1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
\section{MLTree Utilities}
The \MLRISC{} system contains numerous utilities for working with
MLTree datatypes. Some of the following utilizes are also useful for clients
use:
\begin{description}
\item[MLTreeUtils] implements basic hashing, equality and pretty
printing functions,
\item[MLTreeFold] implements a fold function over the MLTree datatypes,
\item[MLTreeRewrite] implements a generic rewriting engine,
\item[MLTreeSimplify] implements a simplifier that performs algebraic
simplification and constant folding.
\end{description}
\subsubsection{Hashing, Equality, Pretty Printing}
The functor \mlrischref{mltree/mltree-utils.sml}{MLTreeUtils} provides
the basic utilities for hashing an MLTree term, comparing two
MLTree terms for equality and pretty printing. The hashing and comparision
functions are useful for building hash tables using MLTree datatype as keys.
The signature of the functor is:
\begin{SML}
signature \mlrischref{mltree/mltree-utils.sig}{MLTREE_UTILS} =
sig
structure T : MLTREE
(*
* Hashing
*)
val hashStm : T.stm -> word
val hashRexp : T.rexp -> word
val hashFexp : T.fexp -> word
val hashCCexp : T.ccexp -> word
(*
* Equality
*)
val eqStm : T.stm * T.stm -> bool
val eqRexp : T.rexp * T.rexp -> bool
val eqFexp : T.fexp * T.fexp -> bool
val eqCCexp : T.ccexp * T.ccexp -> bool
val eqMlriscs : T.mlrisc list * T.mlrisc list -> bool
(*
* Pretty printing
*)
val show : (string list * string list) -> T.printer
val stmToString : T.stm -> string
val rexpToString : T.rexp -> string
val fexpToString : T.fexp -> string
val ccexpToString : T.ccexp -> string
end
functor \mlrischref{mltree/mltree-utils.sml}{MLTreeUtils}
(structure T : MLTREE
(* Hashing extensions *)
val hashSext : T.hasher -> T.sext -> word
val hashRext : T.hasher -> T.rext -> word
val hashFext : T.hasher -> T.fext -> word
val hashCCext : T.hasher -> T.ccext -> word
(* Equality extensions *)
val eqSext : T.equality -> T.sext * T.sext -> bool
val eqRext : T.equality -> T.rext * T.rext -> bool
val eqFext : T.equality -> T.fext * T.fext -> bool
val eqCCext : T.equality -> T.ccext * T.ccext -> bool
(* Pretty printing extensions *)
val showSext : T.printer -> T.sext -> string
val showRext : T.printer -> T.ty * T.rext -> string
val showFext : T.printer -> T.fty * T.fext -> string
val showCCext : T.printer -> T.ty * T.ccext -> string
) : MLTREE_UTILS =
\end{SML}
The types \sml{hasher}, \sml{equality},
and \sml{printer} represent functions for hashing,
equality and pretty printing. These are defined as:
\begin{SML}
type hasher =
\{stm : T.stm -> word,
rexp : T.rexp -> word,
fexp : T.fexp -> word,
ccexp : T.ccexp -> word
\}
type equality =
\{ stm : T.stm * T.stm -> bool,
rexp : T.rexp * T.rexp -> bool,
fexp : T.fexp * T.fexp -> bool,
ccexp : T.ccexp * T.ccexp -> bool
\}
type printer =
\{ stm : T.stm -> string,
rexp : T.rexp -> string,
fexp : T.fexp -> string,
ccexp : T.ccexp -> string,
dstReg : T.ty * T.var -> string,
srcReg : T.ty * T.var -> string
\}
\end{SML}
For example, to instantiate a \sml{Utils} module for our \sml{DSPMLTree},
we can write:
\begin{SML}
structure U = MLTreeUtils
(structure T = DSPMLTree
fun hashSext \{stm, rexp, fexp, ccexp\} (FOR(i, a, b, s)) =
Word.fromIntX i + rexp a + rexp b + stm s
and hashRext \{stm, rexp, fexp, ccexp\} e =
(case e of
SUM(i,a,b,c) => Word.fromIntX i + rexp a + rexp b + rexp c
| SADD(a,b) => rexp a + rexp b
| SSUB(a,b) => 0w12 + rexp a + rexp b
| SMUL(a,b) => 0w123 + rexp a + rexp b
| SDIV(a,b) => 0w1245 + rexp a + rexp b
)
fun hashFext _ _ = 0w0
fun hashCCext _ _ = 0w0
fun eqSext \{stm, rexp, fexp, ccexp\}
(FOR(i, a, b, s), FOR(i', a', b', s')) =
i=i' andalso rexp(a,a') andalso rexp(b,b') andalso stm(s,s')
fun eqRext \{stm, rexp, fexp, ccexp\} (e,e') =
(case (e,e') of
(SUM(i,a,b,c),SUM(i',a',b',c')) =>
