1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
\section{The MLRISC Machine Description Language}
\subsection{ Overview }
\newdef{MDGen} is a machine description language
is designed to automate
various mundane and error prone tasks in developing a back-end for
MLRISC. Currently, to target a new
architecture the programmer must provide the following set of modules
written in Standard ML:
\begin{itemize}
\item \codehref{instructions/cells.sig}{CELLS} --
the properties of the register set and (some part of) memory hierarchy.
\item \codehref{instructions/instructions.sig}{INSTRUCTIONS} --
the concrete instruction set representation.
\item \codehref{instructions/insnProps.sig}{INSNS_PROPERTIES} --
properties of the instructions.
\item \codehref{instructions/shuffle.sig}{SHUFFLE} --
methods to emit linearized code from parallel copies.
\item \codehref{emit/instruction-emitter.sig}{ASSEMBLER} --
the assembler
\item \codehref{emit/instruction-emitter.sig}{MC} --
the machine code emitter
\item \codehref{../backpatch/sdi-jumps.sig}{ SDI_JUMPS } --
methods for resolving span-dependent instructions.
\item <a href="../backpatch/delaySlotProps.sig" target=code> DELAY_SLOTS_PROPERTIES
</a> -- machine properties for delay slot filling, if a machine
architecture contains branch delay slots or load delay slots.
\item \codehref{../SSA/ssaProps.sig}{ SSA_PROPERTIES } --
semantics properties for performing optimizations in Static Single
Assignment form.
\end{itemize}
In general, writing a backend is tedious even with
SML's abstraction capabilities.
Furthermore, the machine description is procedural in natural
and must be checked by hand.
\subsection{ What is in MDGen? }
The MDGen tool simplifies the process of developing a new MLRISC backend.
MDGen provides the following:
\begin{itemize}
\item A representation description language for specifying the
machine encoding of the instruction set,
using an extension of ML's algebraic datatype facility.
\item A semantics description language for specifying the abstract semantics
of the instructions.
\end{itemize}
Both sub-languages are based on ML's syntax and semantics, so
they should be readily familiar to all MLRISC users.
A backend developer can specify a new machine architecture using the MDGen
language, and in turn, the MDGen tool generates ML modules that are
required by the MLRISC system.
The basic concepts of MDGen are inspired largely from
Norman Ramsey's <a href="www.cs.virginia.edu/~nr/toolkit">
New Jersey Machine Code Tool Kit </a> and
Ramsey and Davidson's
<a href="http://www.cs.virginia.edu/zephyr/csdl/lrtlindex.html">
Lambda RTL </a>
\subsection{A Sample Description}
Here we present a sample MDGen description, using the Alpha as an example.
We highlight all keywords in the MDGen language
in. A typical machine description
is structured as follows:
\begin{SML}
architecture Alpha =
struct
name "Alpha"
superscalar
little endian
<font color=#FF0000>lowercase assembly</font>
\href{#cells}{Storage cells and locations}
\href{#encoding}{Instruction encoding formats specification}
\href{#instruction}{Instruction definition}
<font color=#FF0000>end</font>
\end{SML}
Here, we declare that the Alpha is a superscalar machine using
little endian encoding. Furthermore, assembly output should be displayed
in lowercase-- this is for personal esthetic reasons only; most assemblers
are case insensitive.
\subsubsection{ <a name="cells">Specifying Storage Cells and Locations </a>}
A <font color="#ff0000">cell</font> is an abstract resource location
for holding data values. On typical machines, the types of
cells include general purpose registers, floating point registers,
and condition code registers.
The \sml{storage} declaration defines different
<font color="#ff0000">cellkinds</font>. MLRISC requires the
cellkinds \sml{GP}, \sml{FP}, \sml{CC} to be defined.
These are the cellkinds for general purpose registers, floating point
registers and condition code registers.
In the following sequence of declarations, a few things are defined:
\begin{itemize}
\item The cellkinds \sml{GP, FP, CC} are defined.
Furthermore, the cellkinds \sml{MEM, CTRL}, which stand
for memory and control (dependence), are also implicitly defined.
