1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
|
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="generator" content="AsciiDoc 8.6.8">
<title>DefinitionOfStandardML</title>
<link rel="stylesheet" href="./asciidoc.css" type="text/css">
<link rel="stylesheet" href="./pygments.css" type="text/css">
<script type="text/javascript" src="./asciidoc.js"></script>
<script type="text/javascript">
/*<![CDATA[*/
asciidoc.install();
/*]]>*/
</script>
<link rel="stylesheet" href="./mlton.css" type="text/css"/>
</head>
<body class="article">
<div id="banner">
<div id="banner-home">
<a href="./Home">MLton 20130715</a>
</div>
</div>
<div id="header">
<h1>DefinitionOfStandardML</h1>
</div>
<div id="content">
<div id="preamble">
<div class="sectionbody">
<div class="paragraph"><p><a href="References#MilnerEtAl97"> The Definition of Standard ML (Revised)</a> is a
terse and formal specification of <a href="StandardML">Standard ML</a>'s syntax
and semantics. The language specified by this book is often referred
to as SML 97.</p></div>
<div class="paragraph"><p><a href="References#MilnerEtAl90"> The Definition of Standard ML</a> is an older
version of the definition, published in 1990, which has an
accompanying <a href="References#MilnerTofte90"> Commentary on Standard ML</a> that
introduces and explains the notation and approach. The same notation
is used in the SML 97 definition, so it is worth purchasing the older
definition and commentary if you intend a close study of the
definition.</p></div>
</div>
</div>
</div>
<div id="footnotes"><hr></div>
<div id="footer">
<div id="footer-text">
</div>
<div id="footer-badges">
</div>
</div>
</body>
</html>
|