1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
val toString = Int.toString
(* Ported to kit 23/4/97 by Mads.
Commented out module phrases and changed a couple of sml/nj things (like makestring)
No rewriting to please region inference.
Still it uses less that 100Kb when it runs (see region.ps)
*)
(* This is a quickly written type checker for subtyping, using the
MATCH and TYPE algorithms from the Fuh and Mishra paper.
The code is ugly at places, and no consideration has been given to
effeciency -- please accept my apologies
-- Mads*)
(*
structure List = (* list utilities *)
struct
*)
type 'a set = 'a list; (* sets are represented by lists without repeated
elements *)
val emptyset = []
fun isin(x,[])=false
| isin(x,(y::rest)) = x=y orelse isin(x,rest)
fun union([],l) = l
| union((x::rest),l) = if isin(x,l) then union(rest,l)
else x:: union(rest,l);
fun intersect([],l) = []
| intersect((x::rest),l) = if isin(x,l) then x:: intersect(rest,l)
else intersect(rest,l);
fun setminus([],l) = []
| setminus(x::l,l') = if isin(x,l') then setminus(l,l')
else x:: setminus(l,l');
fun foldr f b [] = b
| foldr f b (x::rest) = f(x,foldr f b rest);
fun foldl f base [] = base
| foldl f base (x::xs) = foldl f (f(x, base)) xs
(* function for finding transitive closure.
Culled from other application.
DO NOT READ (CRUDE AND INEFFICIENT) *)
fun transClos (eq: 'a * 'a -> bool)
(insert_when_eq: bool)
(newsets: 'a set list,
oldsets: 'a set list): bool * 'a set list =
(* The lists in oldsets are pairwise disjoint, but nothing is known about the
lists in newsets. The resulting sets are pairwise disjoint,
and moreover, the resulting boolean is true if and only if
every member (i.e. list) of newsets, is contained in some member (i.e., list)
of oldsets *)
let
val any: bool = true (* could be false, for that matter *)
fun isin(x,[]) = false
| isin(x,x'::rest) = eq(x,x') orelse isin(x,rest)
(* In the following function, L is a list of pairwise disjoint
sets. S' is the set currently under construction;
it is also disjoint from the sets in L. x
will be added to S' if x is not in any set in L. *)
fun add(x:'a,
(found_fixpt: bool, found_class: bool, L as [], S')):
bool * bool * 'a list list * 'a list =
if isin(x,S')
then if insert_when_eq
then
(found_fixpt andalso found_class, found_class,[],x::S')
else
(found_fixpt andalso found_class, found_class,[],S')
else
(false, any, [], x::S')
| add(x,(found_fixpt,found_class,(S::L), S')) =
if isin(x,S)
then
if insert_when_eq
then
(found_fixpt andalso not found_class,true, L, x::(S @ S'))
else
(found_fixpt andalso not found_class,true, L, S @ S')
else
let val (found_fixpt1, found_class1, L1, S1)=
add(x,(found_fixpt,found_class,L,S'))
in
(found_fixpt andalso found_fixpt1,
found_class orelse found_class1,
S::L1,
S1
)
end
fun add_S (S,(found_fixpt, oldsets)) : bool * 'a set list =
let
val (found_fixpt1, _, L1, S1) =
foldl add (found_fixpt, false, oldsets, emptyset) S
in
case S1 of
[] => (found_fixpt andalso found_fixpt1, L1)
| _ => (found_fixpt andalso found_fixpt1, S1::L1)
end
in
foldl add_S (true, oldsets) newsets
end
(*
end;
*)
(*
structure Variables = (* program variables *)
struct
*)
type var = string
(*
end;
*)