\item The \sml{assembly as} clauses specify how a specific cell type is
to be displayed. Here, we specify that register 30, the
stack pointer, should be displayed specially as \sml{$sp}.
\item The \sml{in cellset} clause, when attached, tells MDGen that
the associated cellkind should be part of the
\href{cellset.html}{ cellset }. The clause \sml{in cellset GP}
tells MDGen that the a cell of type \sml{CC} should be treated
the same as a \sml{GP}
\item The \sml{locations} declarations define a few abbreviations:
\sml{stackptrR} is the stack pointer, \sml{asmTmpR} is
the assembly temporary, \sml{fasmTmp} is the floating point
assembly temporary etc.
\end{itemize}
<tt>
\begin{SML}
<font color=#FF0000>storage</font>
GP = 32 <font color=#FF0000>cells <font color=#FF0000>of</font> 64 bits in cellset called</font> "register"
<font color=#FF0000>assembly as</font> (fn 30 => "$sp"
| r => "$"^Int.toString r)
| FP = 32 <font color=#FF0000>cells <font color=#FF0000>of</font> 64 bits in cellset called</font> "floating point register"
<font color=#FF0000>assembly as</font> (fn f => "f"^Int.toString f)
| CC = <font color=#FF0000>cells <font color=#FF0000>of</font> 64 bits in cellset GP called</font> "condition code register"
<font color=#FF0000>assembly as</font> "cc"
<font color=#FF0000>locations</font>
stackptrR = <font color=#008800>$</font>GP[30]
<font color=#FF0000>and</font> asmTmpR = <font color=#008800>$</font>GP[28]
<font color=#FF0000>and</font> fasmTmp = <font color=#008800>$</font>FP[30]
<font color=#FF0000>and</font> GPReg r = <font color=#008800>$</font>GP[r]
<font color=#FF0000>and</font> FPReg f = <font color=#008800>$</font>GP[f]
\end{SML}
<h3> <a name="instruction">
Specifying the Representation of Instructions</a></h3>
\begin{SML}
<font color=#FF0000>structure</font> Instruction =
<font color=#FF0000>struct</font>
<font color=#FF0000>datatype</font> ea =
Direct <font color=#FF0000>of</font> <font color=#008800>$</font>GP
| FDirect <font color=#FF0000>of</font> <font color=#008800>$</font>FP
| Displace <font color=#FF0000>of</font> {base: <font color=#008800>$</font>GP, disp:int}
<font color=#FF0000>datatype</font> operand =
REGop <font color=#FF0000>of</font> <font color=#008800>$</font>GP ``<GP>'' (GP)
| IMMop <font color=#FF0000>of</font> int ``<int>''
| HILABop <font color=#FF0000>of</font> LabelExp.labexp ``hi(<emit_labexp labexp>)''
| LOLABop <font color=#FF0000>of</font> LabelExp.labexp ``lo(<emit_labexp labexp>)''
| LABop <font color=#FF0000>of</font> LabelExp.labexp ``<emit_labexp labexp>''
| CONSTop <font color=#FF0000>of</font> Constant.const ``<emit_const const>''
(*
* When I say ! after the datatype</font> name XXX, it means generate a
* function emit_XXX that converts the constructors into the corresponding
* assembly text. By default, it uses the same name as the constructor,
* but may be modified by the lowercase/uppercase assembly directive.
