA2 ia2) = appi tr (f o #3) (IA2 ia2, 0, 0, NONE, NONE);
(* val foldli : traversal -> ((int * int * 'a * 'b) -> 'b) -> 'b
* -> ('a immarray2 * int * int * int option * int option)
* -> 'b
* val foldri : traversal -> ((int * int * 'a * 'b) -> 'b) -> 'b
* -> ('a immarray2 * int * int * int option * int option)
* -> 'b
* val foldl : traversal -> ('a * 'b -> 'b) -> 'b -> 'a immarray2 -> 'b
* val foldr : traversal -> ('a * 'b -> 'b) -> 'b -> 'a immarray2 -> 'b
* These functions fold a function over every element
* of an immarray2. The foldri and foldli functions also provide
* the index of the element as an argument to the folded function
* and uses an immarray2 slice argument.
*)
fun foldli RowMajor f b (IA2 ia2, i, j, rlen, clen)
= ImmArray.foldli (fn (r,ia,b)
=> ImmArray.foldli (fn (c,x,b) => f(r,c,x,b))
b
(ia, j, clen))
b
(ia2, i, rlen)
| foldli ColMajor f b (ia2, i, j, rlen, clen)
= foldli RowMajor (fn (c,r,x,b) => f(r,c,x,b)) b
(turn ia2, j, i, clen, rlen);
fun foldri RowMajor f b (IA2 ia2, i, j, rlen, clen)
= ImmArray.foldri (fn (r,ia,b)
=> ImmArray.foldri (fn (c,x,b) => f(r,c,x,b))
b
(ia, j, clen))
b
(ia2, i, rlen)
| foldri ColMajor f b (ia2, i, j, rlen, clen)
= foldri RowMajor (fn (c,r,x,b) => f(r,c,x,b)) b
(turn ia2, j, i, clen, rlen);
fun foldl tr f b (IA2 ia2)
= foldli tr (fn (_,_,x,b) => f(x,b)) b (IA2 ia2, 0, 0, NONE, NONE);
fun foldr tr f b (IA2 ia2)
= foldri tr (fn (_,_,x,b) => f(x,b)) b (IA2 ia2, 0, 0, NONE, NONE);
(* val mapi : traversal -> ('a * int * int -> 'b) -> 'a immarray2
* -> 'b immarray2
* val map : traversal -> ('a -> 'b) -> 'a immarray2 -> 'b immarray2
* These functions map a function over every element
* of an immarray2. The mapi function also provides the
* indices of the element as an argument to the mapped function
* and uses an immarray2 slice argument. Although there are
* similarities between mapi and modifyi, note that when mapi is
* used with an immarray2 slice, the resulting immarray2 is the
* same size as the slice. This is necessary to preserve the
* type of the resulting immarray2. Thus, mapi with the identity
* function reduces to the extract function.
*)
fun mapi RowMajor f (IA2 ia2, i, j, rlen, clen)
= IA2 (ImmArray.mapi (fn (r,ia) => ImmArray.mapi (fn (c,x) => f(r,c,x))
(ia, j, clen))
(ia2, i, rlen))
| mapi ColMajor f (ia2, i, j, rlen, clen)
= turn (mapi RowMajor (fn (c,r,x) => f(r,c,x))
(turn ia2, j, i, clen, rlen))
fun map tr f (IA2 ia2)
= mapi tr (f o #3) (IA2 ia2, 0, 0, NONE, NONE);
(* val modifyi : traversal -> (int * int* 'a -> 'a)
-> ('a immarray2 * int * int * int option * int option)
* -> 'a immarray2
* val modify : traversal -> ('a -> 'a) -> 'a immarray2 -> 'a immarray2
* These functions apply a function to every element of an immarray2
* in row by column order and returns a new immarray2 where corresponding
* elements are replaced by their modified values. The modifyi
* function also provides the index of the element as an argument
* to the mapped function and uses an immarray2 slice argument.
*)
fun modifyi RowMajor f (IA2 ia2, i, j, rlen, clen)
= IA2 (ImmArray.modifyi (fn (r,ia) => ImmArray.modifyi (fn (c,x)
=> f(r,c,x))
(ia, j, clen))
(ia2, i, rlen))
| modifyi ColMajor f (ia2, i, j, rlen, clen)
= turn (modifyi RowMajor (fn (c,r,x) => f(r,c,x))
(turn ia2, j, i, clen, rlen));
fun modify tr f (IA2 ia2)
= modifyi tr (f o #3) (IA2 ia2, 0, 0, NONE, NONE);
end;
(* ************************************************************************* *)
(*
* RegisterFile.sig
*
* This defines the exported datatype and functions provided by the
* register file. The datatype registerfile provides the encapsulation
* of the register file, InitRegisterFile initializes the registerfile,
* setting all registers to zero and setting r0, gp, sp, and fp to
* their appropriate values, LoadRegister takes a registerfile and
* an integer corresponding to the register, and returns the
* Word32.word value at that register, and StoreRegister takes a
* registerfile, an integer corresponding to the register, and a
* Word32.word and returns the registerfile updated with the word
* stored in the appropriate register.
*)
signature REGISTERFILE
= sig
type registerfile;
val InitRegisterFile : unit -> registerfile;
val LoadRegister : registerfile * int -> Word32.word;
val StoreRegister : registerfile * int * Word32.word -> registerfile;
end;
(*****************************************************************************)
(*
* RegisterFile.sml
*
* This defines the RegisterFile structure, which provides the
* functionality of the register file. The datatype registerfile
* provides the encapsulation of the register file, InitRegisterFile
* initializes the registerfile, setting all registers to zero and
* setting r0, gp, sp, and fp to their appropriate values,
* LoadRegister takes a registerfile and an integer corresponding to
* the register, and returns the Word32.word value at that register,
* and StoreRegister takes a registerfile, an integer corresponding to
* the register, and a Word32.word and returns the registerfile
* updated with the word stored in the appropriate register.
*
* The underlying structure of registerfile is an immutable array of
* Word32.word.
*)
structure RegisterFile : REGISTERFILE
= struct
type registerfile = Word32.word ImmArray.immarray;
fun InitRegisterFile ()
= ImmArray.update
(ImmArray.update
(ImmArray.update
(ImmArray.update
(ImmArray.immarray(32, 0wx00000000 : Word32.word),
00, 0wx00000000 : Word32.word),
28, 0wx00000000 : Word32.word),
29, 0wx00040000 : Word32.word),
30, 0wx00040000 : Word32.word) : registerfile;
fun LoadRegister (rf, reg) = ImmArray.sub(rf, reg);
fun StoreRegister (rf, reg, data) = ImmArray.update(rf, reg, data);
end;
(*****************************************************************************)
(*
* ALU.sig
*
* This defines the exported datatype and function provided by the
* ALU. The datatype ALUOp provides a means to specify which
* operation is to be performed by the ALU, and PerformAL performs
* one of the operations on two thirty-two bit words, returning the
* result as a thirty-two bit word.
*)
signature ALU
= sig
datatype ALUOp = SLL | SRL | SRA |
ADD | ADDU |
SUB | SUBU |
AND | OR | XOR |
SEQ | SNE |
SLT | SGT |
SLE | SGE;
val PerformAL : (ALUOp * Word32.word * Word32.word) -> Word32.word;
end;
(*****************************************************************************)
(*
* ALU.sml
*
* This defines the ALU structure, which provides the functionality of
* an Arithmetic/Logic Unit. The datatype ALUOp provides a means to
* specify which operation is to be performed by the ALU, and
* PerformAL performs one of the operations on two thirty-two bit
* words, returning the result as a thirty-two bit word.
*
* A note about SML'97 Basis Library implementation of thirty-two bit
* numbers: the Word32.word is an unsigned thirty-two bit integer,
* while Int.int (equivalent to Int.int) is a signed thirty-two
* bit integer. In order to perform the signed operations, it is
* necessary to convert the words to signed form, using the
* Word32.toIntX function, which performs sign extension,
* and to convert the result back into unsigned form using the
* Word32.fromInt function. In addition, to perform a shift,
* the second Word32.word needs to be "downsized" to a normal
* Word.word using the Word.fromWord function.