(*structure Type = (* Types, substitutions and matching *)
struct
local
(* open List Variables*)
in
*) datatype ty = INT | REAL | ARROW of ty * ty | PROD of ty * ty | TYVAR of int
type subst = ty -> ty
fun mk_subst_ty(i: int,ty:ty):subst =
let
fun S(INT) = INT
| S(REAL) = REAL
| S(ARROW(ty1,ty2)) = ARROW(S ty1, S ty2)
| S(PROD(ty1,ty2)) = PROD(S ty1, S ty2)
| S(tv as TYVAR j) = if i=j then ty else tv
in
S
end;
val Id = fn x => x;
val r = ref 0; (* counter for fresh type variables *)
fun fresh() = (r:= !r + 1; ! r);
fun fresh_ty() = TYVAR(fresh());
(* free variables *)
fun fv_ty (INT,acc) = acc
| fv_ty (REAL,acc) = acc
| fv_ty(ARROW(t1,t2), acc) = fv_ty(t1,fv_ty(t2,acc))
| fv_ty(PROD(t1,t2), acc) = fv_ty(t1,fv_ty(t2,acc))
| fv_ty((TYVAR i),acc) = if isin(i,acc) then acc else i :: acc;
fun tyvars(t:ty) = fv_ty(t,[])
fun fv_tyenv TE =
foldr (fn((i,tau),acc)=> fv_ty(tau,acc)) [] TE
(* ALLNEW, page 168: create a fresh copy of a type, using type variables
at the leaves of the type *)
fun allnew(INT) = fresh_ty()
| allnew(REAL) = fresh_ty()
| allnew(ARROW(t1,t2)) = ARROW(allnew(t1),allnew(t2))
| allnew(PROD(t1,t2)) = PROD(allnew(t1),allnew(t2))
| allnew(TYVAR _) = fresh_ty();
(* PAIR, page 168: create list of atomic types that occur in the same
places of t1 and t2 *)
fun pair(ARROW(t1,t2),ARROW(t1',t2')) = pair(t1,t1') @ pair (t2,t2')
| pair(PROD(t1,t2),PROD(t1',t2')) = pair(t1,t1') @ pair (t2,t2')
| pair(t1,t2) = [[t1,t2]]
(* dealing with equivalence classes of atomic types -- for algorithm MATCH *)
(* M_v, page 168: removing that equivalence class containing v from M *)
fun remove([], v) = []
| remove((class::rest), v) =
if isin(v,class) then rest else class:: remove(rest,v);
(* [a]_M, page 168: the equivalence class containing a *)
exception ClassOff
fun class_of([],a) = raise ClassOff
| class_of((class::rest), a) =
if isin(a,class) then class else class_of(rest,a);
(* [t]^M, page 168: the set of type variables eqivalent to some type variable
occurring in non-atomic type t *)
fun equiv_tyvars(t,M): ty list =
foldr union [] ((map (fn a=> class_of(M,TYVAR a)) (tyvars(t))): ty list list) ;
fun transitive_closure(oldsets,newsets) =
#2(transClos(op = : ty*ty-> bool)(false)(newsets,oldsets))
(* Coercion sets *)
type coercion = ty * ty
type coercion_set = coercion list
fun on_C(S,C) = map (fn(t1,t2) => (S t1, S t2)) C
fun atomic t =
case t of
INT => true
| REAL => true
| TYVAR _ => true
| _ => false;
(* diagonal is used in match to create initial equivalence relation*)
fun diagonal(C: coercion_set) =
let
fun diag(t,acc) =
case t of
INT => union([INT],acc)
| REAL => union([REAL],acc)
| PROD(t1,t2) => diag(t1,diag(t2,acc))
| ARROW(t1,t2) => diag(t1,diag(t2,acc))
| TYVAR _ => union([t],acc)
fun diag2((t1,t2),acc) = diag(t1,diag(t2,acc))
val atomics = foldr diag2 [] C
in
map (fn atomic => [atomic,atomic]) atomics
end
fun ground_atomic t =
case t of
INT => true
| REAL => true
| _ => false;
fun contains_no_type_constant [] = true
| contains_no_type_constant (t::rest) =
not (ground_atomic t) andalso contains_no_type_constant rest;
exception MATCH
local
fun match1([]:coercion_set,S:subst,M) = S
| match1((t1,t2)::C, S, M) =
if atomic t1 andalso atomic t2 then atomicElimination(t1,t2,C,S,M)