*
*)
<font color=#FF0000>datatype</font> branch! =
BR 0x30
| BSR 0x34
| BLBC 0x3
| BEQ 0x39 | BLT 0x3a | BLE 0x3b
| BLBS 0x3c | BNE 0x3d | BGE 0x3e
| BGT 0x3f
<font color=#FF0000>datatype</font> fbranch! =
FBEQ 0x31 | FBLT 0x32
| FBLE 0x33 | FBNE 0x35
| FBGE 0x36 | FBGT 0x37
<font color=#FF0000>datatype</font> load! = LDL 0x28 | LDL_L 0x2A | LDQ 0x29 | LDQ_L 0x2B | LDQ_U 0x0B
<font color=#FF0000>datatype</font> store! = STL 0x2C | STQ 0x2D | STQ_U 0x0F
<font color=#FF0000>datatype</font> fload[0x20..0x23]! = LDF | LDG | LDS | LDT
<font color=#FF0000>datatype</font> fstore[0x24..0x27]! = STF | STG | STS | STT
(* non-trapping opcodes *)
<font color=#FF0000>datatype</font> operate! = (* table C-5 *)
ADDL (0wx10,0wx00) | ADDQ (0wx10,0wx20)
| CMPBGE(0wx10,0wx0f) | CMPEQ (0wx10,0wx2d)
| CMPLE (0wx10,0wx6d) | CMPLT (0wx10,0wx4d) | CMPULE (0wx10,0wx3d)
| CMPULT(0wx10,0wx1d) | SUBL (0wx10,0wx09)
| SUBQ (0wx10,0wx29)
| S4ADDL(0wx10,0wx02) | S4ADDQ (0wx10,0wx22) | S4SUBL (0wx10,0wx0b)
| S4SUBQ(0wx10,0wx2b) | S8ADDL (0wx10,0wx12) | S8ADDQ (0wx10,0wx32)
| S8SUBL(0wx10,0wx1b) | S8SUBQ (0wx10,0wx3b)
| AND (0wx11,0wx00) | BIC (0wx11,0wx08) | BIS (0wx11,0wx20)
| CMOVEQ(0wx11,0wx24) | CMOVLBC(0wx11,0wx16) | CMOVLBS(0wx11,0wx14)
| CMOVGE(0wx11,0wx46) | CMOVGT (0wx11,0wx66) | CMOVLE (0wx11,0wx64)
| CMOVLT(0wx11,0wx44) | CMOVNE (0wx11,0wx26) | EQV (0wx11,0wx48)
| ORNOT (0wx11,0wx28) | XOR (0wx11,0wx40)
| EXTBL (0wx12,0wx06) | EXTLH (0wx12,0wx6a) | EXTLL(0wx12,0wx26)
| EXTQH (0wx12,0wx7a) | EXTQL (0wx12,0wx36) | EXTWH(0wx12,0wx5a)
| EXTWL (0wx12,0wx16) | INSBL (0wx12,0wx0b) | INSLH(0wx12,0wx67)
| INSLL (0wx12,0wx2b) | INSQH (0wx12,0wx77) | INSQL(0wx12,0wx3b)
| INSWH (0wx12,0wx57) | INSWL (0wx12,0wx1b) | MSKBL(0wx12,0wx02)
| MSKLH (0wx12,0wx62) | MSKLL (0wx12,0wx22) | MSKQH(0wx12,0wx72)
| MSKQL (0wx12,0wx32) | MSKWH (0wx12,0wx52) | MSKWL(0wx12,0wx12)
| SLL (0wx12,0wx39) | SRA (0wx12,0wx3c) | SRL (0wx12,0wx34)
| ZAP (0wx12,0wx30) | ZAPNOT (0wx12,0wx31)
| MULL (0wx13,0wx00) | MULQ (0wx13,0wx20)
| UMULH (0wx13,0wx30)
| SGNXL "addl" (0wx10,0wx00) (* same as ADDL *)
(* conditional moves *)
<font color=#FF0000>datatype</font> pseudo_op! = DIVL | DIVLU
<font color=#FF0000>datatype</font> operateV! = (* table C-5 opc/func *)
ADDLV (0wx10,0wx40) | ADDQV (0wx10,0wx60)
| SUBLV (0wx10,0wx49) | SUBQV (0wx10,0wx69)
| MULLV (0wx13,0wx00) | MULQV (0wx13,0wx60)
<font color=#FF0000>datatype</font> foperate! = (* table C-6 *)
CPYS (0wx17,0wx20) | CPYSE (0wx17,0wx022) | CPYSN (0wx17,0wx021)
| CVTLQ (0wx17,0wx010) | CVTQL (0wx17,0wx030) | CVTQLSV (0wx17,0wx530)
| CVTQLV (0wx17,0wx130)
| FCMOVEQ (0wx17,0wx02a) | FCMOVEGE (0wx17,0wx02d) | FCMOVEGT (0wx17,0wx02f)
| FCMOVLE (0wx17,0wx02e) | FCMOVELT (0wx17,0wx02c) | FCMOVENE (0wx17,0wx02b)
| MF_FPCR (0wx17,0wx025) | MT_FPCR (0wx17,0wx024)
(* table C-7 *)
| CMPTEQ (0wx16,0wx0a5) | CMPTLT (0wx16,0wx0a6) | CMPTLE (0wx16,0wx0a7)
| CMPTUN (0wx16,0wx0a4)