*)
structure ALU : ALU
= struct
datatype ALUOp = SLL | SRL | SRA |
ADD | ADDU |
SUB | SUBU |
AND | OR | XOR |
SEQ | SNE |
SLT | SGT |
SLE | SGE;
fun PerformAL (opcode, s1, s2) =
(case opcode
of SLL =>
Word32.<< (s1, Word.fromLarge (Word32.toLarge s2))
| SRL =>
Word32.>> (s1, Word.fromLarge (Word32.toLarge s2))
| SRA =>
Word32.~>> (s1, Word.fromLarge (Word32.toLarge s2))
| ADD =>
Word32.fromInt (Int.+ (Word32.toIntX s1,
Word32.toIntX s2))
| ADDU =>
Word32.+ (s1, s2)
| SUB =>
Word32.fromInt (Int.- (Word32.toIntX s1,
Word32.toIntX s2))
| SUBU =>
Word32.- (s1, s2)
| AND =>
Word32.andb (s1, s2)
| OR =>
Word32.orb (s1, s2)
| XOR =>
Word32.xorb (s1, s2)
| SEQ =>
if (s1 = s2)
then 0wx00000001 : Word32.word
else 0wx00000000 : Word32.word
| SNE =>
if not (s1 = s2)
then 0wx00000001 : Word32.word
else 0wx00000000 : Word32.word
| SLT =>
if Int.< (Word32.toIntX s1, Word32.toIntX s2)
then 0wx00000001 : Word32.word
else 0wx00000000 : Word32.word
| SGT =>
if Int.> (Word32.toIntX s1, Word32.toIntX s2)
then 0wx00000001 : Word32.word
else 0wx00000000 : Word32.word
| SLE =>
if Int.<= (Word32.toIntX s1, Word32.toIntX s2)
then 0wx00000001 : Word32.word
else 0wx00000000 : Word32.word
| SGE =>
if Int.>= (Word32.toIntX s1, Word32.toIntX s2)
then 0wx00000001 : Word32.word
else 0wx00000000 : Word32.word)
(*
* This handle will handle all ALU errors, most
* notably overflow and division by zero, and will
* print an error message and return 0.
*)
handle _ =>
(print "Error : ALU returning 0\n";
0wx00000000 : Word32.word);
end;
(*****************************************************************************)
(*
* Memory.sig
*
* This defines the exported datatype and functions provided by
* memory. The datatype memory provides the encapsulation
* of memory, InitMemory initializes memory, setting all
* addresses to zero, LoadWord takes memory and
* a Word32.word corresponding to the address, and returns the
* Word32.word value at that address, StoreWord takes memory,
* a Word32.word corresponding to the address, and a
* Word32.word and returns memory updated with the word
* stored at the appropriate address. LoadHWord, LoadHWordU,
* LoadByte, and LoadByteU load halfwords, unsigned halfwords,
* bytes, and unsigned bytes respectively from memory into the
* lower portion of the returned Word32.word. StoreHWord and
* StoreByte store halfwords and bytes taken from the lower portion
* of the Word32.word into memory.
* GetStatistics takes memory and returns the read and write
* statistics as a string.
*)
signature MEMORY
= sig
type memory;
val InitMemory : unit -> memory;
val LoadWord : memory * Word32.word -> memory * Word32.word;
val StoreWord : memory * Word32.word * Word32.word -> memory;
val LoadHWord : memory * Word32.word -> memory * Word32.word;
val LoadHWordU : memory * Word32.word -> memory * Word32.word;
val StoreHWord : memory * Word32.word * Word32.word -> memory;
val LoadByte : memory * Word32.word -> memory * Word32.word;
val LoadByteU : memory * Word32.word -> memory * Word32.word;
val StoreByte : memory * Word32.word * Word32.word -> memory;
val GetStatistics : memory -> string;
end;
(*****************************************************************************)
(*
* Memory.sml
*
* This defines the Memory structure, which provides the functionality
* of memory. The datatype memory provides the encapsulation of
* memory, InitMemory initializes memory, setting all
* addresses to zero, LoadWord takes memory and
* a Word32.word corresponding to the address, and returns the
* Word32.word value at that address and the updated memory,
* StoreWord takes memory, a Word32.word corresponding to the
* address, and a Word32.word and returns memory updated with the word
* stored at the appropriate address. LoadHWord, LoadHWordU,
* LoadByte, and LoadByteU load halfwords, unsigned halfwords,
* bytes, and unsigned bytes respectively from memory into the
* lower portion of the returned Word32.word. StoreHWord and
* StoreByte store halfwords and bytes taken from the lower portion
* of the Word32.word into memory.
* GetStatistics takes memory and returns the read and write
* statistics as a string.
*
* The underlying structure of memory is an immutable array of Word32.word.
* The array has a length of 0x10000, since every element of the array
* corresponds to a thirty-two bit integer.
*
* Also, the functions AlignWAddress and AlignHWAddress aligns a memory
* address to a word and halfword address, respectively. If LoadWord,
* StoreWord, LoadHWord, LoadHWordU, or StoreHWord is asked to access an
* unaligned address, it writes an error message, and uses the address
* rounded down to the aligned address.
*)
structure Memory : MEMORY
= struct
type memory = Word32.word ImmArray.immarray * (int * int);
fun InitMemory () =
(ImmArray.immarray(Word32.toInt(0wx10000 : Word32.word),
0wx00000000 : Word32.word),
(0, 0)) : memory;
fun AlignWAddress address
= Word32.<< (Word32.>> (address, 0wx0002), 0wx0002);
fun AlignHWAddress address
= Word32.<< (Word32.>> (address, 0wx0001), 0wx0001);
(* Load and Store provide errorless access to memory.
* They provide a common interface to memory, while
* the LoadX and StoreX specifically access words,
* halfwords and bytes, requiring address to be aligned.
* In Load and Store, two intermediate values are
* generated. The value aligned_address is the aligned
* version of the given address, and is used to compare with
* the original address to determine if it was aligned. The
* value use_address is equivalent to aligned_address divided
* by four, and it corresponds to the index of the memory
* array where the corresponding aligned address can be found.
*)
fun Load ((mem, (reads, writes)), address)
= let
val aligned_address = AlignWAddress address;
val use_address = Word32.>> (aligned_address, 0wx0002);
in
((mem, (reads + 1, writes)),
ImmArray.sub(mem, Word32.toInt(use_address)))
end;
fun Store ((mem, (reads, writes)), address, data)
= let
val aligned_address = AlignWAddress address;
val use_address = Word32.>> (aligned_address, 0wx0002);
in
(ImmArray.update(mem, Word32.toInt(use_address), data),
(reads, writes + 1))
end;
fun LoadWord (mem, address)
= let
val aligned_address
= if address = AlignWAddress address
then address
else (print "Error LW: Memory using aligned address\n";
AlignWAddress address);
in
Load(mem, aligned_address)
end;
fun StoreWord (mem, address, data)
= let
val aligned_address
= if address = AlignWAddress address
then address
else (print "Error SW: Memory using aligned address\n";
AlignWAddress address);
in
Store(mem, aligned_address, data)
end;
fun LoadHWord (mem, address)
= let
val aligned_address
= if address = AlignHWAddress address
then address
else (print "Error LH: Memory using aligned address\n";
AlignHWAddress address);
val (nmem,l_word) = Load(mem, aligned_address);
in
(nmem,
case aligned_address
of 0wx00000000 : Word32.word
=> Word32.~>>(Word32.<<(l_word, 0wx0010),
0wx0010)
| 0wx00000010 : Word32.word
=> Word32.~>>(Word32.<<(l_word, 0wx0000),
0wx0010)
| _ => (print "Error LH: Memory returning 0\n";
0wx00000000 : Word32.word))
end;
fun LoadHWordU (mem, address)
= let
val aligned_address
= if address = AlignHWAddress address
then address
else (print "Error LHU: Memory using aligned address\n";
AlignHWAddress address);
val (nmem, l_word) = Load(mem, aligned_address);
in
(nmem,
case aligned_address
of 0wx00000000 : Word32.word
=> Word32.>>(Word32.<<(l_word, 0wx0010),
0wx0010)
| 0wx00000010 : Word32.word
=> Word32.>>(Word32.<<(l_word, 0wx0000),
0wx0010)
| _ => (print "Error LHU: Memory returning 0\n";
0wx00000000 : Word32.word))
end;
fun StoreHWord (mem, address, data)
= let
val aligned_address
= if address = AlignHWAddress address
then address
else (print "Error SH: Memory using aligned address\n";
AlignWAddress address);
val (_, s_word) = Load(mem, aligned_address);