else if atomic t1 then expansion(t1,t2,C,S,M)
else if atomic t2 then expansion(t2,t1,C,S,M)
else decomposition(t1,t2,C,S,M)
and atomicElimination(t1,t2,C,S,M) =
match1(C,S,transitive_closure(M,[[t1,t2]]))
and decomposition(ARROW(t1,t2),ARROW(t1',t2'),C,S,M)=
match1((t1',t1)::(t2,t2')::C, S, M)
| decomposition(PROD(t1,t2),PROD(t1',t2'),C,S,M)=
match1((t1,t1')::(t2,t2')::C, S, M)
| decomposition(_) = raise MATCH
and expansion(t1:ty,t2:ty,C,S,M) =
case intersect(class_of(M,t1), equiv_tyvars(t2,M)) (* occurs check *)
of
[]=> if contains_no_type_constant(class_of(M,t1))
then
(* not matching of int or real with arrow or prod *)
let
fun loop([],C,S,M) = match1(C,S,M)
| loop((TYVAR alpha)::tyvars, C, S, M) =
let val t' = allnew t2
val delta = mk_subst_ty(alpha,t')
in
loop(tyvars, on_C(delta,C), delta o S,
transitive_closure(M,pair(t2,t')))
end
| loop((_::tyvars), C, S, M) =
(* skip atomic types, that are not variables *)
loop(tyvars, C, S, M)
in
loop(class_of(M,t1),C,S,M)
end
else (* matching of int or real with arrow or prod *)
raise MATCH
| _ => (* occurs check failed *)
raise MATCH
in
fun match(C) = match1(C,Id,diagonal C);
end
(* Type Environments *)
type tyenv = (var * ty)list (* no polymorphism! *)
(* looking up variables in the type environement *)
exception Lookup;
fun lookup(i,[]) = raise Lookup
| lookup(i,((j,sigma)::rest)) = if i=j then sigma else lookup(i,rest);
fun on_tyenv(S:subst,TE:tyenv) =
map (fn(i,tau) => (i, S tau)) TE
(* pretty printing -- actually not very pretty, but it will do *)
(* precedences: -> : 1
* : 2 *)
fun pp_ty' (context:int,INT) = "INT"
| pp_ty'(_,REAL) = "REAL"
| pp_ty'(context,ARROW(ty1, ty2)) =
let val s = pp_ty'(2,ty1) ^ "->" ^
pp_ty'(1, ty2)
in
if context > 1 then "(" ^ s ^ ")" else s
end
| pp_ty'(context,PROD(ty1, ty2)) =
let val s = pp_ty'(3,ty1) ^ "*" ^ pp_ty'(3,ty2)
in
if context > 2 then "(" ^ s ^ ")"
else s
end
| pp_ty'(context,(TYVAR i)) = "'a" ^ toString i;
fun pp_ty ty = pp_ty'(0,ty)
local
fun filter [] = []
| filter ((x,sigma)::rest) =
if isin(x,["fst","snd","floor"])
(* hack to avoid printing of built-in variables fst, snd and floor *)
then filter rest
else (x,sigma)::filter rest
fun pp_tyenv [] = ""
| pp_tyenv ([(x,sigma)]) =
x ^ ":" ^ pp_ty sigma ^ " "
| pp_tyenv ((x,sigma)::rest) =
x ^ ":" ^ pp_ty sigma ^ "," ^ pp_tyenv rest;
in
val pp_tyenv = pp_tyenv o filter
end
fun pp_coercion(tau1,tau2) = "\n " ^ pp_ty tau1 ^ " |> " ^ pp_ty tau2
fun pp_coercion_set [] = ""
| pp_coercion_set[coercion] = pp_coercion coercion
| pp_coercion_set(coercion::rest) =
pp_coercion coercion ^ ", " ^ pp_coercion_set rest
(*
end (* local *)
end;
*)
(*structure Expressions =
struct
local
open List Variables
in
*) datatype exp = VAR of var
| INTCON of int
| REALCON of real
| LAM of var * exp
| APP of exp * exp
| LET of var * exp * exp
| PLUS of exp
| MINUS of exp
| PAIR of exp * exp;
(* pretty printing *)
fun pp_exp(VAR x) = x
| pp_exp(LAM(x,e')) = "(fn " ^ x ^ " =>" ^ pp_exp e' ^ ")"
| pp_exp(APP(e1,e2)) = "(" ^ pp_exp e1 ^ " @ " ^ pp_exp e2 ^ ")"
| pp_exp(LET(x,e1,e2)) = "let " ^ x ^ "=" ^ pp_exp e1 ^ " in " ^ pp_exp e2 ^ "end"
| pp_exp(INTCON i) = toString i
| pp_exp(REALCON r) = toString(floor r) ^ ".?"