<font color=#FF0000>datatype</font> foperateV! =
ADDSSUD 0wx5c0
| ADDTSUD 0wx5e0
| CVTQSC 0wx3c
| CVTQTC 0wx3e
| CVTTSC 0wx2c
| CVTTQC 0wx2f
| DIVSSUD 0wx5ec
| DIVTSUD 0wx5c3
| MULSSUD 0wx5c2
| MULTSUD 0wx5e2
| SUBSSUD 0wx5c1
| SUBTSUD 0wx5e1
<font color=#FF0000>datatype</font> osf_user_palcode! =
BPT 0x80 | BUGCHK 0x81 | CALLSYS 0x83
| GENTRAP 0xaa | IMB 0x86 | RDUNIQUE 0x9e | WRUNIQUE 0x9f
end (* Instruction *)
\end{SML}
<h3> <a name="encoding">
Specifying the Instruction Encoding Formats </a></h3>
The Alpha has very simple instruction encoding formats.
<tt>
\begin{SML}
<font color=#FF0000>instruction formats 32 bits</font>
Memory{opc:6, ra:5, rb:GP 5, disp: signed 16} (* p3-9 *)
(* derived from Memory *)
| LoadStore{opc,ra,rb,disp} =
<font color=#FF00000>let val</font> disp =
<font color=#FF00000>case</font> disp <font color=#FF0000>of</font>
I.REGop rb => emit_GP rb
| I.IMMop i => itow i
| I.HILABop le => itow(LabelExp.valueOf le)
| I.LOLABop le => itow(LabelExp.valueOf le)
| I.LABop le => itow(LabelExp.valueOf le)
| I.CONSTop c => itow(Constant.valueOf c)
in Memory{opc,ra,rb,disp}
end
| ILoadStore{opc,r:GP,b,d} = LoadStore{opc,ra=r,rb=b,disp=d}
| FLoadStore{opc,r:FP,b,d} = LoadStore{opc,ra=r,rb=b,disp=d}
| Jump{opc:6,ra:GP 5,rb:GP 5,h:2,disp:int signed 14} (* table C-3 *)
| Memory_fun{opc:6, ra:GP 5, rb:GP 5, func:16} (* p3-9 *)
| Branch{opc:branch 6, ra:GP 5, disp:signed 21} (* p3-10 *)
| Fbranch{opc:fbranch 6, ra:FP 5, disp:signed 21} (* p3-10 *)
(* p3-11 *)
| Operate0{opc:6,ra:GP 5,rb:GP 5,sbz:13..15,_:1=0,func:5..11,rc:GP 5}
(* p3-11 *)
| Operate1{opc:6,ra:GP 5,lit:signed 13..20,_:1=1,func:5..11,rc:GP 5}
| Operate{opc,ra,rb,func,rc} =
(<font color=#FF00000>case</font> rb <font color=#FF0000>of</font>
I.REGop rb => Operate0{opc,ra,rb,func,rc,sbz=0w0}
| I.IMMop i => Operate1{opc,ra,lit=itow i,func,rc}
| I.HILABop le => Operate1{opc,ra,lit=itow(LabelExp.valueOf le),func,rc}
| I.LOLABop le => Operate1{opc,ra,lit=itow(LabelExp.valueOf le),func,rc}
| I.LABop le => Operate1{opc,ra,lit=itow(LabelExp.valueOf le),func,rc}
| I.CONSTop c => Operate1{opc,ra,lit=itow(Constant.valueOf c),func,rc}
)
| Foperate{opc:6,fa:FP 5,fb:FP 5,func:5..15,fc:FP 5}
| Pal{opc:6=0,func:26}
\end{SML}
</tt>
\subsubsection{ Specifying the instruction set }
<tt>
\begin{SML}
<font color=#FF0000>structure</font> MC =
<font color=#FF0000>struct</font>
(* compute displacement address *)
<font color=#FF0000>fun</font> disp lab = itow(Label.addrOf lab - !loc - 4) ~>> 0w2
<font color=#FF0000>end</font>
(*
* The main instruction set definition consists <font color=#FF0000>of</font> the following:
* 1) constructor-like declaration defines the view <font color=#FF0000>of</font> the instruction,
* 2) assembly directive in funny quotes `` '',
* 3) machine encoding expression,
* 4) semantics expression in [[ ]],
* 5) delay slot directives etc (not necessary in this architecture!)