in
case aligned_address
of 0wx00000000 : Word32.word
=> Store(mem, aligned_address,
Word32.orb(Word32.andb(0wxFFFF0000 : Word32.word,
s_word),
Word32.<<(Word32.andb(0wx0000FFFF :
Word32.word,
data),
0wx0000)))
| 0wx00000010 : Word32.word
=> Store(mem, aligned_address,
Word32.orb(Word32.andb(0wx0000FFFF : Word32.word,
s_word),
Word32.<<(Word32.andb(0wx0000FFFF :
Word32.word,
data),
0wx0010)))
| _ => (print "Error SH: Memory unchanged\n";
mem)
end;
fun LoadByte (mem, address)
= let
val aligned_address = address;
val (nmem, l_word) = Load(mem, aligned_address);
in
(nmem,
case aligned_address
of 0wx00000000 : Word32.word
=> Word32.~>>(Word32.<<(l_word,
0wx0018),
0wx0018)
| 0wx00000008 : Word32.word
=> Word32.~>>(Word32.<<(l_word,
0wx0010),
0wx0018)
| 0wx00000010 : Word32.word
=> Word32.~>>(Word32.<<(l_word,
0wx0008),
0wx0018)
| 0wx00000018 : Word32.word
=> Word32.~>>(Word32.<<(l_word,
0wx0000),
0wx0018)
| _ => (print "Error LB: Memory returning 0\n";
0wx00000000 : Word32.word))
end;
fun LoadByteU (mem, address)
= let
val aligned_address = address;
val (nmem, l_word) = Load(mem, aligned_address);
in
(nmem,
case aligned_address
of 0wx00000000 : Word32.word
=> Word32.>>(Word32.<<(l_word,
0wx0018),
0wx0018)
| 0wx00000008 : Word32.word
=> Word32.>>(Word32.<<(l_word,
0wx0010),
0wx0018)
| 0wx00000010 : Word32.word
=> Word32.>>(Word32.<<(l_word,
0wx0008),
0wx0018)
| 0wx00000018 : Word32.word
=> Word32.>>(Word32.<<(l_word,
0wx0000),
0wx0018)
| _ => (print "Error LBU: Memory returning 0\n";
0wx00000000 : Word32.word))
end;
fun StoreByte (mem, address, data)
= let
val aligned_address = address;
val (_, s_word) = Load(mem, aligned_address);
in
case aligned_address
of 0wx00000000 : Word32.word
=> Store(mem, aligned_address,
Word32.orb(Word32.andb(0wxFFFFFF00 : Word32.word,
s_word),
Word32.<<(Word32.andb(0wx000000FF :
Word32.word,
data),
0wx0000)))
| 0wx00000008 : Word32.word
=> Store(mem, aligned_address,
Word32.orb(Word32.andb(0wxFFFF00FF : Word32.word,
s_word),
Word32.<<(Word32.andb(0wx000000FF :
Word32.word,
data),
0wx0008)))
| 0wx00000010 : Word32.word
=> Store(mem, aligned_address,
Word32.orb(Word32.andb(0wxFF00FFFF : Word32.word,
s_word),
Word32.<<(Word32.andb(0wx000000FF :
Word32.word,
data),
0wx0010)))
| 0wx00000018 : Word32.word
=> Store(mem, aligned_address,
Word32.orb(Word32.andb(0wx00FFFFFF : Word32.word,
s_word),
Word32.<<(Word32.andb(0wx000000FF :
Word32.word,
data),
0wx0018)))
| _ => (print "Error SB: Memory unchanged\n";
mem)
end;
fun GetStatistics (mem, (reads, writes))
= "Memory :\n" ^
"Memory Reads : " ^ (Int.toString reads) ^ "\n" ^
"Memory Writes : " ^ (Int.toString writes) ^ "\n";
end;
(*****************************************************************************)
(*
* CacheSpec.sig
*
* This defines the signature that outlines the specifications to
* describe a cache. The two datatypes are given to provide clear
* means of differentiating between the write hit and write miss
* options. CacheName can be any string describing the cache.
* CacheSize is an integer that represents the total number of words
* in the cache. BlockSize is an integer that represents the total
* number of words in a block. Associativity is an integer that
* represents the associativity of the cache. WriteHit and WriteMiss
* represent the write hit and write miss options to be implemented by
* this cache.
*)
signature CACHESPEC
= sig
datatype WriteHitOption = Write_Through
| Write_Back;
datatype WriteMissOption = Write_Allocate
| Write_No_Allocate;
val CacheName : string;
val CacheSize : int;
val BlockSize : int;
val Associativity : int;
val WriteHit : WriteHitOption;
val WriteMiss : WriteMissOption;
end;
(*****************************************************************************)
(*
* CachedMemory.sml
*
* This defines the CachedMemory functor, which provides the
* functionality of a cached memory and which takes two structures,
* corresponding to the cache specification and the the level of
* memory which the cache will be caching. The datatype memory
* provides the encapsulation of the cache along with the memory
* system that is being cached, InitMemory initializes the cache and
* the memory system that is being cached, LoadWord takes memory and a
* Word32.word corresponding to the address, and returns the
* Word32.word at that address and the updated cache and memory,
* StoreWord takes memory, a Word32.word corresponding to the address,
* and a Word32.word and returns the cache and memory updated with the
* stored at the appropriate address. LoadHWord, LoadHWordU,
* LoadByte, and LoadByteU load halfwords, unsigned halfwords,
* bytes, and unsigned bytes respectively from memory into the
* lower portion of the returned Word32.word. StoreHWord and
* StoreByte store halfwords and bytes taken from the lower portion
* of the Word32.word into memory.
* GetStatistics takes memory and returns the read and write
* statistics as a string.
*
* The underlying structure of cache is a two dimensional array of
* cache lines, where a cache line consists of a valid bit, dirty bit,
* a tag and a block of words, as a Word32.word array.
* The size of the cache, the associativity, and the block size are
* specified by the cache specification.
*
* Also, the functions AlignWAddress and AlignHWAddress aligns a memory
* address to a word and halfword address, respectively. If LoadWord,
* StoreWord, LoadHWord, LoadHWordU, or StoreHWord is asked to access an
* unaligned address, it writes an error message, and uses the address
* rounded down to the aligned address.
*)
functor CachedMemory (structure CS : CACHESPEC;
structure MEM : MEMORY;) : MEMORY
= struct
type cacheline
= bool * bool * Word32.word * Word32.word ImmArray.immarray;
type cacheset
= cacheline ImmArray.immarray;
type cache
= cacheset ImmArray.immarray;
type memory = (cache * (int * int * int * int)) * MEM.memory;
(* Performs log[base2] on an integer. *)
fun exp2 0 = 1
| exp2 n = 2 * (exp2 (n-1))
fun log2 x = let
fun log2_aux n = if exp2 n > x
then (n-1)
else log2_aux (n+1)
in
log2_aux 0
end
open CS;
(*
* The following values of index size and field bits are
* calculated from the values in the cache specification
* structure.
*)
val IndexSize = CacheSize div (BlockSize * Associativity);
val BlockOffsetBits = log2 (BlockSize * 4);
val IndexBits = log2 IndexSize;
val TagBits = 32 - BlockOffsetBits - IndexBits;
(*
* RandEntry returns a random number between
* [0, Associativity - 1]. It is used to determine
* replacement of data in the cache.
*)
val RandEntry = let
val modulus = Word.fromInt(Associativity - 1)
in
fn () => Word.toInt(Word.mod(rand (),
modulus))
end
(*
* The InitCache function initializes the cache to
* not-valid, not-dirty, 0wx00000000 tag, blocks initialized
* to 0wx00000000.
*)
fun InitCache ()
= let
val cacheline = (false, false, 0wx00000000 : Word32.word,
ImmArray.immarray (BlockSize,
0wx00000000 : Word32.word));
val cacheset = ImmArray.immarray (Associativity, cacheline);
in
(ImmArray.immarray (IndexSize, cacheset),
(0, 0, 0, 0))
end;
(*
* The InitMemory function initializes the cache
* and the memory being cached.
*)
fun InitMemory () = (InitCache (), MEM.InitMemory ()) : memory;
(*
* GetTag returns the Word32.word corresponding to the tag field of
* address
*)
fun GetTag address
= Word32.>> (address,
Word.fromInt (IndexBits + BlockOffsetBits));
(*
* GetIndex returns the Word32.word corresponding to the index
* field of address.
*)
fun GetIndex address
= let
val mask
= Word32.notb
(Word32.<<
(Word32.>> (0wxFFFFFFFF : Word32.word,
Word.fromInt (IndexBits + BlockOffsetBits)),
Word.fromInt (IndexBits + BlockOffsetBits)));
in
Word32.>> (Word32.andb (address, mask),
Word.fromInt (BlockOffsetBits))
end;
(*
* GetBlockOffset returns the Word32.word corresponding to the
* block offset field of address.