i=i' andalso rexp(a,a') andalso rexp(b,b') andalso stm(c,c')
| (SADD(a,b),SADD(a',b')) => rexp(a,a') andalso rexp(b,b')
| (SSUB(a,b),SSUB(a',b')) => rexp(a,a') andalso rexp(b,b')
| (SMUL(a,b),SMUL(a',b')) => rexp(a,a') andalso rexp(b,b')
| (SDIV(a,b),SDIV(a',b')) => rexp(a,a') andalso rexp(b,b')
| _ => false
)
fun eqFext _ _ = true
fun eqCCext _ _ = true
fun showSext \{stm, rexp, fexp, ccexp, dstReg, srcReg\}
(FOR(i, a, b, s)) =
"for("^dstReg i^":="^rexp a^".."^rexp b^")"^stm s
fun ty t = "."^Int.toString t
fun showRext \{stm, rexp, fexp, ccexp, dstReg, srcReg\} e =
(case (t,e) of
SUM(i,a,b,c) =>
"sum"^ty t^"("^dstReg i^":="^rexp a^".."^rexp b^")"^rexp c
| SADD(a,b) => "sadd"^ty t^"("rexp a^","^rexp b^")"
| SSUB(a,b) => "ssub"^ty t^"("rexp a^","^rexp b^")"
| SMUL(a,b) => "smul"^ty t^"("rexp a^","^rexp b^")"
| SDIV(a,b) => "sdiv"^ty t^"("rexp a^","^rexp b^")"
)
fun showFext _ _ = ""
fun showCCext _ _ = ""
)
\end{SML}
\subsubsection{MLTree Fold}
The functor \mlrischref{mltree/mltree-fold.sml}{MLTreeFold}
provides the basic functionality for implementing various forms of
aggregation function over the MLTree datatypes. Its signature is
\begin{SML}
signature \mlrischref{mltree/mltree-fold.sig}{MLTREE_FOLD} =
sig
structure T : MLTREE
val fold : 'b folder -> 'b folder
end
functor \mlrischref{mltree/mltree-fold.sml}{MLTreeFold}
(structure T : MLTREE
(* Extension mechnism *)
val sext : 'b T.folder -> T.sext * 'b -> 'b
val rext : 'b T.folder -> T.ty * T.rext * 'b -> 'b
val fext : 'b T.folder -> T.fty * T.fext * 'b -> 'b
val ccext : 'b T.folder -> T.ty * T.ccext * 'b -> 'b
) : MLTREE_FOLD =
\end{SML}
The type \newtype{folder} is defined as:
\begin{SML}
type 'b folder =
\{ stm : T.stm * 'b -> 'b,
rexp : T.rexp * 'b -> 'b,
fexp : T.fexp * 'b -> 'b,
ccexp : T.ccexp * 'b -> 'b
\}
\end{SML}
\subsubsection{MLTree Rewriting}
The functor \mlrischref{mltree/mltree-rewrite.sml}{MLTreeRewrite}
implements a generic term rewriting engine which is useful for performing
various transformations on MLTree terms. Its signature is
\begin{SML}
signature \mlrischref{mltree/mltree-rewrite.sig}{MLTREE_REWRITE} =
sig
structure T : MLTREE
val rewrite :
(* User supplied transformations *)
\{ rexp : (T.rexp -> T.rexp) -> (T.rexp -> T.rexp),
fexp : (T.fexp -> T.fexp) -> (T.fexp -> T.fexp),
ccexp : (T.ccexp -> T.ccexp) -> (T.ccexp -> T.ccexp),
stm : (T.stm -> T.stm) -> (T.stm -> T.stm)
\} -> T.rewriters
end
functor \mlrischref{mltre/mltree-rewrite.sml}{MLTreeRewrite}
(structure T : MLTREE
(* Extension *)
val sext : T.rewriter -> T.sext -> T.sext
val rext : T.rewriter -> T.rext -> T.rext
val fext : T.rewriter -> T.fext -> T.fext
val ccext : T.rewriter -> T.ccext -> T.ccext
) : MLTREE_REWRITE =
\end{SML}
The type \newtype{rewriter} is defined in signature
\mlrischref{mltree/mltree.sig}{MLTREE} as:
\begin{SML}
type rewriter =
\{ stm : T.stm -> T.stm,
rexp : T.rexp -> T.rexp,
fexp : T.fexp -> T.fexp,
ccexp : T.ccexp -> T.ccexp
\}
\end{SML}
\subsubsection{MLTree Simplifier}
The functor \mlrischref{mltree/mltree-simplify.sml}{MLTreeSimplify}
implements algebraic simplification and constant folding for MLTree.
Its signature is:
\begin{SML}
signature \mlrischref{mltree/mltree-simplify.sig}{MLTREE_SIMPLIFIER} =
sig
structure T : MLTREE
val simplify :
{ addressWidth : int } -> T.simplifier
end
functor \mlrischref{mltree/mltree-simplify.sml}{MLTreeSimplifier}
(structure T : MLTREE
(* Extension *)
val sext : T.rewriter -> T.sext -> T.sext
val rext : T.rewriter -> T.rext -> T.rext
val fext : T.rewriter -> T.fext -> T.fext
val ccext : T.rewriter -> T.ccext -> T.ccext
) : MLTREE_SIMPLIFIER =
\end{SML}
Where type \newdef{simplifier} is defined in signature
\mlrischref{mltree/mltree.sig}{MLTREE} as:
\begin{SML}
type simplifier =
\{ stm : T.stm -> T.stm,
rexp : T.rexp -> T.rexp,
fexp : T.fexp -> T.fexp,
ccexp : T.ccexp -> T.ccexp
\}
\end{SML}
|