*)
<font color=#FF0000>instruction</font>
DEFFREG <font color=#FF0000>of</font> <font color=#008800>$</font>FP (* define a floating point register *)
``deffreg <FP>''
(* Pseudo instruction for the register allocator *)
(* Load/Store *)
| LDA <font color=#FF0000>of</font> {r: <font color=#008800>$</font>GP, b: <font color=#008800>$</font>GP, d:operand} (* use of REGop is illegal *)
``lda\t<r>, <d>()''
ILoadStore{opc=0w08,r,b,d}
| LDAH <font color=#FF0000>of</font> {r: <font color=#008800>$</font>GP, b: <font color=#008800>$</font>GP, d:operand} (* use of REGop is illegal *)
``ldah\t<r>, <d>()''
ILoadStore{opc=0w09,r,b,d}
| LOAD <font color=#FF0000>of</font> {ldOp:load, r: <font color=#008800>$</font>GP, b: <font color=#008800>$</font>GP, d:operand, mem:Region.region}
``<ldOp>\t<r>, <d>()''
ILoadStore{opc=emit_load ldOp,r,b,d}
| STORE <font color=#FF0000>of</font> {stOp:store, r: <font color=#008800>$</font>GP, b: <font color=#008800>$</font>GP, d:operand, mem:Region.region}
``<stOp>\t<r>, <d>()''
ILoadStore{opc=emit_store stOp,r,b,d}
| FLOAD <font color=#FF0000>of</font> {ldOp:fload, r: <font color=#008800>$</font>FP, b: <font color=#008800>$</font>GP, d:operand, mem:Region.region}
``<ldOp>\t<r>, <d>()''
FLoadStore{opc=emit_fload ldOp,r,b,d}
| FSTORE <font color=#FF0000>of</font> {stOp:fstore, r: <font color=#008800>$</font>FP, b: <font color=#008800>$</font>GP, d:operand, mem:Region.region}
``<stOp>\t<r>, <d>()''
FLoadStore{opc=emit_fstore stOp,r,b,d}
(* Control Instructions *)
| JMPL <font color=#FF0000>of</font> {r: <font color=#008800>$</font>GP, b: <font color=#008800>$</font>GP, d:int} * Label.label list
``jmpl\t<r>, <d>()''
Jump{opc=0wx1a,h=0w0,ra=r,rb=b,disp=d} (* table C-3 *)
| JSR <font color=#FF0000>of</font> {r: <font color=#008800>$</font>GP, b: <font color=#008800>$</font>GP, d:int} * C.cellset * C.cellset
``jsr\t<r>, <d>()''
Jump{opc=0wx1a,h=0w1,ra=r,rb=b,disp=d}
| RET <font color=#FF0000>of</font> {r: <font color=#008800>$</font>GP, b: <font color=#008800>$</font>GP, d:int}
``ret\t<r>, <d>()''
Jump{opc=0wx1a,h=0w2,ra=r,rb=b,disp=d}
| BRANCH <font color=#FF0000>of</font> branch * <font color=#008800>$</font>GP * Label.label
``<branch> <GP>, <label>''
Branch{opc=branch,ra=GP,disp=disp label}
| FBRANCH <font color=#FF0000>of</font> fbranch * <font color=#008800>$</font>FP * Label.label
``<fbranch> <FP>, <label>''
Fbranch{opc=fbranch,ra=FP,disp=disp label}
(* Integer Operate *)
| OPERATE <font color=#FF0000>of</font> {oper:operate, ra: <font color=#008800>$</font>GP, rb:operand, rc: <font color=#008800>$</font>GP}