*)
fun GetBlockOffset address
= let
val mask
= Word32.notb
(Word32.<<
(Word32.>> (0wxFFFFFFFF : Word32.word,
Word.fromInt BlockOffsetBits),
Word.fromInt BlockOffsetBits));
in
Word32.andb (address, mask)
end;
(*
* The InCache* family of functions returns a boolean value
* that determines if the word specified by address is in the
* cache at the current time (and that the data is valid).
*)
fun InCache_aux_entry ((valid, dirty, tag, block), address)
= tag = (GetTag address) andalso valid;
fun InCache_aux_set (set, address)
= ImmArray.foldr (fn (entry, result) =>
(InCache_aux_entry (entry, address)) orelse
result)
false
set;
fun InCache (cac, address)
= InCache_aux_set (ImmArray.sub (cac,
Word32.toInt (GetIndex address)),
address);
(*
* The ReadCache* family of functions returns the Word32.word
* stored at address in the cache.
*)
fun ReadCache_aux_entry ((valid, dirty, tag, block), address)
= ImmArray.sub (block,
Word32.toInt (Word32.>> (GetBlockOffset address,
0wx0002)));
fun ReadCache_aux_set (set, address)
= ImmArray.foldr (fn (entry, result) =>
if InCache_aux_entry (entry, address)
then ReadCache_aux_entry (entry, address)
else result)
(0wx00000000 : Word32.word)
set;
fun ReadCache (cac, address)
= ReadCache_aux_set (ImmArray.sub (cac,
Word32.toInt(GetIndex address)),
address);
(*
* The WriteCache* family of functions returns the updated
* cache with data stored at address.
*)
fun WriteCache_aux_entry ((valid, dirty, tag, block), address, data)
= let
val ndirty = case WriteHit
of Write_Through => false
| Write_Back => true;
in
(true, ndirty, tag,
ImmArray.update (block,
Word32.toInt (Word32.>>
(GetBlockOffset address,
0wx0002)),
data))
end;
fun WriteCache_aux_set (set, address, data)
= ImmArray.map (fn entry =>
if InCache_aux_entry (entry, address)
then WriteCache_aux_entry (entry, address,
data)
else entry)
set;
fun WriteCache (cac, address, data)
= let
val index = Word32.toInt (GetIndex address);
val nset = WriteCache_aux_set (ImmArray.sub (cac, index),
address, data);
in
ImmArray.update (cac, index, nset)
end;
(*
* The LoadBlock function returns the updated
* memory and the block containing address loaded from memory.
*)
fun LoadBlock (mem, address)
= ImmArray.foldr (fn (offset, (block, mem)) =>
let
val laddress
= Word32.+ (Word32.<<
(Word32.>>
(address,
Word.fromInt
BlockOffsetBits),
Word.fromInt
BlockOffsetBits),
Word32.<< (Word32.fromInt
offset,
0wx0002));
val (nmem, nword) = MEM.LoadWord (mem,
laddress);
in
(ImmArray.update (block, offset, nword), nmem)
end)
(ImmArray.immarray (BlockSize,
0wx00000000 : Word32.word), mem)
(ImmArray.tabulate (BlockSize, fn i => i));
(*
* The StoreBlock functionsreturns the updated
* memory with block stored into the block containing address.
*)
fun StoreBlock (block, mem, address)
= ImmArray.foldr (fn (offset, mem) =>
let
val saddress
= Word32.+ (Word32.<<
(Word32.>>
(address,
Word.fromInt
BlockOffsetBits),
Word.fromInt
BlockOffsetBits),
Word32.<< (Word32.fromInt
offset,
0wx0002));
in
MEM.StoreWord (mem, saddress,
ImmArray.sub (block, offset))
end)
mem
(ImmArray.tabulate (BlockSize, fn i => i));
(*
* The LoadCache* family of functions returns the updated
* cache and memory, with the block containing address loaded
* into the cache at the appropriate cache line, and dirty
* data written back to memory as needed.
*)
fun LoadCache_aux_entry ((valid, dirty, tag, block), mem, address)
= let
val saddress
= Word32.orb (Word32.<< (tag,
Word.fromInt TagBits),
Word32.<< (GetIndex address,
Word.fromInt IndexBits));
val nmem = if valid andalso dirty
then StoreBlock (block, mem, saddress)
else mem;
val (nblock, nnmem) = LoadBlock (nmem, address);
in
((true, false, GetTag address, nblock), nnmem)
end;
fun LoadCache_aux_set (set, mem, address)
= let
val entry = RandEntry ();
val (nentry, nmem) = LoadCache_aux_entry (ImmArray.sub (set,
entry),
mem, address);
in
(ImmArray.update (set, entry, nentry), nmem)
end;
fun LoadCache (cac, mem, address)
= let
val index = Word32.toInt (GetIndex address);
val (nset, nmem)
= LoadCache_aux_set (ImmArray.sub (cac, index),
mem, address);
in
(ImmArray.update (cac, index, nset), nmem)
end;
(*
* The remainder of the function defined here satisfy the MEMORY
* signature. This allows a CachedMemory to act exactly like
* a normal Memory, and thus caches can be nested to an arbitrary
* depth.
*)
fun AlignWAddress address
= Word32.<< (Word32.>> (address, 0wx0002), 0wx0002);
fun AlignHWAddress address
= Word32.<< (Word32.>> (address, 0wx0001), 0wx0001);
(* Load and Store provide errorless access to memory.
* They provide a common interface to memory, while
* the LoadX and StoreX specifically access words,
* halfwords and bytes, requiring address to be aligned.
* In Load and Store, two intermediate values are
* generated. The value aligned_address is the aligned
* version of the given address, and is used to compare with
* the original address to determine if it was aligned. The
* value use_address is equivalent to aligned_address divided
* by four, and it corresponds to the index of the memory
* array where the corresponding aligned address can be found.
*)
fun Load (((cac, (rh, rm, wh, wm)), mem), address)
= let
val aligned_address = AlignWAddress address;
in
if InCache (cac, aligned_address)
then (((cac, (rh + 1, rm, wh, wm)), mem),
ReadCache (cac, aligned_address))
else let
val (ncac, nmem)
= LoadCache (cac, mem, aligned_address);
in
(((ncac, (rh, rm + 1, wh, wm)), nmem),
ReadCache (ncac, aligned_address))
end
end;
fun Store (((cac, (rh, rm, wh, wm)), mem), address, data)
= let
val aligned_address = AlignWAddress address;
in
if InCache (cac, aligned_address)
then let
val ncac = WriteCache (cac, aligned_address, data);
in
case WriteHit
of Write_Through =>
((ncac, (rh, rm, wh + 1, wm)),
MEM.StoreWord (mem, aligned_address, data))
| Write_Back =>
((ncac, (rh, rm, wh + 1, wm)), mem)
end
else case WriteMiss
of Write_Allocate =>
let
val (ncac, nmem)
= LoadCache (cac, mem, aligned_address);
val nncac
= WriteCache (ncac, aligned_address, data);
in
case WriteHit
of Write_Through =>
((nncac, (rh, rm, wh, wm + 1)),
MEM.StoreWord (nmem, aligned_address,
data))
| Write_Back =>
((nncac, (rh, rm, wh, wm + 1)),
nmem)
end
| Write_No_Allocate =>
((cac, (rh, rm, wh, wm + 1)),
MEM.StoreWord (mem, aligned_address, data))
end;
fun LoadWord (mem, address)
= let
val aligned_address
= if address = AlignWAddress address
then address
else (print "Error LW: Memory using aligned address\n";
AlignWAddress address);
in
Load(mem, aligned_address)
end;
fun StoreWord (mem, address, data)
= let
val aligned_address
= if address = AlignWAddress address
then address
else (print "Error SW: Memory using aligned address\n";
AlignWAddress address);
in
Store(mem, aligned_address, data)
end;
fun LoadHWord (mem, address)
= let
val aligned_address
= if address = AlignHWAddress address
then address
else (print "Error LH: Memory using aligned address\n";
AlignHWAddress address);