| pp_exp(PLUS(e1)) = "(+" ^ pp_exp e1 ^ ")"
| pp_exp(MINUS(e1)) = "(-" ^ pp_exp e1 ^ ")"
| pp_exp(PAIR(e1,e2)) = "(" ^ pp_exp e1 ^ "," ^ pp_exp e2 ^ ")"
(*
end (* local *)
end;
*)
(*structure TypeChecker=
struct
local
open List Variables Type Expressions
in
*)
type job = tyenv * exp * ty
fun TYPE(TE:tyenv,e:exp) : ty * coercion_set =
let val alpha0 = fresh_ty()
val C = TY([(TE,e,alpha0)],[])
in (alpha0, C)
end
and TY([]: job list, C: coercion_set)= C
| TY((job as (TE,e,tau)) :: rest, C: coercion_set)=
case e of
VAR x => TY(rest, (lookup(x,TE),tau)::C)
| LAM(x,e') =>
let val (new_ty1,new_ty2) = (fresh_ty(),fresh_ty());
val TE' = (x,(new_ty1))::TE
in
TY((TE',e',new_ty2)::rest, (ARROW(new_ty1,new_ty2), tau):: C)
end
| APP(e1,e2) =>
let val (new_ty1,new_ty2) = (fresh_ty(),fresh_ty());
in
TY((TE,e1,ARROW(new_ty1,new_ty2))::(TE,e2,new_ty1)::rest,
(new_ty2,tau)::C)
end
| LET(x,e1,e2) =>
let val (new_ty1,new_ty2) = (fresh_ty(),fresh_ty());
in
TY((TE,e1,new_ty1)::((x,new_ty1)::TE,e2,new_ty2)::rest,
(new_ty2,tau)::C)
end
| INTCON i => TY(rest, (INT, tau):: C)
| REALCON i => TY(rest, (REAL, tau):: C)
| PLUS e1 => TY((TE,e1, PROD(INT,INT))::rest, (PROD(INT,INT),tau):: C)
| MINUS e1 => TY((TE,e1, PROD(INT,INT))::rest, (PROD(INT,INT),tau):: C)
| PAIR(e1,e2) =>
let val (new_ty1,new_ty2) = (fresh_ty(),fresh_ty());
in
TY((TE,e1,new_ty1)::(TE,e2,new_ty2)::rest,
(PROD(new_ty1,new_ty2),tau)::C)
end
type judgement = coercion_set * tyenv * exp * ty
fun pp_judgement(C,TE,e,tau) =
"\nCoersion set: " ^ pp_coercion_set C ^
"\nType environment: " ^ pp_tyenv TE ^
"\nExpression: " ^ pp_exp e ^
"\nType: " ^ pp_ty tau;
(*
end (* local *)
end;
*)
(*structure Run =
struct
local
open List Variables Type Expressions TypeChecker
in
*) val e0 = (* let val Id = fn x => x in (Id 3, Id 4.0) end *)
let
val Id = LAM("x",VAR "x")
val pair = PAIR(APP(VAR "Id", INTCON 3), APP(VAR "Id", REALCON 4.0))
in
LET("Id",Id, pair)
end;
val e1 = (* let val makepair = fn x => (x,x) in makepair 3.14 *)
let
val makepair = LAM("x",PAIR(VAR "x", VAR "x"))
in
LET("makepair", makepair, APP(VAR "makepair", REALCON 3.14))
end
val e2 = (* let fun mappair = fn f => fn x => (f (fst x), f (snd x))
in mappair floor (3.14,2.18) end *)
let
val mappair = LAM("f",LAM("x",
PAIR(APP(VAR "f",APP(VAR "fst", VAR "x")),
APP(VAR "f",APP(VAR "snd", VAR "x")))))
in
LET("mappair",mappair, APP(APP(VAR "mappair", VAR "floor"),
PAIR(REALCON 3.14, REALCON 2.18)))
end;
val e3 = (* fn x => x *)
LAM("x",VAR "x")
val e4 = (* fn f => fn x => f x *)
LAM("f",LAM("x",APP(VAR "f", VAR "x")));
val e5 = (* fn f => fn x => f(f x) *)
LAM("f",LAM("x",APP(VAR "f", APP(VAR "f", VAR "x"))));
fun run(e: exp, outfilename: string) =
let
val _ = r:= 5; (* reset counter for type variables *)
val _ = print("\nprocessing " ^ outfilename ^ "...")
val TE0 =
[("fst", (ARROW(PROD(TYVAR 0,TYVAR 1),TYVAR 0))), (* the type of fst *)
("snd", (ARROW(PROD(TYVAR 0,TYVAR 1),TYVAR 1))), (* the type of snd *)
("floor", (ARROW(REAL,INT)))] (* the type of floor *)
val _ = print("running TYPE...")
val (ty,C) = TYPE(TE0,e) ;
val os = TextIO.openOut outfilename;
val _ = TextIO.output(os, "\nResult of TYPE:\n\n\n " ^ pp_judgement(C,TE0,e,ty));
val _ = print("running MATCH...")
val S = match C
val judgem' as (C',TE',e',ty') = (on_C(S,C),on_tyenv(S,TE0),e,S ty)
val _ = TextIO.output(os, "\n\n\nResult of MATCH:\n\n\n " ^ pp_judgement judgem');
in
TextIO.closeOut os
end;
val _ = run(e0,"outFuhMishra0");
val _ = run(e1,"outFuhMishra1");
val _ = run(e2,"outFuhMishra2");
val _ = run(e3,"outFuhMishra3");
val _ = run(e4,"outFuhMishra4");
val _ = run(e5,"outFuhMishra5");
(*
end (* local *)
end (*struct*);
*)
val _ = print "\n"
|