``<oper>\t<ra>, <rb>, <rc>''
(let val (opc,func) = emit_operate oper
in Operate{opc,func,ra,rb,rc}
end)
| OPERATEV <font color=#FF0000>of</font> {oper:operateV, ra: <font color=#008800>$</font>GP, rb:operand, rc: <font color=#008800>$</font>GP}
``<oper>\t<ra>, <rb>, <rc>''
(let val (opc,func) = emit_operateV oper
in Operate{opc,func,ra,rb,rc}
end)
| PSEUDOARITH <font color=#FF0000>of</font> {oper: pseudo_op, ra: <font color=#008800>$</font>GP, rb:operand, rc: <font color=#008800>$</font>GP,
tmps: C.cellset}
``<oper>\t<ra>, <rb>, <rc>''
(* Copy instructions *)
| COPY <font color=#FF0000>of</font> {dst: <font color=#008800>$</font>GP list, src: <font color=#008800>$</font>GP list,
impl:instruction list option ref, tmp: ea option}
``<app emitInstr (Shuffle.shuffle{regmap,tmp,dst,src})>''
| FCOPY <font color=#FF0000>of</font> {dst: <font color=#008800>$</font>FP list, src: <font color=#008800>$</font>FP list,
impl:instruction list option ref, tmp: ea option}
``<app emitInstr (Shuffle.shufflefp{regmap,tmp,dst,src})>''
(* Floating Point Operate *)
| FOPERATE <font color=#FF0000>of</font> {oper:foperate, fa: <font color=#008800>$</font>FP, fb: <font color=#008800>$</font>FP, fc: <font color=#008800>$</font>FP}
``<oper>\t<fa>, <fb>, <fc>''
(let val (opc,func) = emit_foperate oper
in Foperate{opc,func,fa,fb,fc}
end)
(* Trapping versions <font color=#FF0000>of</font> the above *)
| FOPERATEV <font color=#FF0000>of</font> {oper:foperateV, fa: <font color=#008800>$</font>FP, fb: <font color=#008800>$</font>FP, fc: <font color=#008800>$</font>FP}
``<oper>\t<fa>, <fb>, <fc>''
Foperate{opc=0wx16,func=emit_foperateV oper,fa,fb,fc}
(* Misc *)
| TRAPB (* Trap barrier *)
``trapb''
Memory_fun{opc=0wx18,ra=31,rb=31,func=0wx0}
| CALL_PAL <font color=#FF0000>of</font> {code:osf_user_palcode, def: <font color=#008800>$</font>GP list, use: <font color=#008800>$</font>GP list}
``call_pal <code>''
Pal{func=emit_osf_user_palcode code}
end
\end{SML}
</tt>
\subsection{ 4 Machine Descriptions }
Here are some machine descriptions in varing degree of completion.
\begin{itemize}
\item \codehref{../sparc/sparc.mdl}{ Sparc }
\item \codehref{../hppa/hppa.mdl}{ Hppa }
\item \codehref{../alpha/alpha.mdl}{ Alpha }
\item \codehref{../ppc/ppc.mdl}{ PowerPC }
\item \codehref{../x86/x86.mdl}{ X86 }
\end{itemize}
\subsection{ Syntax Highlighting Macros }
\begin{itemize}
\item \href{md.vim}{ For vim 5.3 }
\end{itemize}
</body>
</html>
|