val (nmem,l_word) = Load(mem, aligned_address);
in
(nmem,
case aligned_address
of 0wx00000000 : Word32.word
=> Word32.~>>(Word32.<<(l_word, 0wx0010),
0wx0010)
| 0wx00000010 : Word32.word
=> Word32.~>>(Word32.<<(l_word, 0wx0000),
0wx0010)
| _ => (print "Error LH: Memory returning 0\n";
0wx00000000 : Word32.word))
end;
fun LoadHWordU (mem, address)
= let
val aligned_address
= if address = AlignHWAddress address
then address
else (print "Error LHU: Memory using aligned address\n";
AlignHWAddress address);
val (nmem, l_word) = Load(mem, aligned_address);
in
(nmem,
case aligned_address
of 0wx00000000 : Word32.word
=> Word32.>>(Word32.<<(l_word, 0wx0010),
0wx0010)
| 0wx00000010 : Word32.word
=> Word32.>>(Word32.<<(l_word, 0wx0000),
0wx0010)
| _ => (print "Error LHU: Memory returning 0\n";
0wx00000000 : Word32.word))
end;
fun StoreHWord (mem, address, data)
= let
val aligned_address
= if address = AlignHWAddress address
then address
else (print "Error SH: Memory using aligned address\n";
AlignWAddress address);
val (_, s_word) = Load(mem, aligned_address);
in
case aligned_address
of 0wx00000000 : Word32.word
=> Store(mem, aligned_address,
Word32.orb(Word32.andb(0wxFFFF0000 : Word32.word,
s_word),
Word32.<<(Word32.andb(0wx0000FFFF :
Word32.word,
data),
0wx0000)))
| 0wx00000010 : Word32.word
=> Store(mem, aligned_address,
Word32.orb(Word32.andb(0wx0000FFFF : Word32.word,
s_word),
Word32.<<(Word32.andb(0wx0000FFFF :
Word32.word,
data),
0wx0010)))
| _ => (print "Error SH: Memory unchanged\n";
mem)
end;
fun LoadByte (mem, address)
= let
val aligned_address = address;
val (nmem, l_word) = Load(mem, aligned_address);
in
(nmem,
case aligned_address
of 0wx00000000 : Word32.word
=> Word32.~>>(Word32.<<(l_word,
0wx0018),
0wx0018)
| 0wx00000008 : Word32.word
=> Word32.~>>(Word32.<<(l_word,
0wx0010),
0wx0018)
| 0wx00000010 : Word32.word
=> Word32.~>>(Word32.<<(l_word,
0wx0008),
0wx0018)
| 0wx00000018 : Word32.word
=> Word32.~>>(Word32.<<(l_word,
0wx0000),
0wx0018)
| _ => (print "Error LB: Memory returning 0\n";
0wx00000000 : Word32.word))
end;
fun LoadByteU (mem, address)
= let
val aligned_address = address;
val (nmem, l_word) = Load(mem, aligned_address);
in
(nmem,
case aligned_address
of 0wx00000000 : Word32.word
=> Word32.>>(Word32.<<(l_word,
0wx0018),
0wx0018)
| 0wx00000008 : Word32.word
=> Word32.>>(Word32.<<(l_word,
0wx0010),
0wx0018)
| 0wx00000010 : Word32.word
=> Word32.>>(Word32.<<(l_word,
0wx0008),
0wx0018)
| 0wx00000018 : Word32.word
=> Word32.>>(Word32.<<(l_word,
0wx0000),
0wx0018)
| _ => (print "Error LBU: Memory returning 0\n";
0wx00000000 : Word32.word))
end;
fun StoreByte (mem, address, data)
= let
val aligned_address = address;
val (_, s_word) = Load(mem, aligned_address);
in
case aligned_address
of 0wx00000000 : Word32.word
=> Store(mem, aligned_address,
Word32.orb(Word32.andb(0wxFFFFFF00 : Word32.word,
s_word),
Word32.<<(Word32.andb(0wx000000FF :
Word32.word,
data),
0wx0000)))
| 0wx00000008 : Word32.word
=> Store(mem, aligned_address,
Word32.orb(Word32.andb(0wxFFFF00FF : Word32.word,
s_word),
Word32.<<(Word32.andb(0wx000000FF :
Word32.word,
data),
0wx0008)))
| 0wx00000010 : Word32.word
=> Store(mem, aligned_address,
Word32.orb(Word32.andb(0wxFF00FFFF : Word32.word,
s_word),
Word32.<<(Word32.andb(0wx000000FF :
Word32.word,
data),
0wx0010)))
| 0wx00000018 : Word32.word
=> Store(mem, aligned_address,
Word32.orb(Word32.andb(0wx00FFFFFF : Word32.word,
s_word),
Word32.<<(Word32.andb(0wx000000FF :
Word32.word,
data),
0wx0018)))
| _ => (print "Error SB: Memory unchanged\n";
mem)
end;
fun GetStatistics ((cac, (rh, rm, wh, wm)), mem)
= let
val th = rh + wh;
val tm = rm + wm;
val who = case WriteHit
of Write_Through => "Write Through"
| Write_Back => "Write Back";
val wmo = case WriteMiss
of Write_Allocate => "Write Allocate"
| Write_No_Allocate => "Write No Allocate";
in
CacheName ^ " :\n" ^
"CacheSize : " ^ (Int.toString CacheSize) ^ "\n" ^
"BlockSize : " ^ (Int.toString BlockSize) ^ "\n" ^
"Associativity : " ^ (Int.toString Associativity) ^ "\n" ^
"Write Hit : " ^ who ^ "\n" ^
"Write Miss : " ^ wmo ^ "\n" ^
"Read hits : " ^ (Int.toString rh) ^ "\n" ^
"Read misses : " ^ (Int.toString rm) ^ "\n" ^
"Write hits : " ^ (Int.toString wh) ^ "\n" ^
"Write misses : " ^ (Int.toString wm) ^ "\n" ^
"Total hits : " ^ (Int.toString th) ^ "\n" ^
"Total misses : " ^ (Int.toString tm) ^ "\n" ^
(MEM.GetStatistics mem)
end;
end;
(*****************************************************************************)
(*
* DLXSimulator.sig
*
* This defines the exported function provided by the DLXSimulator.
* The function run_file takes a string corresponding to the name of the
* file to be run, and executes it. The function run_prog takes a
* list of instructions and executes them.
*)
signature DLXSIMULATOR
= sig
val run_file : string -> unit;
val run_prog : string list -> unit;
end;
(*****************************************************************************)
(*
* DLXSimulator.sml
*
* This defines the DLXSimulatorFun functor, which takes three
* structures, corresponding to the register file, the ALU, and memory,
* and provides the functionality of a DLX processor, able to execute
* DLX programs. The function run_file takes a string corresponding to the
* name of the file to be executed, and executes it. The function
* run_prog takes a list of instructions and executes them.
*)
functor DLXSimulatorFun (structure RF : REGISTERFILE;
structure ALU : ALU;
structure MEM : MEMORY; ) : DLXSIMULATOR
= struct
(*
* The datatype Opcode provides a means of differentiating *
* among the main opcodes.
*)
datatype Opcode =
(* for R-type opcodes *)
SPECIAL |
(* I-type opcodes *)
BEQZ | BNEZ |
ADDI | ADDUI | SUBI | SUBUI |
ANDI | ORI | XORI |
LHI |
SLLI | SRLI | SRAI |
SEQI | SNEI | SLTI | SGTI | SLEI | SGEI |
LB | LBU | SB |
LH | LHU | SH |
LW | SW |
(* J-type opcodes *)
J | JAL | TRAP | JR | JALR |
(* Unrecognized opcode *)
NON_OP;
(*
* The datatype RRFuncCode provides a means of
* differentiating among
* the register-register function codes.
*)
datatype RRFunctCode = NOP | SLL | SRL | SRA |
ADD | ADDU | SUB | SUBU |
AND | OR | XOR |
SEQ | SNE | SLT | SGT | SLE | SGE |
NON_FUNCT;
(*
* The datatype Instruction provides a means of
* differentiating among the three different types of
* instructions, I-type, R-type, and J-type.
* An I-type is interpreted as (opcode, rs1, rd, immediate).
* An R-type is interpreted as (opcode, rs1, rs2, rd, shamt, funct).
* An J-type is interpreted as (opcode, offset).
* An ILLEGAL causes the simulator to end.
*)
datatype Instruction
= ITYPE of Opcode * int * int * Word32.word
| RTYPE of Opcode * int * int * int * int * RRFunctCode
| JTYPE of Opcode * Word32.word
| ILLEGAL;
(*
* The value HALT is set to the DLX instruction TRAP #0,
* and is used to check for the halt of the program.
*)
val HALT = JTYPE (TRAP, 0wx00000000);
(*
* The function DecodeIType decodes a Word32.word into an
* I-type instruction.
