1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
(* Copyright (C) 1999-2006 Henry Cejtin, Matthew Fluet, Suresh
* Jagannathan, and Stephen Weeks.
* Copyright (C) 1997-2000 NEC Research Institute.
*
* MLton is released under a HPND-style license.
* See the file MLton-LICENSE for details.
*)
functor Integer (I: PRIM_INTEGER): INTEGER_EXTRA =
struct
open I
type t = int
val precision': Int.int = Primitive.Int32.zextdToInt sizeInBits
val precision: Int.int option = SOME precision'
val sizeInBitsWord = Primitive.Word32.zextdToWord sizeInBitsWord
val maxInt: int option = SOME maxInt'
val minInt: int option = SOME minInt'
val sign: int -> Int.int =
fn i => if i = zero
then (0: Int.int)
else if i < zero
then (~1: Int.int)
else (1: Int.int)
fun sameSign (x, y) = sign x = sign y
fun << (i, n) =
if Word.>= (n, sizeInBitsWord)
then zero
else I.<<? (i, Primitive.Word32.zextdFromWord n)
fun >> (i, n) =
if Word.>= (n, sizeInBitsWord)
then zero
else I.>>? (i, Primitive.Word32.zextdFromWord n)
fun ~>> (i, n) =
if Word.< (n, sizeInBitsWord)
then I.~>>? (i, Primitive.Word32.zextdFromWord n)
else I.~>>? (i, Primitive.Word32.- (I.sizeInBitsWord, 0w1))
fun rol (i, n) = I.rolUnsafe (i, Primitive.Word32.zextdFromWord n)
fun ror (i, n) = I.rorUnsafe (i, Primitive.Word32.zextdFromWord n)
val fromInt = I.schckFromInt
val toInt = I.schckToInt
val fromLargeInt = I.schckFromLargeInt
val toLargeInt = I.schckToLargeInt
val fromLarge = fromLargeInt
val toLarge = toLargeInt
(* fmt constructs a string to represent the integer by building it into a
* statically allocated buffer. For the most part, this is a textbook
* algorithm: loop starting at the end of the buffer; we use rem to
* extract the next digit to put into the buffer; and we use quot to
* figure out the part of the integer that we haven't yet formatted.
* However, this function uses the negative absolute value of the input
* number, which allows it to take into account minInt without any
* special-casing. This requires the rem function to behave in a very
* specific way, or else things will go terribly wrong. This may be a
* concern when porting to platforms where the division hardware has a
* different interpretation than SML about what happens when doing
* division of negative numbers.
*)
local
(* Allocate a buffer large enough to hold any formatted integer in any radix.
* The most that will be required is for minInt in binary.
*)
val maxNumDigits = Int.+ (precision', 1)
val oneBuf = One.make (fn () => CharArray.array (maxNumDigits, #"\000"))
in
fun fmt radix (n: int): string =
One.use
(oneBuf, fn buf =>
let
val radix = fromInt (StringCvt.radixToInt radix)
fun loop (q, i: Int.int) =
let
val _ =
CharArray.update
(buf, i, StringCvt.digitToChar (toInt (~! (rem (q, radix)))))
val q = quot (q, radix)
in
if q = zero
then
let
val start =
if n < zero
then
let
val i = Int.- (i, 1)
val () = CharArray.update (buf, i, #"~")
in
i
end
else i
in
CharArraySlice.vector
(CharArraySlice.slice (buf, start, NONE))
end
else loop (q, Int.- (i, 1))
end
in
loop (if n < zero then n else ~! n, Int.- (maxNumDigits, 1))
end)
end
val toString = fmt StringCvt.DEC
fun scan radix reader s =
let
(* Works with the negative of the number so that minInt can be scanned. *)
val s = StringCvt.skipWS reader s
fun charToDigit c =
case StringCvt.charToDigit radix c of
NONE => NONE
| SOME n => SOME (fromInt n)
val radixInt = fromInt (StringCvt.radixToInt radix)
fun finishNum (s, n) =
case reader s of
NONE => SOME (n, s)
| SOME (c, s') =>
case charToDigit c of
NONE => SOME (n, s)
| SOME n' => finishNum (s', n * radixInt - n')
fun num s =
case (reader s, radix) of
(NONE, _) => NONE
| (SOME (#"0", s), StringCvt.HEX) =>
(case reader s of
NONE => SOME (zero, s)
| SOME (c, s') =>
if c = #"x" orelse c = #"X" then
case reader s' of
NONE => SOME (zero, s)
| SOME (c, s') =>
case charToDigit c of
NONE => SOME (zero, s)
| SOME n => finishNum (s', ~! n)
else
case charToDigit c of
NONE => SOME (zero, s)
| SOME n => finishNum (s', ~! n))
| (SOME (c, s), _) =>
case charToDigit c of
NONE => NONE
| SOME n => finishNum (s, ~! n)
fun negate s =
case num s of
NONE => NONE
| SOME (n, s) => SOME (~ n, s)
in
case reader s of
NONE => NONE
| SOME (c, s') =>
case c of
#"~" => num s'
| #"-" => num s'
| #"+" => negate s'
| _ => negate s
end
val fromString = StringCvt.scanString (scan StringCvt.DEC)
end
structure Int8 = Integer (Primitive.Int8)
structure Int16 = Integer (Primitive.Int16)
structure Int32 = Integer (Primitive.Int32)
structure Int64 = Integer (Primitive.Int64)
|