*)
fun DecodeIType instr
= let
val opc = Word32.andb (Word32.>> (instr,
0wx001A),
0wx0000003F : Word32.word);
val opcode = case opc
of 0wx00000004 : Word32.word => BEQZ
| 0wx00000005 : Word32.word => BNEZ
| 0wx00000008 : Word32.word => ADDI
| 0wx00000009 : Word32.word => ADDUI
| 0wx0000000A : Word32.word => SUBI
| 0wx0000000B : Word32.word => SUBUI
| 0wx0000000C : Word32.word => ANDI
| 0wx0000000D : Word32.word => ORI
| 0wx0000000E : Word32.word => XORI
| 0wx0000000F : Word32.word => LHI
| 0wx00000014 : Word32.word => SLLI
| 0wx00000016 : Word32.word => SRLI
| 0wx00000017 : Word32.word => SRAI
| 0wx00000018 : Word32.word => SEQI
| 0wx00000019 : Word32.word => SNEI
| 0wx0000001A : Word32.word => SLTI
| 0wx0000001B : Word32.word => SGTI
| 0wx0000001C : Word32.word => SLEI
| 0wx0000001D : Word32.word => SGEI
| 0wx00000020 : Word32.word => LB
| 0wx00000024 : Word32.word => LBU
| 0wx00000028 : Word32.word => SB
| 0wx00000021 : Word32.word => LH
| 0wx00000025 : Word32.word => LHU
| 0wx00000029 : Word32.word => SH
| 0wx00000023 : Word32.word => LW
| 0wx0000002B : Word32.word => SW
| _ => (print "Error : Non I-Type opcode\n";
NON_OP);
val rs1 = Word32.toInt(Word32.andb (Word32.>> (instr, 0wx0015),
0wx0000001F : Word32.word));
val rd = Word32.toInt(Word32.andb (Word32.>> (instr, 0wx0010),
0wx0000001F : Word32.word));
val immediate = Word32.~>> (Word32.<< (instr, 0wx0010),
0wx0010);
in
if opcode = NON_OP
then ILLEGAL
else ITYPE (opcode, rs1, rd, immediate)
end;
(*
* The function DecodeRType decodes a Word32.word into an
* R-type instruction.
*)
fun DecodeRType instr
= let
val rs1 = Word32.toInt (Word32.andb (Word32.>> (instr, 0wx0015),
0wx0000001F : Word32.word));
val rs2 = Word32.toInt (Word32.andb (Word32.>> (instr, 0wx0010),
0wx0000001F : Word32.word));
val rd = Word32.toInt (Word32.andb (Word32.>> (instr, 0wx000B),
0wx0000001F : Word32.word));
val shamt
= Word32.toInt (Word32.andb (Word32.>> (instr, 0wx0006),
0wx0000001F : Word32.word));
val funct = Word32.andb (instr, 0wx0000003F : Word32.word);
val functcode = case funct
of 0wx00000000 : Word32.word => NOP
| 0wx00000004 : Word32.word => SLL
| 0wx00000006 : Word32.word => SRL
| 0wx00000007 : Word32.word => SRA
| 0wx00000020 : Word32.word => ADD
| 0wx00000021 : Word32.word => ADDU
| 0wx00000022 : Word32.word => SUB
| 0wx00000023 : Word32.word => SUBU
| 0wx00000024 : Word32.word => AND
| 0wx00000025 : Word32.word => OR
| 0wx00000026 : Word32.word => XOR
| 0wx00000028 : Word32.word => SEQ
| 0wx00000029 : Word32.word => SNE
| 0wx0000002A : Word32.word => SLT
| 0wx0000002B : Word32.word => SGT
| 0wx0000002C : Word32.word => SLE
| 0wx0000002D : Word32.word => SGE
| _ => (print "Error : Non R-type funct\n";
NON_FUNCT);
in
if functcode = NON_FUNCT
then ILLEGAL
else RTYPE (SPECIAL, rs1, rs2, rd, shamt, functcode)
end;
(*
* The function DecodeJType decodes a Word32.word into an
* J-type instruction.
*)
fun DecodeJType instr
= let
val opc = Word32.andb (Word32.>> (instr, 0wx1A),
0wx0000003F : Word32.word);
val opcode = case opc
of 0wx00000002 : Word32.word => J
| 0wx00000003 : Word32.word => JAL
| 0wx00000011 : Word32.word => TRAP
| 0wx00000012 : Word32.word => JR
| 0wx00000013 : Word32.word => JALR
| _ => (print "Error : Non J-type opcode\n";
NON_OP);
val offset = Word32.~>> (Word32.<< (instr, 0wx0006),
0wx0006);
in
if opcode = NON_OP
then ILLEGAL
else JTYPE (opcode, offset)
end;
(*
* The function DecodeInstr decodes a Word32.word into an
* instruction. It first checks the opcode, and then calls
* one of DecodeIType, DecodeJType, and DecodeRType to
* complete the decoding process.
*)
fun DecodeInstr instr
= let
val opcode = Word32.andb (Word32.>> (instr, 0wx1A),
0wx0000003F : Word32.word);
in
case opcode
of 0wx00000000 : Word32.word => DecodeRType instr
| 0wx00000002 : Word32.word => DecodeJType instr
| 0wx00000003 : Word32.word => DecodeJType instr
| 0wx00000004 : Word32.word => DecodeIType instr
| 0wx00000005 : Word32.word => DecodeIType instr
| 0wx00000008 : Word32.word => DecodeIType instr
| 0wx00000009 : Word32.word => DecodeIType instr
| 0wx0000000A : Word32.word => DecodeIType instr
| 0wx0000000B : Word32.word => DecodeIType instr
| 0wx0000000C : Word32.word => DecodeIType instr
| 0wx0000000D : Word32.word => DecodeIType instr
| 0wx0000000E : Word32.word => DecodeIType instr
| 0wx0000000F : Word32.word => DecodeIType instr
| 0wx00000011 : Word32.word => DecodeJType instr
| 0wx00000012 : Word32.word => DecodeJType instr
| 0wx00000013 : Word32.word => DecodeJType instr
| 0wx00000016 : Word32.word => DecodeIType instr
| 0wx00000017 : Word32.word => DecodeIType instr
| 0wx00000018 : Word32.word => DecodeIType instr
| 0wx00000019 : Word32.word => DecodeIType instr
| 0wx0000001A : Word32.word => DecodeIType instr
| 0wx0000001B : Word32.word => DecodeIType instr
| 0wx0000001C : Word32.word => DecodeIType instr
| 0wx0000001D : Word32.word => DecodeIType instr
| 0wx00000020 : Word32.word => DecodeIType instr
| 0wx00000024 : Word32.word => DecodeIType instr
| 0wx00000028 : Word32.word => DecodeIType instr
| 0wx00000021 : Word32.word => DecodeIType instr
| 0wx00000025 : Word32.word => DecodeIType instr
| 0wx00000029 : Word32.word => DecodeIType instr
| 0wx00000023 : Word32.word => DecodeIType instr
| 0wx0000002B : Word32.word => DecodeIType instr
| _ => (print "Error : Unrecognized opcode\n";
ILLEGAL)
end;
(*
* The function PerformIType performs one of the I-Type
* instructions. A number of the instructions make use of the
* ALU, and as such, call ALU.PerformAL.
*)
fun PerformIType ((BEQZ, rs1, rd, immediate), (PC, rf, mem))
= if (RF.LoadRegister(rf, rs1) = (0wx00000000 : Word32.word))
then (Word32.fromInt (Int.+ (Word32.toIntX PC,
Word32.toIntX
(Word32.<< (immediate,
0wx0002)))),
rf, mem)
else (PC, rf, mem)
| PerformIType ((BNEZ, rs1, rd, immediate), (PC, rf, mem))
= if not (RF.LoadRegister(rf, rs1) = (0wx00000000 : Word32.word))
then (Word32.fromInt (Int.+ (Word32.toIntX PC,
Word32.toIntX
(Word32.<< (immediate,
0wx0002)))),
rf, mem)
else (PC, rf, mem)
| PerformIType ((ADDI, rs1, rd, immediate), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.ADD,
RF.LoadRegister(rf, rs1),
immediate)),
mem)
| PerformIType ((ADDUI, rs1, rd, immediate), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.ADDU,
RF.LoadRegister(rf, rs1),
immediate)),
mem)
| PerformIType ((SUBI, rs1, rd, immediate), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.SUB,
RF.LoadRegister(rf, rs1),
immediate)),
mem)
| PerformIType ((SUBUI, rs1, rd, immediate), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.SUBU,
RF.LoadRegister(rf, rs1),
immediate)),
mem)
| PerformIType ((ANDI, rs1, rd, immediate), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.AND,
RF.LoadRegister(rf, rs1),
immediate)),
mem)
| PerformIType ((ORI, rs1, rd, immediate), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.OR,
RF.LoadRegister(rf, rs1),
immediate)),
mem)
| PerformIType ((XORI, rs1, rd, immediate), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.XOR,
RF.LoadRegister(rf, rs1),
immediate)),
mem)
| PerformIType ((LHI, rs1, rd, immediate), (PC, rf, mem))
= (PC, RF.StoreRegister(rf, rd, Word32.<< (immediate, 0wx0010)), mem)
| PerformIType ((SLLI, rs1, rd, immediate), (PC, rf, mem))
= (PC, RF.StoreRegister(rf, rd,
Word32.<< (RF.LoadRegister(rf, rs1),
Word.fromLarge (Word32.toLarge immediate))),
mem)
| PerformIType ((SRLI, rs1, rd, immediate), (PC, rf, mem))
= (PC, RF.StoreRegister(rf, rd,
Word32.>> (RF.LoadRegister(rf, rs1),
Word.fromLarge (Word32.toLarge immediate))),
mem)
| PerformIType ((SRAI, rs1, rd, immediate), (PC, rf, mem))
= (PC, RF.StoreRegister(rf, rd,
Word32.~>> (RF.LoadRegister(rf, rs1),
Word.fromLarge (Word32.toLarge immediate))),
mem)
| PerformIType ((SEQI, rs1, rd, immediate), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.SEQ,
RF.LoadRegister(rf, rs1),
immediate)),
mem)
| PerformIType ((SNEI, rs1, rd, immediate), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.SNE,
RF.LoadRegister(rf, rs1),
immediate)),
mem)
| PerformIType ((SLTI, rs1, rd, immediate), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.SLT,
RF.LoadRegister(rf, rs1),
immediate)),
mem)
| PerformIType ((SGTI, rs1, rd, immediate), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.SGT,
RF.LoadRegister(rf, rs1),
immediate)),
mem)
| PerformIType ((SLEI, rs1, rd, immediate), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.SLE,
RF.LoadRegister(rf, rs1),
immediate)),
mem)
| PerformIType ((SGEI, rs1, rd, immediate), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.SGE,
RF.LoadRegister(rf, rs1),
immediate)),
mem)
| PerformIType ((LB, rs1, rd, immediate), (PC, rf, mem))
= let
val (nmem, l_byte)
= MEM.LoadByte(mem, Word32.+ (RF.LoadRegister(rf, rs1),
immediate));
in
(PC,
RF.StoreRegister(rf, rd, l_byte),
nmem)
end
| PerformIType ((LBU, rs1, rd, immediate), (PC, rf, mem))
= let
val (nmem, l_byte)
= MEM.LoadByteU(mem, Word32.+ (RF.LoadRegister(rf, rs1),
immediate));
in
(PC,
RF.StoreRegister(rf, rd, l_byte),
nmem)
end
| PerformIType ((SB, rs1, rd, immediate), (PC, rf, mem))
= (PC,
rf,
MEM.StoreByte(mem,
Word32.+ (RF.LoadRegister(rf, rs1), immediate),
Word32.andb(0wx000000FF, RF.LoadRegister(rf, rd))))
| PerformIType ((LH, rs1, rd, immediate), (PC, rf, mem))
= let
val (nmem, l_hword)
= MEM.LoadHWord(mem, Word32.+ (RF.LoadRegister(rf, rs1),
immediate));
in
(PC,
RF.StoreRegister(rf, rd, l_hword),
nmem)
end
| PerformIType ((LHU, rs1, rd, immediate), (PC, rf, mem))
= let
val (nmem, l_hword)
= MEM.LoadHWordU(mem, Word32.+ (RF.LoadRegister(rf, rs1),
immediate));
in
(PC,
RF.StoreRegister(rf, rd, l_hword),
nmem)
end
| PerformIType ((SH, rs1, rd, immediate), (PC, rf, mem))
= (PC,
rf,
MEM.StoreByte(mem,
Word32.+ (RF.LoadRegister(rf, rs1), immediate),
Word32.andb(0wx0000FFFF, RF.LoadRegister(rf, rd))))
| PerformIType ((LW, rs1, rd, immediate), (PC, rf, mem))
= let
val (nmem, l_word)
= MEM.LoadWord(mem, Word32.+ (RF.LoadRegister(rf, rs1),
immediate));
in
(PC,
RF.StoreRegister(rf, rd, l_word),
nmem)
end
| PerformIType ((SW, rs1, rd, immediate), (PC, rf, mem))
= (PC,
rf,
MEM.StoreWord(mem,
Word32.+ (RF.LoadRegister(rf, rs1), immediate),
RF.LoadRegister(rf, rd)))
| PerformIType ((_, rs1, rd, immediate), (PC, rf, mem))
= (print "Error : Non I-Type opcode, performing NOP\n";
(PC, rf, mem));
(*
* The function PerformRType performs one of the R-Type
* instructions. All of the instructions make use of the
* ALU, and as such, call ALU.PerformAL.
*)
fun PerformRType ((SPECIA, rs1, rs2, rd, shamt, NOP), (PC, rf, mem))
= (PC, rf, mem)
| PerformRType ((SPECIAL, rs1, rs2, rd, shamt, SLL), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.SLL,
RF.LoadRegister(rf, rs1),
RF.LoadRegister(rf, rs2))),
mem)
| PerformRType ((SPECIAL, rs1, rs2, rd, shamt, SRL), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.SRL,
RF.LoadRegister(rf, rs1),
RF.LoadRegister(rf, rs2))),
mem)
| PerformRType ((SPECIAL, rs1, rs2, rd, shamt, SRA), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.SRA,
RF.LoadRegister(rf, rs1),
RF.LoadRegister(rf, rs2))),
mem)
| PerformRType ((SPECIAL, rs1, rs2, rd, shamt, ADD), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.ADD,
RF.LoadRegister(rf, rs1),
RF.LoadRegister(rf, rs2))),
mem)
| PerformRType ((SPECIAL, rs1, rs2, rd, shamt, ADDU), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.ADDU,
RF.LoadRegister(rf, rs1),
RF.LoadRegister(rf, rs2))),
mem)
| PerformRType ((SPECIAL, rs1, rs2, rd, shamt, SUB), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.SUB,
RF.LoadRegister(rf, rs1),
RF.LoadRegister(rf, rs2))),
mem)
| PerformRType ((SPECIAL, rs1, rs2, rd, shamt, SUBU), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.SUBU,
RF.LoadRegister(rf, rs1),
RF.LoadRegister(rf, rs2))),
mem)
| PerformRType ((SPECIAL, rs1, rs2, rd, shamt, AND), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.AND,
RF.LoadRegister(rf, rs1),
RF.LoadRegister(rf, rs2))),
mem)
| PerformRType ((SPECIAL, rs1, rs2, rd, shamt, OR), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.OR,
RF.LoadRegister(rf, rs1),
RF.LoadRegister(rf, rs2))),
mem)
| PerformRType ((SPECIAL, rs1, rs2, rd, shamt, XOR), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.XOR,
RF.LoadRegister(rf, rs1),
RF.LoadRegister(rf, rs2))),
mem)
| PerformRType ((SPECIAL, rs1, rs2, rd, shamt, SEQ), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.SEQ,
RF.LoadRegister(rf, rs1),
RF.LoadRegister(rf, rs2))),
mem)
| PerformRType ((SPECIAL, rs1, rs2, rd, shamt, SNE), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.SNE,
RF.LoadRegister(rf, rs1),
RF.LoadRegister(rf, rs2))),
mem)
| PerformRType ((SPECIAL, rs1, rs2, rd, shamt, SLT), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.SLT,
RF.LoadRegister(rf, rs1),
RF.LoadRegister(rf, rs2))),
mem)
| PerformRType ((SPECIAL, rs1, rs2, rd, shamt, SGT), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.SGT,
RF.LoadRegister(rf, rs1),
RF.LoadRegister(rf, rs2))),
mem)
| PerformRType ((SPECIAL, rs1, rs2, rd, shamt, SLE), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.SLE,
RF.LoadRegister(rf, rs1),
RF.LoadRegister(rf, rs2))),
mem)
| PerformRType ((SPECIAL, rs1, rs2, rd, shamt, SGE), (PC, rf, mem))
= (PC,
RF.StoreRegister(rf, rd,
ALU.PerformAL(ALU.SGE,
RF.LoadRegister(rf, rs1),
RF.LoadRegister(rf, rs2))),
mem)
| PerformRType ((_, rs1, rs2, rd, shamt, _), (PC, rf, mem))
= (print "Error : Non R-Type opcode, performing NOP\n";
(PC, rf, mem));
(*
* The function PerformJType performs one of the J-Type
* instructions.
*)
fun PerformJType ((J, offset), (PC, rf, mem))
= (Word32.fromInt (Int.+ (Word32.toIntX PC,
Word32.toIntX
(Word32.<< (offset, 0wx0002)))),
rf, mem)
| PerformJType ((JR, offset), (PC, rf, mem))
= (RF.LoadRegister(rf,
Word32.toInt(Word32.andb (Word32.>> (offset,
0wx0015),
0wx0000001F :
Word32.word))),
rf, mem)
| PerformJType ((JAL, offset), (PC, rf, mem))
= (Word32.fromInt (Int.+ (Word32.toIntX PC,
Word32.toIntX
(Word32.<< (offset, 0wx0002)))),
RF.StoreRegister(rf, 31, PC),
mem)
| PerformJType ((JALR, offset), (PC, rf, mem))
= (RF.LoadRegister(rf,
Word32.toInt (Word32.andb (Word32.>> (offset,
0wx0015),
0wx0000001F :
Word32.word))),
RF.StoreRegister(rf, 31, PC),
mem)
| PerformJType ((TRAP, 0wx00000003 : Word32.word), (PC, rf, mem))
= let
val x = TextIO.print "Value? ";
val s = "10" (* TextIO.inputLine TextIO.stdIn; *)
val i = Int.fromString s;
val input = if isSome i
then valOf i
else (TextIO.print "Error : Returning 0\n";
Int.fromInt 0);
in
(PC,
RF.StoreRegister(rf, 14, Word32.fromInt input),
mem)
end
| PerformJType ((TRAP, 0wx00000004 : Word32.word), (PC, rf, mem))
= let
val output = Int.toString (Word32.toIntX
(RF.LoadRegister(rf, 14)));
in
(TextIO.print ("Output: " ^ output ^ "\n");
(PC, rf, mem))
end
| PerformJType ((_, offset), (PC, rf, mem))
= (print "Error : Non J-Type opcode, performing NOP\n";
(PC, rf, mem));
(*
* The function PerformInstr performs an instruction by
* passing the instruction to the appropriate auxiliary function.
*)
fun PerformInstr (ITYPE instr, (PC, rf, mem))
= PerformIType (instr, (PC, rf, mem))
| PerformInstr (RTYPE instr, (PC, rf, mem))
= PerformRType (instr, (PC, rf, mem))
| PerformInstr (JTYPE instr, (PC, rf, mem))
= PerformJType (instr, (PC, rf, mem))
| PerformInstr (ILLEGAL, (PC, rf, mem))
= (PC, rf, mem);
(*
* The function CycleLoop represents the basic clock cylce of
* the DLX processor. It takes as input the current program
* counter, the current register file, and the current memory.
* It loads, decodes, and executes an instruction and increments
* the program counter. If the instruction that was loaded is
* the HALT instruction, the program terminates, otherwise,
* CycleLoop is recursively called with the result of performing
* the instruction.
*)
fun CycleLoop (PC, rf, mem)
= let
val (nmem, instr_word) = MEM.LoadWord (mem, PC);
val instr = DecodeInstr instr_word;
val nPC = Word32.+ (PC, 0wx00000004 : Word32.word);
in
if instr = HALT orelse instr = ILLEGAL
then (print "Program halted.\n";
print (MEM.GetStatistics (nmem));
())
else CycleLoop (PerformInstr (instr, (nPC, rf, nmem)))
end
(*
* The function LoadProgAux is an auxilary function that
* assists in loading a program into memory. It recursively
* calls itself, each time loading an instruction and incrementing
* the address to which the next instruction is to be loaded.
*)
fun LoadProgAux ([], mem, address)
= mem
| LoadProgAux (instrs::instr_list, mem, address)
= let
val instro = Word32.fromString instrs;
val instr = if isSome instro
then valOf instro
else (print ("Error : Invalid " ^
"instruction format, " ^
"returning NOP\n");
0wx00000000 : Word32.word);
in
LoadProgAux (instr_list,
MEM.StoreWord (mem, address, instr),
Word32.+ (address, 0wx00000004 : Word32.word))
end;
(*
* The function LoadProg takes a list of instructions and memory, and
* loads the file into memory, beginning at 0x10000.
*)
fun LoadProg (instr_list, mem)
= LoadProgAux (instr_list, mem, 0wx00010000 : Word32.word);
(*
* The function ReadFileToInstr reads the sequence of
* instructions in a file into a list.
*)
fun ReadFileToInstr file
= (case TextIO.inputLine file of
NONE => []
| SOME l => l :: (ReadFileToInstr file));
(*
* The function run_prog is exported by DLXSimulator.
* It takes a list of instructions, then begins
* execution of the instructions loaded at 0x10000, with an
* initialized register file, and the loaded program in an
* initialised memory.
*)
fun run_prog instructions
= CycleLoop (0wx00010000 : Word32.word,
RF.InitRegisterFile (),
LoadProg (instructions, MEM.InitMemory ()));
(*
* The function run_file is exported by DLXSimulator.
* It takes the name of a file to be run, then begins
* execution of the loaded program at 0x10000, with an
* initialized register file, and the loaded program in an
* initialized memory.
*)
fun run_file filename
= (run_prog o ReadFileToInstr) (TextIO.openIn filename);
end;
(* ************************************************************************* *)
(*
* Cache1.sml
*
* This file describes a small simple level 1 cache.
*)
structure L1CacheSpec1 : CACHESPEC
= struct
datatype WriteHitOption = Write_Through
| Write_Back;
datatype WriteMissOption = Write_Allocate
| Write_No_Allocate;
val CacheName = "Level 1 Cache";
val CacheSize = 256;
val BlockSize = 4;
val Associativity = 2;
val WriteHit = Write_Through;
val WriteMiss = Write_No_Allocate;
end;
structure L1Cache1 : MEMORY
= CachedMemory (structure CS = L1CacheSpec1;
structure MEM = Memory; );
structure DLXSimulatorC1 : DLXSIMULATOR
= DLXSimulatorFun (structure RF = RegisterFile;
structure ALU = ALU;
structure MEM = L1Cache1; );
(* Example programs *)
val Simple = ["200E002F",
"44000004",
"44000000"];
val Twos = ["44000003",
"00000000",
"3D00FFFF",
"3508FFFF",
"010E7026",
"25CE0001",
"44000004",
"00000000",
"44000000",
"00000000"];
val Abs = ["44000003",
"00000000",
"01C0402A",
"11000002",
"00000000",
"000E7022",
"44000004",
"00000000",
"44000000",
"00000000"]
val Fact = ["0C000002",
"00000000",
"44000000",
"44000003",
"000E2020",
"2FBD0020",
"AFBF0014",
"AFBE0010",
"27BE0020",
"0C000009",
"00000000",
"8FBE0010",
"8FBF0014",
"27BD0020",
"00027020",
"44000004",
"00001020",
"4BE00000",
"00000000",
"20080001",
"0088402C",
"11000004",
"00000000",
"20020001",
"08000016",
"00000000",
"2FBD0004",
"AFA40000",
"28840001",
"2FBD0020",
"AFBF0014",
"AFBE0010",
"27BE0020",
"0FFFFFF1",
"00000000",
"8FBE0010",
"8FBF0014",
"27BD0020",
"8FA40000",
"27BD0004",
"00004020",
"10800005",
"00000000",
"01024020",
"28840001",
"0BFFFFFB",
"00000000",
"01001020",
"4BE00000",
"00000000"];
val GCD = ["0C000002",
"00000000",
"44000000",
"44000003",
"00000000",
"000E2020",
"0080402A",
"11000002",
"00000000",
"00042022",
"44000003",
"00000000",
"000E2820",
"00A0402A",
"11000002",
"00000000",
"00052822",
"2FBD0020",
"AFBF0014",
"AFBE0010",
"27BE0020",
"0C00000A",
"00000000",
"8FBE0010",
"8FBF0014",
"27BD0020",
"00027020",
"44000004",
"00000000",
"00001020",
"4BE00000",
"00000000",
"14A00004",
"00000000",
"00801020",
"08000013",
"00000000",
"0085402C",
"15000006",
"00000000",
"00804020",
"00A02020",
"01002820",
"08000002",
"00000000",
"00A42822",
"2FBD0020",
"AFBF0014",
"AFBE0010",
"27BE0020",
"0FFFFFED",
"00000000",
"8FBE0010",
"8FBF0014",
"27BD0020",
"4BE00000",
"00000000"];
(*
val _ = DLXSimulatorC1.run_prog GCD
*)
structure Main =
struct
fun doit () =
(DLXSimulatorC1.run_prog Simple
; DLXSimulatorC1.run_prog Twos
; DLXSimulatorC1.run_prog Abs
; DLXSimulatorC1.run_prog Fact
; DLXSimulatorC1.run_prog GCD
)
val doit =
fn size =>
let
fun loop n =
if n = 0
then ()
else (doit();
loop(n-1))
in loop size
end
end
|